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What is Machine Learning and Deep Learning?

e Machine Learning (ML) ;ﬁ;éiﬁ&'h&
— “the study of computer algorithms to improve EEQCR:'INE
automatically through experience and use of data” DEEP
LEARNING

e Deep Learning (DL) — a subset of ML
— Uses Deep Neural Networks (DNNs)

— Perhaps, the most revolutionary subset!

P Based on Iearnlng data representatlon 1950's 1960's 1970's 1980s 1990's 20005 2010's

) Machine Learnin
e DNN Examples: Convolutional Neural Networks, Recurrent 2

Neural Networks, Hybrid Networks & — \:’&%‘ o %% —

. . . . Input Feature extraction Classification
e Data Scientist or Developer Perspective for using i
Deep Learnin
DNNs P 9

1. Identify DL as solution to a problem _& — %E —

D ete rm | ne D d ta S et Input Feature extraction + Classification Cutput

Courtesy: https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-

2
3. Select Deep Learning Algorithm to Use
4

Use a large data set to train an algorithm deep-learning-1pcv3zeg, https://blog.dataiku.com/ai-vs.-machine-learning-vs.-deep-learning,
https://en.wikipedia.org/wiki/Machine learning
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History: Milestones in the Development of ML/DL
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What is Generative Al?

e Generative Al is a subset of Deep
Learning which creates new content like
text, images, videos, or audio based on

the data it was trained on.
It enables machine to mimic human
intelligence.

e Examples:
— Text: GPT, LLaMA, and DeepSeek.
— Images: DALL-E and Stable Diffusion.
— Videos: Runway and Sora.
— Audio: AudioPalLM and VALL-E.

A Subset of Al that empowers machine to
learn autonomously. It leamns from the
datasets and generate predictions
depending on the scenario.

Learns patterns from existing training
data and produces new and unique

e Whatis not Generative Al? output.

— Discriminative models that perform: Deep Subsetof ML that enables the
Learning operation of multi-layer neural

network possible.

e  Classification
e  Regression
e  Object detection
e  Clustering
e etc.
Courtesy: https://www.tutorialspoint.com/gen-ai/ml-and-generative-ai.htm
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Training vs. Inference
e Training: the process of teaching an Al model by optimizing its parameters using
training data, involving both forward and backward passes.

* |nference: the process of using a trained Al model to make predictions on new, unseen
data, involving only the forward pass.

Learning a new capability Applying this capability
from existing data to new data

Untrained Deep Learning Trained Model App or Service

Meural Network Model ~ Framework TRAINING Mew Capability Featuring Capability
DATASET
. b O
NS4 4
| ‘ | Trained Model
) Optimized for
'\\ J_x" \ K '\\{' ; Performance

Courtesy: https://www.siemon.com/en/environments/data-centers/generative-ai/
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Generative Al — Inference

In inference, the model generates outputs based on input prompts. For autoregressive models (most LLMs),
inference follows an iterative loop, where each generated token (word) is fed back as input for the next step
until completion.

LLM inference requires low-latency, high-throughput
compute with the following key QoS (Quality of Service)
requirements: What can | help with?

— Low Latency — Ensures fast response times, crucial for interactive Wit 3

applications.

° o . . . . . + @ earch Q Reason
— Efficient Batch Processing — Optimized for serving multiple = °
gueries in parallel to maximize throughput.

— Mixed-Precision Support (FP16/BF16/INT8) — Reduces compute
overhead while maintaining accuracy.

B Create image Code ® Analyze images Brainstorm More

— High-Speed Interconnects (NVLink, InfiniBand) — Required for
multi-GPU inference to minimize communication bottlenecks.

— High Memory Bandwidth — To efficiently load large model
weights and handle activation memory. Online LLM Inferencing

Network Based Computing Laborator MUG ‘25
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Understanding the Deep Neural Network Concepts

e Example of a 3-layer Deep Neural Network (DNN) — (input layer is not counted)
TN H*N.

Input Hidden Hidden Output
Layer Layer Layer Layer

Courtesy: http://cs231n.github.io/neural-networks-1/
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Essential Concepts: Learning Rate (a)

Too low Just right Too high
| |
a'lll \ ."III \ _"'Ia'lll
/ / /
.‘_
0 7} 2}

A small learning rate The optimal learning Too large of a learning rate
requires many updates rate swiftly reaches the

before reaching the
minimum point

minimum point

Courtesy: https://www.jeremyjordan.me/nn-learning-rate/
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Essential Concepts: Batch Size

e Batched Gradient Descent N

— Batch Size=1
e Mini-batch Gradient Descent

— Somewhere in the middle > » " " " " "
Mini Mini Mini Mini Mini Mini Mini
batch 1 batch 2 batch 4 batch 5 batch 6 batch 7 batch 8
— Common:

e Batch Size = 64, 128, 256, etc.

o Cind: :
Finding the optimal batch Batch Size One full pass overN is called an EQOCh of training

size will yield the fastest
learning.

