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Typical MPI workloads

Compute-bound
Heavy computation and minimal

communication

Memory-bound
High memory bandwidth and

limited CPU/GPU usage

Communication-bound
Frequent data exchange between

processes

I/O-bound
Heavy disk read/write operations

and I/O latency issues
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GPUs Computing — Raw Compute Power

GPUs Lead in Raw Compute Power
▶ NVIDIA H100 (2024):

• Peak FP64: 30 TFLOP/s (More with Tensor Core)
• Peak FP32: 60 TFLOP/s (More with Tensor Core)
• Memory Bandwidth: 3.35 TB/s (HBM3)
• NVLink 4.0: 900 GB/s per GPU (bi-directional)

▶ CPU Comparison — Intel Sapphire Rapids:
• FP64: ˜2 TFLOP/s
• Memory Bandwidth: ˜300 GB/s

Key Insight
▶ GPUs provide massively higher FLOP/s and memory bandwidth.
▶ To leverage this, applications must maximize arithmetic intensity.
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GPUs Computing — Why Compute-Bound Wins

Motivation to Favor Compute-Bound Workloads
Factor Compute-Bound Communication-Bound
GPU Utilization ✓ High (massive threads) ✗ Latency/sync overhead
Scalability ✓ Excellent ✗ Degrades at scale
Energy Efficiency ✓ High flops per watt ✗ Idle/wait energy waste
Optimization ✓ Easy to tile/vectorize ✗ Complex MPI+GPU overlap

Strategic Takeaway
▶ Modern GPUs shine in compute-bound regimes.
▶ Shift your algorithms toward:

• More local computation, less communication
• Batched/fused kernels and fewer synchronizations

▶ Result: Better performance, scalability, and energy efficiency.
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MPI Workloads in Climate & Weather PDE Models

Model Dominant MPI Workload Hot MPI Ops

WRF Communication-bound MPI Isend/Irecv + MPI Waitall, MPI Allreduce
FV3 Communication-bound Isend/Irecv, Iallreduce
ICON Communication-bound MPI Neighbor alltoallv, Isend/Irecv
MPAS-A Communication-bound Isend/Irecv, Allreduce
IFS (spectral) Communication-bound MPI Alltoall(v), Allreduce
CESM / E3SM Communication-bound Isend/Irecv, Allreduce, Allgather
Ocean comps Communication-bound Isend/Irecv, Allreduce
I/O & Coupling I/O-bound; Comm-bound MPI-IO via HDF5/netCDF-4, MPI File *, Allreduce
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Rethinking About Climate Modeling/Forecasting

From Physics-Based to Data-Driven Modeling
▶ Traditional models rely on solving PDEs (e.g., Navier-Stokes) with

fine-grained grids and time steps
▶ These models are:

• Memory-bound and communication-heavy on modern hardware
• Difficult to scale efficiently on GPUs and MPI-based HPC systems

AI & Spatial Statistics: Natural Fit for GPU Era
▶ Graph Neural Networks (GNNs), Transformers, or Gaussian Process:

• Are inherently compute-bound — ideal for GPUs
• Offer low communication overhead

▶ To fully utilize GPU compute and MPI scalability, the community should:
• Shift more resources toward statistical emulation and ML-based forecasting

▶ Future models may bypass PDE bottlenecks entirely, achieving faster,
scalable, and energy-efficient forecasting.
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Introduction to Gaussian Processes (GPs)

Gaussian Processes (GPs): are probabilistic models used primarily for regression
and classification tasks in statistics and machine learning. It provides a principled
way of modeling uncertainty over functions.

GPs for Spatial Statistics: Spatial data shows location-based dependence, with
nearby points being more similar. GPs model this correlation to interpolate missing
values, quantify prediction uncertainty, and capture smooth spatial trends.

Example
Assume there are n locations, s1, . . . , sn ∈ Rd and their observations
y = (y1, . . . , yn)⊤ where yi ∈ R. We model the data y as y ∼ N (µ,Σθ) where
covaraince matrix is determined by Cθ (si , sj).

