
MPI-driven Solutions towards High-Performance Deep 
Learning Training and Inference on Modern Clusters

Tutorial at MUG ’25

by

Follow us on

https://twitter.com/mvapich 

Jinghan Yao

The Ohio State University

yao.877@osu.edu

http://nowlab.cse.ohio-
state.edu/member/yao.877/

Nawras Alnaasan

The Ohio State University

alnaasan.1@osu.edu

https://www.linkedin.com/in/naw
ras-alnaasan

https://twitter.com/mvapich
https://twitter.com/mvapich


MUG ‘25 2Network Based Computing Laboratory

• Introduction

• Training

– Deep Neural Network Training

– Distributed Deep Learning

• Data Parallelism

• Sharded Data Parallelism

– Training Solutions

• Inference

– Tensor Parallelism

– Expert Parallelism

• Conclusion 

Outline



MUG ‘25 3Network Based Computing Laboratory

What is Machine Learning and Deep Learning?

Courtesy: https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-

deep-learning-1pcv3zeg, https://blog.dataiku.com/ai-vs.-machine-learning-vs.-deep-learning, 

https://en.wikipedia.org/wiki/Machine_learning 

• Machine Learning (ML)

– “the study of computer algorithms to improve 

automatically through experience and use of data”

• Deep Learning (DL) – a subset of ML

– Uses Deep Neural Networks (DNNs)

– Perhaps, the most revolutionary subset! 

• Based on learning data representation 

• DNN Examples: Convolutional Neural Networks, Recurrent 

Neural Networks, Hybrid Networks

• Data Scientist or Developer Perspective for using 

DNNs

1. Identify DL as solution to a problem

2. Determine Data Set

3. Select Deep Learning Algorithm to Use

4. Use a large data set to train an algorithm
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History: Milestones in the Development of ML/DL

1940 1950 1960 1970 1980 1990 2000 2010                 2020

Electronic
Brain

1943

Perceptron

1957

ADALINE

1960

XOR 
Problem

Golden 
Age

1969

Multi-layered 
Perceptron

(Backpropagation)

1986

Dark Age 
(“AI Winter”)

DBN

2006

AlexNet

2012

ResNet

2015

WGAN

2017

Transformers

K-Means

1965

Bayesian 
Network

1985

Decision Trees

1979

SVM

1995

KNN

1967

1800 1900 ….

Linear 
Regression

1805

Turing Machine

1936

Evolutionary 
Algorithms

1954

Random Forest

2000

PCA

1901

XGBoost

2014

CatBoost

Deep 
Forest

2017

S. McCulloch – W. Pitts F. Rosenblatt B. Widrow – M. Hoff M. Minsky – S. Papert D. Rumelhart – G. Hinton – R. WiliamsA. Legendre – J. Gauss A. TuringK. Pearson J. Pearl V. Vapnik– C. Cortes A. Ng Y. LeCunA. Krizhevsky Y. Bengio

2018

GPT

BERT
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What is Generative AI?

Courtesy: https://www.tutorialspoint.com/gen-ai/ml-and-generative-ai.htm

• Generative AI is a subset of Deep 

Learning which creates new content like 

text, images, videos, or audio based on 

the data it was trained on.

• Examples:

– Text: GPT, LLaMA, and DeepSeek.

– Images: DALL-E and Stable Diffusion.

– Videos: Runway and Sora.

– Audio: AudioPaLM and VALL-E.

• What is not Generative AI?

– Discriminative models that perform:

• Classification

• Regression

• Object detection

• Clustering

• etc.
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• Training: the process of teaching an AI model by optimizing its parameters using 

training data, involving both forward and backward passes.

• Inference: the process of using a trained AI model to make predictions on new, unseen 

data, involving only the forward pass.

Training vs. Inference

Courtesy: https://www.siemon.com/en/environments/data-centers/generative-ai/ 

https://www.siemon.com/en/environments/data-centers/generative-ai/
https://www.siemon.com/en/environments/data-centers/generative-ai/
https://www.siemon.com/en/environments/data-centers/generative-ai/
https://www.siemon.com/en/environments/data-centers/generative-ai/
https://www.siemon.com/en/environments/data-centers/generative-ai/
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Generative AI – Inference 

Online LLM Inferencing

In inference, the model generates outputs based on input prompts. For autoregressive models (most LLMs), 

inference follows an iterative loop, where each generated token (word) is fed back as input for the next step 

until completion.

