

Supreme-K: A Korean Initiative for Pioneering the AB21 HPC accelerator and Compute Node

* Supreme-K: National Supercomputer Development Project

2025, 8, 20

Yoomi Park (<u>parkym@etri.re.kr</u>) and Woojong Han(<u>woojong.han@etri.re.kr</u>)

ETRI

01 Background

- Why
- For what

02 Overview

- Goal
- Consortium
- R&D Strategy

03 Development

- Accelerator
- Compute node
- Software stacks
- Cluster systems

- Lesson learned
- Future direction

01 Background

- Why
- For what

02 Overview

- Goal
- Consortium
- R&D Strategy

03 Development

- Accelerator
- Compute node
- Software stacks
- Cluster systems

- Lesson learned
- Future direction

Background :: Why

(Survey '19, Korea) Not enough HPC resources vs. Growing demand for HPC resources

(Challenges) supercomputers from global vendors (made in the US or China)

TOP500 rank	Name	Site	Vendor	
25	Sejong	Naver	Nvidia	
32	SSC-21	Samsung	HPE	
44	kakaodoud	kakao	Supermicro	
58	Guru	Korea Meteorological	Lenovo	
59	Maru	Administration	Lenovo	
70	kakaodoud	kakao	Supermicro	
73	Titan	SK Telecom	HPE	
75	Nurion	KISTI	HPE	
90	KT DGX SuperPOD	KT	Nvidia	
148	DAIDC		HPE	
178		CUBOX	HPE	
275	Dream-Al	GIST	Inspur 🔀	
468	SSC-21 Scalable Module	Samsung	HPE	

❖ (Risks) Critical national resource → supply chains disruption → national risk

- ❖ 2nd Master Plan for National Supercomputer Development
- **❖** Government's Execution Strategy: 3-Pillars of undertaking
 - to build Sustainable Top-tier HPC ecosystem
 - being realized through R&D projects by government

01 Background

- Why
- For what

02 Overview

- Goal
- Consortium
- R&D Strategy

03 Development

- Accelerator
- Compute node
- Software stacks
- Cluster systems

- Lesson learned
- Future direction

- ❖ Goal of Project 'Supreme-K'
 - Development of a PoC of HPC system based on a domestic HPC accelerator ('AB21'), system SWs, and compute nodes('Silver')
 - supported by Ministry of Science & ICT of Korea
- **❖ Period** : Jul. 2020~Sep. 2025

Overview :: National Consortium

+ HW/SW Co-design for HPC accelerator "AB21"

- Optimization of Data movement
 - Data sharing in a shared virtual memory between Host and AB21
- Comprehensive Systematic Verification for System integration
 - SW simulator, FPGA-based HW emulator, SVP(Silicon Virtual Prototyping)
- Project Management
 - Issue/Risk management
 - System/Document Configuration management
- ❖ Preliminary research on expanding memory capacity to tackle the memory wall issue

01 Background

- Why
- For what

02 Overview

- Goal
- Consortium
- R&D Strategy

03 Development

- Accelerator
- Compute node
- Software stacks
- Cluster systems

- Lesson learned
- Future direction

Development :: Accelerator "AB21"

Architecture Design

- [NoC] **ARM-CMN**(Coherent Mesh Network)-700
- [PE] dual ARM(zeus) cores
- [Parallel Processing Unit]
 - [XEMIS] 64 clusters
 - [XECM] 4 x Parallel processing unit/XEMIS
 - {16 FP array+64-b RISC-V (4,096 FP units/chip)}/XECM
 - D-cache & SPM (2x128KB)/XEMIS
- DDR5 / PCIe GEN5 interface on ARM-CMN

Implementation

(w | supergate)

- TSMC 12nm process node (2Q, 2024)
- Rpeak : 8TFLOPS@FP64, 32TFLOPS@FP32
- 1.4 billion gates and approximately 4,900 balls

Parallel Processing Unit

26000 (target)

Floorplan after BE

❖ Parallel Processing Unit in AB21

XEMIS_CLUSTER x 8

^{*} Chun-gi Lyuh et. al., "Development of SoC to Accelerate 64/32 bit floating point matrix calculation for Supercomputers," JCCI 24, Apr. 2024.

Development :: Accelerator "AB21"

03

Comparison

NVDIA GPU

AB21

NPU

Product	AB21	NVIDIA V100	NVIDIA A100	NVIDIA H100	AMD MI250X
Release Year	′24.5 14°	′17.6	′20.5	′22.3	′21.11
Rpeak (fp64)	8TF	7TF	9.7TF	26TF	47TF
Fab	TSMC 12nm	TSMC 12nm	TSMC 7nm	TSMC4nm	TSMC 6nm

HW/SW Codesign

Implementation

- Device driver: controls AB21's behavior, parallel task scheduling, task execution, memory access, and device communication
 - Providing low level I/F library(XDL) and management tool(xpu-smi)
- OpenCL back-end compiler and runtime for AB21
 - OpenCL (Open Computing Language : an open, royalty-free standard for cross-platform parallel programming of heterogeneous systems
 - Compier: extended based on LLVM/clang
 - Runtime : extended based on POCL
- Customized BLAS Library for AB21
 - Supporting level 1, 2, 3
 - BLAS: customized based on CLBlast

Development :: Verification

03

Step-by-step verification through several stages

Development :: Compute node "Silver"

03

Architecture Design

Customized Compute Node for dual AB21

Main board (Host+AB21)	Host board	 Host CPU: ARM CPU (Ampere) DDR4 64GB * 8 ch. / PCle Gen4 * 2ch. *16 Aspeed AST2500 BMC FW (OpenBMC), BIOS FW (UEFI) 		
	AB21 board	K-AB21 * 2EARefer to AB21 spec.		
Network		Ethetnet, IB, IPMI		
Power		■ 2400W * 2		
Endosure		19" standard chassis/3UHybrid(Air + Liquid) cooling		

03 Development :: Benchmarking

Development :: Single-rack scale HPC cluster

03

with Partial 2PC(2 Phase liquid Cooling)*

Development:: Demonstration

03

Compute node with dual AB21 chips

- ▶ What is the purpose of this chip?
- ▶ Which process node was used?
- ▶ What are the specs and performance?
- How is it different from NVIDIA GPUs?
- ► Is it commercially available?
- Does the chip support Al?
- ▶ What are the target applications?
- What are the software stacks for AB21
- What programming model does it use?
- ► What are the future plans based on current results?

01 Background

- Why
- For what

02 Overview

- Goal
- Consortium
- R&D Strategy

03 Development

- Accelerator
- Compute node
- Software stacks
- Cluster systems

- Lesson learned
- Future direction

❖ Nurion : Korea's fifth national supercomputer

Scope of Supreme-K

04

Conclusions :: Takeaway

ATOS/Eviden

MemVerge/Enfabrica

ORNL/LANL/TACC

Q4Conclusions :: Future direction

- GEMM(GEneral Matrix Matrix multiplication)
- ❖ GEMV(GEneral Matrix Vector multiplication)
- ❖ GEMM/GEMV operations account for 70%–90% of computations in both fundamental science and Al.

Lesson Learned

- Taking a New path
- Walking it Together
- Proving That Korea can achieve this!

Moving forward

- First stride toward HPC sovereignty
- Expanding our vision beyond HPC to Al
- Actively collaborating with global-leading partners
- Keep moving forward, step by step, guided by Korea's national HPC roadmap

Thank you!