The inference about θ is often based on the Gaussian log-likelihood
function:

ℓ(θ; y) = −n
2 log(2π) − 1

2 log |Σ(θ)| − 1
2y⊤Σ(θ)−1y. (1)Sameh Abdulah (

1Applied Mathematics and Computational Sciences
(AMCS) Program, 2Statistics Program, King

Abdullah University of Science and Technology,
Thuwal, Saudi Arabia., ) Scalable Spatial Statistical Workloads August 20, 2025 7 / 37



Matérn Covariance Function

▶ The Matérn covariance function is a widely used kernel in Gaussian Processes
for spatial statistics. It provides a flexible way to model the smoothness of
spatial processes.

Parameterization
The popular parameterization of Matérn covariance function:

cov
{

Z (si), Z (sj)
}

= σ2 21−ν

Γ(ν)

(
∥si − sj∥

β

)ν

Kν

(
∥si − sj∥

β

)
+ τ 2

1{i=j}

where Kν(·) is the modified Bessel function of the second kind of order ν, Γ(·) is
the Gamma function, and 1 is the indicator function

▶ The four parameters determining the covariance structure are:
the partial sill σ2, range β > 0, smoothness ν > 0, and nugget τ 2
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Maximum Likelihood Estimator (MLE)

Likelihood Function
θ̂ = argmin

θ
{log |Σ(θ)| + Z⊤Σ(θ)−1Z}

▶ Computing Σ(θ)−1 is computationally demanding, with O(n3) complexity in
time and O(n2) complexity in memory for n spatial locations.

▶ Full-Matrix Computation Methods:
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Classic Vecchia Approximation 1/2
▶ The Vecchia approximation restructures the GP’s joint distribution into

sequential univariate conditionals, each dependent on a limited subset of
earlier observations.

▶ The likelihood can be written as a product of conditional densities:

L(θ; y) = pθ (y1, . . . , yn) (2)

= pθ (yτ
1 )

n∏
i=2

pθ

(
yτ

i | yτ
1 , . . . , yτ

i−1
)

, (3)

where τ is any permutation. Vecchia approximation replaces the complete
conditioning vectors

(
yτ

1 , . . . , yτ
i−1

)
, with a subvector.

pθ,τ,J (y1, . . . , yn) = pθ (yτ
1 )

n∏
i=2

pθ

(
yτ

i | yτ
ji1 , . . . , yτ

jimi

)
(4)

= pθ (yτ
1 )

n∏
i=2

pθ

(
yτ

i | yτ
Ji

)
. (5)

J = {J1, . . . , Jn}, where each Ji is defined as {ji1, . . . , jimi } and is referred to
as the conditioning set containing mi nearest neighbors
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Classic Vecchia Approximation 2/2
▶ Independent Computing,

pθ (yτ
1 )

n∏
i=2

pθ

(
yτ

i | yτ
Ji

)
,

where n conditional distributions is independent of each other;
▶ Abundant and Light-weight computation task,

#Ji ≪ n,

the conditioning sizes #Ji , e.g., 30, and the number of tasks, e.g., 1M
▶ We developed a highly optimized GPU-based implementation of the Vecchia

approximation algorithm presented in:

Reference
Pan, Q., Abdulah, S., Genton, M. G., Keyes, D. E., Ltaief, H., and Sun, Y. (2024, May).
GPU-accelerated Vecchia approximations of Gaussian processes for geospatial data using batched
matrix computations. In ISC High Performance 2024 Research Paper Proceedings (39th
International Conference) (pp. 1-12).
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Motivations

The BV approximation allows GP modeling efficiently, but it cannot scale to even
large problems, e.g., billion-level and high-dimensional problems GP emulators
are widely used in various research areas:

1 Engineering Design Optimization: High-fidelity emulation of complex
systems (e.g., aerospace components or automotive designs) require fast and
scalable surrogate models