LLM inference requires low-latency, high-throughput 

compute with the following key QoS (Quality of Service) 

requirements:

– Low Latency – Ensures fast response times, crucial for interactive 

applications.

– Efficient Batch Processing – Optimized for serving multiple 

queries in parallel to maximize throughput.

– Mixed-Precision Support (FP16/BF16/INT8) – Reduces compute 

overhead while maintaining accuracy.

– High-Speed Interconnects (NVLink, InfiniBand) – Required for 

multi-GPU inference to minimize communication bottlenecks.

– High Memory Bandwidth – To efficiently load large model 

weights and handle activation memory.
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• Example of a 3-layer Deep Neural Network (DNN) – (input layer is not counted) 

Understanding the Deep Neural Network Concepts

Courtesy: http://cs231n.github.io/neural-networks-1/ 

http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/
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Essential Concepts: Learning Rate (α)

Courtesy: https://www.jeremyjordan.me/nn-learning-rate/ 

https://www.jeremyjordan.me/nn-learning-rate/
https://www.jeremyjordan.me/nn-learning-rate/
https://www.jeremyjordan.me/nn-learning-rate/
https://www.jeremyjordan.me/nn-learning-rate/
https://www.jeremyjordan.me/nn-learning-rate/
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• Batched Gradient Descent

– Batch Size = N

• Stochastic Gradient Descent

– Batch Size = 1

• Mini-batch Gradient Descent

– Somewhere in the middle 

– Common:

• Batch Size = 64, 128, 256, etc.

• Finding the optimal batch 

size will yield the fastest 

learning.

Essential Concepts: Batch Size

Courtesy: https://www.jeremyjordan.me/gradient-descent/ 

N

Batch Size One full pass over N is called an epoch of training

https://www.jeremyjordan.me/gradient-descent/
https://www.jeremyjordan.me/gradient-descent/
https://www.jeremyjordan.me/gradient-descent/
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Courtesy: https://www.analyticsvidhya.com/blog/2023/07/build-your-own-large-language-models/
https://www.vinayiyengar.com/2022/08/04/the-promise-and-perils-of-large-language-models/  

Evolution of Language Models
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Courtesy: https://www.v7labs.com/blog/convolutional-neural-networks-guide 
A Survey on Vision Transformer (Kai Han et. Al 2022) https://arxiv.org/abs/2012.12556 

Evolution of Computer Vision Models

1. CNN Architectures

2. Vision Transformer Architectures

https://www.v7labs.com/blog/convolutional-neural-networks-guide
https://www.v7labs.com/blog/convolutional-neural-networks-guide
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• Why do we need Parallel Training?

• Larger and Deeper models are being proposed

– Language Models: RNNs -> Transformers -> BERT – GPT – LLaMA

– Vision Models: AlexNet -> ResNet -> NASNet – AmoebaNet → Vision Transformers

– DNNs require a lot of memory and a lot of computation

– Larger models cannot fit a GPU’s memory

• Single GPU training cannot keep up with ever-larger models

• Community has moved to multi-GPU training

• Multi-GPU in one node is good but there is a limit to Scale-up (8-16 GPUs)

• Multi-node (Distributed or Parallel) Training is necessary!!

The Need for Parallel and Distributed Training
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• Some parallelization strategies..

– Data Parallelism or Model Parallelism

– Hybrid Parallelism

Parallelization Strategies

Model Parallelism

Data Parallelism
Hybrid (Model and Data) Parallelism

Courtesy: http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks 
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Data Parallelism and MPI Collectives

• Step1: Data Propagation

– Distribute the Data among GPUs

• Step2: Forward Backward Pass

– Perform forward pass and 

calculate the prediction

– Calculate Error by comparing 

prediction with actual output 

– Perform backward pass and 

calculate gradients 

• Step3: Gradient Aggregation

– Call MPI_Allreduce to reduce the 

local gradients 

– Update parameters locally using 

global gradients

Batch
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Sharded Data Parallelism (DeepSpeed ZeRO)

• Instead of being limited by the device memory, we are now limited by the aggregate memory

• ZeRO-Infinity introduces offload to CPU memory or NVMe disk for the truly desperate

• Since ZeRO removes the DP memory limit, do we still need MP?

– There are still models and data samples that don’t fit inside GPU memory even with ZeRO

– We can use pipeline + tensor parallelism along with ZeRO for these cases.
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MVAPICH (MPI)-driven Infrastructure for ML/DL Training: 
MPI4DL

MVAPICH for CPU Training
MVAPICH-Plus for 

GPU Training

Horovod

TensorFlow PyTorch MXNet

ML/DL Applications

MVAPICH for CPU Training
MVAPICH-Plus for 

GPU Training

Torch.distributed

PyTorch

ML/DL Applications

DeepSpeed

More details available from: https://github.com/OSU-

Nowlab/pytorch/tree/hidl-2.0 and http://hidl.cse.ohio-state.edu 

https://github.com/OSU-Nowlab/pytorch/tree/hidl-2.0
https://github.com/OSU-Nowlab/pytorch/tree/hidl-2.0
https://github.com/OSU-Nowlab/pytorch/tree/hidl-2.0
https://github.com/OSU-Nowlab/pytorch/tree/hidl-2.0
https://github.com/OSU-Nowlab/pytorch/tree/hidl-2.0
http://hidl.cse.ohio-state.edu/
http://hidl.cse.ohio-state.edu/
http://hidl.cse.ohio-state.edu/
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HiDL 2.0 Release

• Support for PyTorch 2.7.1 and later versions

• Full support for PyTorch Native DDP training

• Support for optimized MPI communication

– Efficient large-message collectives (e.g., Allreduce) 
on various CPUs and GPUs

– GPU-Direct Ring and Two-level multi-leader 
algorithms for Allreduce operations

– Support for fork safety in distributed training 
environments

– Exploits efficient large message collectives in 
MVAPICH-Plus 4.0 and later

• Open-source PyTorch version with advanced MPI 
backend support - Available in our PyTorch tag

• Vendor-neutral stack with competitive performance 
and throughput to GPU-based collective libraries 

• Tested on modern HPC clusters (etc, OLCF Frontier, 
TACC Vista) with up-to-date accelerator generations 
(etc. AMD NVIDIA)

• Compatible with

– InfiniBand Networks: Mellanox InfiniBand adapters (EDR, 
FDR, HDR, NDR)

– Slingshot Networks: HPE Slingshot

– GPU&CPU Support:

• NVIDIA GPU A100, H100, GH200

• AMD MI200 series GPUs

– Software Stack:

• CUDA [12.x] and Latest CuDNN

• ROCm [6.x]

• (NEW)PyTorch [2.7.1]

• (NEW)Python [3.x]

More details available from: https://github.com/OSU-Nowlab/pytorch/tree/hidl-2.0
and http://hidl.cse.ohio-state.edu 

https://github.com/OSU-Nowlab/pytorch/tree/hidl-2.0
https://github.com/OSU-Nowlab/pytorch/tree/hidl-2.0
https://github.com/OSU-Nowlab/pytorch/tree/hidl-2.0
https://github.com/OSU-Nowlab/pytorch/tree/hidl-2.0
https://github.com/OSU-Nowlab/pytorch/tree/hidl-2.0
http://hidl.cse.ohio-state.edu/
http://hidl.cse.ohio-state.edu/
http://hidl.cse.ohio-state.edu/
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Distributed Data Parallel Training on GH200 (Vista) 
• Torch Distributed

• Application: GPT-2 model training 

using nanoGPT.

• Hardware: Vista System @TACC

– GH200 Superchips each with:

• 72 ARM cores with 120 GB LPDDR.

• H100 GPU with 96GB HBM3.

– NVIDIA NDR InfiniBand (400Gb/s)

• Software:

– PyTorch 2.6.0

– NCCL 2.21.5

– MVAPICH-Plus 4.1
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Distributed Data Parallel Training (Frontier) 

• End-to-end GPT-2 Training with Openwebtext using Distributed Data Parallel

• 12.4% less ms per iteration (compared to RCCL 2.21.5 + OFI) for 128 GPUs
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Distributed TensorFlow on ORNL Summit (1,536 GPUs)

• ResNet-50 Training using 

TensorFlow benchmark on 

SUMMIT -- 1536 Volta 

GPUs!