2 Environmental Modeling: Climate emulation or environmental monitoring
often involve large spatiotemporal datasets

3 Bayesian Optimization in Drug Discovery: In fields like drug discovery,
where high-dimensional and costly simulations are run, fast surrogate
modeling and efficient exploration of the chemical space is needed
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Large Problem Size & High Dimension

The two challenges are addressed by the following approaches:

1 High-dimensional input space in GPs ⇒ Modified covariance functions.

2 Large problem size ⇒ Distribute the BV algorithm.
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Block Vecchia (BV) Pipeline

Block Vecchia (BV) computation pipeline,
1) Clustering
2) Nearest Neighbors Searching (NNS)
3) batched GPU compute
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Distributed Scaled Block Vecchia (SBV) Framework 1/6

Distributed Scaled Block Vecchia (SBV) Pipeline
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Distributed Scaled Block Vecchia (SBV) Framework 2/6

Distributed Scaled Block Vecchia (SBV) Pipeline
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Distributed Scaled Block Vecchia (SBV) Framework 3/6

Distributed Scaled Block Vecchia (SBV) Pipeline
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Distributed Scaled Block Vecchia (SBV) Framework 4/6

Distributed Scaled Block Vecchia (SBV) Pipeline
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Distributed Scaled Block Vecchia (SBV) Framework 5/6

Distributed Scaled Block Vecchia (SBV) Pipeline
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Distributed Scaled Block Vecchia (SBV) Framework 6/6

Distributed Scaled Block Vecchia (SBV) Pipeline
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Filtering subset for NNS 1/5

Distributed Scaled Block Vecchia (SBV) Pipeline
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Filtering subset for NNS 2/5

Distributed Scaled Block Vecchia (SBV) Pipeline
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Filtering subset for NNS 3/5

Distributed Scaled Block Vecchia (SBV) Pipeline
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Filtering subset for NNS 4/5

Distributed Scaled Block Vecchia (SBV) Pipeline
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Filtering subset for NNS 5/5

Distributed Scaled Block Vecchia (SBV) Pipeline
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High-dimensional GP Simulations
Configuration. x ∈ [0, 1]10, y ∼ N (0, K(x1, x2)) with K Matérn (ν = 3.5). (All
following keep the same GP setting.) β1 = β2 = 0.05 and β3 = · · · = β10 = 5.

▶ CV: Classic Vecchia
▶ BV: Block Vecchia, bsest = bspred = 10 in (a),(b)
▶ SV: Scaled Vecchia
▶ SBV: Scaled Block Vecchia, with bsest = bspred = 10 in (a),(b)

Figure 1: KL divergence for fitting.
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Satellite Drag (Benchmark Dataset) (1/3)

The satellite drag dataset is a widely used benchmark for evaluating GP-based models in
high-dimensional settings [1] and [2]. It is generated from the low Earth orbit simulator
and comprises 6 sub-datasets/species, each comprising 2 million simulation
runs.

The 6 species are O, O2, N, N2, He, and H with 8-dimensional input x ∈ [0, 1]8,
including: relative velocity; surface temperature; atmospheric temperature; yaw angle;
pitch angle; two accommodation coefficients. Here, we still adopt the same GP setting
as mentioned previously.

[1] Sun, F., Gramacy, R. B., Haaland, B., Lawrence, E., & Walker, A. (2019). Emulating
satellite drag from large simulation experiments. SIAM/ASA Journal on Uncertainty
Quantification, 7(2), 720–759.

[2] Katzfuss, M., Guinness, J., & Lawrence, E. (2022). Scaled Vecchia approximation for fast
computer-model emulation. SIAM/ASA Journal on Uncertainty Quantification, 10(2),
537–554.Sameh Abdulah (
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Satellite Drag (Benchmark Dataset) (2/3)

The approximation methods considered are listed as follows (SV is the current
best approximation to our knowledge),

Table 1: Vecchia-based GP configurations on the satellite drag dataset, showing
block sizes (bsest , bspred) and neighbor counts (mest, mpred) for estimation and
prediction.