• 1,281,167 (1.2 mil.) images

• Time/epoch = 3 seconds

• Total Time (90 epochs)        

= 3 x 90 = 270 seconds = 4.5 

minutes!
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MVAPICH2-GDR 2.3.4

MVAPICH2-GDR 2.3.4

Platform: The Summit Supercomputer (#2 on Top500.org) – 6 NVIDIA Volta GPUs per node connected with NVLink, CUDA 10.1

MVAPICH2-GDR reaching ~0.42 million 

images per second for ImageNet-1k!

ImageNet-1k has 1.2 million images
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Distributed TensorFlow on TACC Frontera (2048 CPU nodes)
• Scaled TensorFlow to 2048 nodes on 

Frontera using MVAPICH2 and IntelMPI

• MVAPICH2 delivers close to the ideal 

performance for DNN training

• Report a peak of 260,000 images/sec on 

2048 nodes

• On 2048 nodes, ResNet-50 can be trained 

in 7 minutes! 

A. Jain, A. A. Awan, H. Subramoni, DK Panda, “Scaling TensorFlow, PyTorch, and MXNet using MVAPICH2 for High-Performance Deep 
Learning on Frontera”, DLS ’19 (SC ’19 Workshop). 
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AccDP: Exploiting Data Parallelism

• ResNet18 training throughput comparison between 
regular training and AccDP (proposed design) for 
different DNN models on up to 8 nodes 2 GPUs per 
node (16 GPUs) with 4 MPS clients per GPU

• ShuffleNet training throughput comparison between 
regular training and AccDP (proposed design) for 
different DNN models on up to 8 nodes 2 GPUs per 
node (16 GPUs) with 4 MPS clients per GPU.

Multi node with ResNet18 Multi node with ShuffleNet

N. Alnaasan, A. Jain, A. Shafi, H. Subramoni, and DK Panda, “AccDP: Accelerated Data-Parallel Distributed DNN Training for Modern 
GPU-Based HPC Clusters”, HiPC’22. 
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MPI4DL v0.6

MPI4DL v0.6 is a distributed, accelerated and memory efficient training framework for very high-resolution images 
that integrates Spatial Parallelism, Bidirectional Parallelism, Layer Parallelism, and Pipeline Parallelism.

Features:

• Based on PyTorch

• Support for training very high-resolution images

• Distributed training support for:

• Support for different image sizes and custom datasets.

• Exploits collective features of MVAPICH2-GDR

• Model Parallelism

- Layer Parallelism (LP)

- Pipeline Parallelism (PP)

• Spatial Parallelism for High Resolution Images

- Spatial and Layer Parallelism (SP+LP)

- Spatial and Pipeline Parallelism (SP+PP)

• Memory Efficient Bidirectional Parallelism (GEMS)

- Bidirectional and Layer Parallelism (GEMS+LP)

- Bidirectional and Pipeline Parallelism (GEMS+PP)

- Spatial, Bidirectional and Layer Parallelism (SP+GEMS+LP)

- Spatial, Bidirectional and Pipeline Parallelism (SP+GEMS+PP)

https://github.com/OSU-Nowlab/MPI4DL
https://github.com/OSU-Nowlab/MPI4DL
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Throughput comparison of Pipeline Parallelism and Pipeline + Spatial Parallelism techniques for AmoebaNet on 1024 * 1024 and 2048 

* 2048 image sizes.

Throughput comparison of Spatial Parallelism and Spatial + Bidirectional Parallelism  for AmoebaNet and ResNet with the following 

configurations: 5 model splits,4 spatial parts, and 2 model replicas for Bidirectional Parallelism.
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• Sharded Data Parallelism

– Training Solutions
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– Tensor Parallelism

– Expert Parallelism

• Conclusion 

Outline
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• Training:

o Key metrics: Throughput, batch size, MFU (Model 

FLOPs Utilization, i.e., hardware utilization) …

o Example (LLaMA 3 405B pre-training) ->

• Inference:

o Optimization order: First minimize Latency, then 

maximize throughput.

o LLM serving example --- Service Level Objectives 

(SLOs):

▪ Time to First Token (TTFT): < 5 seconds

▪ Time between Tokens (TBT): < 25 milliseconds

o Goal:  Without exceeding SLO thresholds,  increase 

throughput as much as possible.

Introduction to Inference

Let's see how to optimize latency!
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• LLM models consist of matrix multiplications.

• Tensor Parallelism splits along hidden dim, and distributes the computation to 

multiple GPUs.

Tensor Parallelism

Batch

Hidden dim

Hidden dim

Output dim

Batch

Output dim

Batch

Hidden dim

Hidden dim

Output dim

Batch

Output dim

Batch

Hidden dim

Hidden dim Batch

Output dim

GPU 0:

GPU 1:

All Reduce

Input tensor Model weights
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• Tensor Parallelism (TP) is widely used in both training and inference.

• For training, TP is used to distribute model weights and hence increase the 

batch size.

• For inference, TP is used to reduce the latency of loading model weights.

Tensor Parallelism

Hidden dimGPU 0:

GPU 1:

Output dim

Hidden dim
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• Mixture of Expert (MoE)

o MoE in LLM was first proposed by Google 

in 2021.

o In 2025, MoE is widely used in almost ALL 

leading LLMs

▪ GPT-4/5, DeepSeek V3/R1, Qwen 3, 

LLaMA 4, …

• Sparsity in MoE:

o Compared to dense models, MoE is much 

more sparse

o Experts can diverse to different 

tasks, improving the performance.

Mixture of Experts
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• There are two ways to distribute MoE models.

• Tensor Parallel

• Each GPU will hold a shard of each expert.

o Given an input token of size [1, d], and each expert is of size [d, d]

o As we use AllReduce in TP, the overall communication volume is

4x[1, d]

Tensor Parallel in MoE
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Expert Parallel in MoE

• Expert Parallel

• Each GPU will hold one expert completely.

o Given an input token of size [1, d], and each expert is of size [d, d]

o In EP, the overall communication volume is

2x[1, d]

Compared to TP: 4x[1, d]
Num. of GPUs TP EP

4 4x[1,d] 2x[1,d]

8 8x[1,d] 2x[1,d]

16 16x[1,d] 2x[1,d]
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• In MoE, we need two Alltoall.

o All-to-All Dispatch: tokens go to experts

o All-to-All Combine: tokens go back to the 

original GPU.

Alltoall in Expert Parallel

Layer 0 Layer 1 Layer 2
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• During the two All-to-all communication, other operations will be blocked.

• A simple solution is pipelining.

• Assume we have 2 batches,

o Perform operations per batch, and overlap different stages with the other batch.

Overlapping communication with computation

Issue: GPU communication libraries use SM to perform the RDMA read/write.
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Overlapping communication with computation

What's more? 

1. For example, NCCL defaultly reserves up to 32/64 thread blocks for communication.

2. We have less SM for computation.

3. On H100, each SM has CUDA cores and Tensor cores, 

1. Computation uses both CUDA cores and (mostly)Tensor cores.

2. Communication only uses CUDA cores.
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• First introduced in DeepSeek R1 (March 2025)

• Leverage NVSHMEM

o Requires symmetric memory allocation

o Allows RDMA get/put inside a GPU kernel function

All-to-all with InfiniBand GPUDirect Async (IBGDA)
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• Fine-grained overlapping

o All SMs are used for computation.

o Within each thread block, threads are splitted to perform computation-RDMA 

overlapping.

All-to-all InfiniBand GPUDirect Async (IBGDA)
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• 128 GPUs, 16 nodes

• InfiniBand with CX-7 NIC

More on IBGDA in MoE

https://www.perplexity.ai/hub/blog/efficient-and-portable-mixture-of-experts-communication
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• Exponential growth in in Deep Learning frameworks and workloads.

• Provided an overview of issues, challenges, and opportunities for 

designing efficient communication runtimes for training and inference

– Efficient, scalable, and hierarchical designs are crucial for DL frameworks

– Co-design of communication runtimes and DL frameworks will be essential

• Presented a set of state-of-the-art solutions to demonstrate the complex 

interaction between DL middleware with the underling HPC technologies 

and middleware 

• Demonstrated the scalability of efficient solutions on a diverse set of DL 

workloads.

Conclusion
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Interested in more? Join us at IEEE Hot Interconnects 2025!

Hot Interconnects Registration (free) https://hoti.org/register.html  

https://hoti.org/register.html
https://hoti.org/register.html
https://hoti.org/register.html


MUG ‘25 48Network Based Computing Laboratory

Thank You!
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{alnaasan.1, yao.877}@osu.edu 

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/

http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
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