Model SV SBV1 SBV2 SBV3 SBV4 SBV5 SBV6
bsest 1 100 100 100 100 100 100
bspred 1 5 5 5 5 5 5
mest 50 200 200 200 400 400 400
mpred 140 200 400 600 200 400 600
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Satellite Drag (Benchmark Dataset) (3/3)

Remark
1) Inputs (6, 7, 8) — pitch angle and two accommodation coefficients — are relevant
to N2. 2) Larger mest, mpred improve prediction accuracy.
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Scalability & Power Consumption 1/6
We conduct experiments on two modern NVIDIA GPU architectures, A100 and GH200,
hosted at the Jülich Supercomputing Centre (JSC) on the JURECA-DC GPU and
JEDI systems.

1 JEDI. 48 nodes, each equipped with four NVIDIA GH200 Grace Hopper
Superchips. Each Superchip integrates:

• 72-core Grace CPU (3.1 GHz, 120 GB)
• Hopper GPU (96 GB HBM3)
• NVLink-C2C interconnect (900 GB/s)
• ∼680 W power consumption per Superchip

2 JURECA-DC GPU. 192 nodes, each with:
• Two 64-core AMD EPYC 7742 CPUs (2.25 GHz, 512 GB, 225 W/socket)
• Four NVIDIA A100 GPUs (40 GB HBM2, 400 W/GPU)

Both systems use InfiniBand interconnects:

▶ JEDI: four NDR200 (200 Gbit/s) links per node
▶ JURECA-DC GPU: two HDR (200 Gbit/s) links per node
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Scalability & Power Consumption (2/6)

Performance comparison of SBV and SV methods with 500 MLE iterations on a single
AMD EPYC with NVIDIA A100 (40 GB) and single NVIDIA GH200 superchip (96
GB).
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Scalability & Power Consumption (3/6)

Performance comparison of SBV and SV methods with 500 MLE iterations on single
AMD EPYC with NVIDIA A100 (40 GB) and single NVIDIA GH200 superchip (96 GB).
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Scalability & Power Consumption (4/6)

Weak and strong scaling of SBV were evaluated on up to 512 GPUs, using 500 MLE
iterations on AMD EPYC with NVIDIA A100 (40 GB, up to 128M points).
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Scalability & Power Consumption (5/6)

Weak and strong scaling of SBV were evaluated on up to 512 GPUs, using 500 MLE
iterations on NVIDIA GH200 superchip (96 GB, up to 2.56B points).

Sameh Abdulah (

1Applied Mathematics and Computational Sciences
(AMCS) Program, 2Statistics Program, King

Abdullah University of Science and Technology,
Thuwal, Saudi Arabia., ) Scalable Spatial Statistical Workloads August 20, 2025 34 / 37



Scalability & Power Consumption (6/6)

Power consumption/energy (kJ) on a single GPU for two NVIDIA GPUs over 500
iterations per mest. A100 GPU with 400 W max power cap and Hopper GPU with (680
W - the power usage of the Grace CPU, RAM, and system I/O) max power cap.
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Take Home Messages

▶ Climate and weather models are increasingly limited by communication
and I/O bottlenecks in traditional HPC settings

▶ Modern GPUs favor compute-bound workloads, optimizing for this
enables scalable, energy-efficient performance

▶ Gaussian Process (GP) models are powerful but computationally
expensive. Approximations such as Vecchia are essential for large-scale use

▶ Block Vecchia (BV) and Scaled BV (SBV) unlock GP modeling for
billions of data points using hierarchical batching and GPU acceleration

▶ SBV demonstrates strong scalability and reduced power consumption
across multiple NVIDIA GPU architectures (A100, GH200)

▶ Applications in environmental modeling, engineering design, and
scientific emulation benefit from fast, scalable, and accurate GP modeling
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