Courtesy: https://www.jeremyjordan.me/gradient-descent/
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Evolution of Language Models

A G
5 ? Language Model Sizes Over Time
Evolution of Large Language Models
—e
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g =
o o o e Q Q w
n g (11B)
2020 o n
GPT-3 o) .
ow “-~ GPT-2(1.5B)
GPT-3.5 S £z S
S
LLaMa Falcon = .
GPT-4 LIMA z | BERT-Large (340M)
4 2022 PaLM 2 = ®
PaLM BARD i
Sl InstructGPT Dolly 2 ELMo (94M)
ChatGPT Guanaco
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Courtesy: https://www.analyticsvidhya.com/blog/2023/07/build-your-own-large-language-models/
https://www.vinayiyengar.com/2022/08/04/the-promise-and-perils-of-large-language-models/
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Evolution of Computer Vision Models

1. CNN Architectures

AlexNet

Ny

1989 1998 2012 2016

2. Vision Transformer Architectures

DenceNet

2017.6 | Transformer 2020.5 | GPT-3 2020.7 | iGPT End of 2020 | IPT/SETR/CLIP
Solely based on attention A huge transformer with The transformer model for NLP Applications of transformer model
Chan nel mechanism, the Transformer is 170B parameters, takes a can also be used for image pre- on low-level vision, segmentation
proposed and shows great big step towards general training. and multimodality tasks,
Boosted CNN performance on NLP tasks. NLP model. respectively.

2015 2017 | 2019/20 2018.10 | BERT 20205 | DETR 2020.10 | ViT 2021 | ViT Variants

— Pre-training transformer models A simple yet effective Pure transformer Variants of ViT models,
begin to be dominated in the framework for high-level vision architectures work well for e.g., DeiT, PVT, TNT, and
field of NLP. by viewing object detection as visual recognition. Swin.

a direct set prediction problem.

ResNet

EfficientNet

Inception ResNeXt
V2V3va

V7 Labs

Courtesy: https://www.v7labs.com/blog/convolutional-neural-networks-guide
A Survey on Vision Transformer (Kai Han et. Al 2022) https://arxiv.org/abs/2012.12556

MUG ‘25


https://www.v7labs.com/blog/convolutional-neural-networks-guide
https://www.v7labs.com/blog/convolutional-neural-networks-guide
https://www.v7labs.com/blog/convolutional-neural-networks-guide
https://www.v7labs.com/blog/convolutional-neural-networks-guide
https://www.v7labs.com/blog/convolutional-neural-networks-guide
https://www.v7labs.com/blog/convolutional-neural-networks-guide
https://www.v7labs.com/blog/convolutional-neural-networks-guide
https://arxiv.org/abs/2012.12556

Outline

e Training

— Distributed Deep Learning
e Data Parallelism
e Sharded Data Parallelism
— Training Solutions
e |nference
— Tensor Parallelism
— Expert Parallelism
e Conclusion




The Need for Parallel and Distributed Training

e \Why do we need Parallel Training?

e Larger and Deeper models are being proposed
— Language Models: RNNs -> Transformers -> BERT — GPT — LLaMA
— Vision Models: AlexNet -> ResNet -> NASNet — AmoebaNet = Vision Transformers
— DNNSs require a lot of memory and a lot of computation

— Larger models cannot fit a GPU’s memory
e Single GPU training cannot keep up with ever-larger models
e Community has moved to multi-GPU training

e Multi-GPU in one node is good but there is a limit to Scale-up (8-16 GPUs)

e Multi-node (Distributed or Parallel) Training is necessary!!




Parallelization Strategies

L .  Machine 4 ——— )
e Some parallelization strategies.. i 7_{;
. . VL T L 1
— Data Parallelism or Model Parallelism { Machine 2 ]:i Machine 3 !
' ! |
— Hybrid Parallelism "“'}:'-:'-:'-:'-j-'sE:ﬁ:, """""""
I Machine 1 I
|
|

. . r T [ e T C o e T (T T
Machine 1 i Machine 2 i : F.—‘-PLI " : L F’*F”‘ ll | F;Pm ! i Far-‘u R ! |
____________________ | P —— J : : e — J : I —— 4 : : = J :
. I, N — e R i B N ——— N B 4 ———
e | R EERICEE e GPU3|l  I[GPU2 e GPU3|l  IfGPU2 e GPU3|l  [[GPU2 e GPU3,| |
] : 1 : =|_____ ol ____.l: :I————— - . ____.ll Il.____ - . ____.I: :I————— ] ____.l:
] ] = ik | —_r ik | . ik | —— i |
! ] : ] I :{_RPU 1 : I F]PLI 1 } I F;Pu 1 } (I F}PU 1 } I
1 : 1 : : o —— o4 : : e e o o 4 l I e e e o e o : : e e o o o 4 :
l l - - - -
! = : = : Machine 1 : : Machine 2 : : Machine 3 : : Machine 4 :
1 ] 1 ] AR 2 RS $2TREERERREEEEEEERER IR
| Machine3 | | Machine4 |
J

Hybrid (Model and Data) Parallelism
Data Parallelism
Courtesy: http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
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Data Parallelism and MPI Collectives

. Batch
e Stepl: Data Propagation Loop {}
— Distribute the DataamongGPUs | 7 /A s
; | Lpata |
e Step2: Forward Backward Pass \ | Propagation |
g Params S |_Params S |_Params 2 | Params bemm e
— Perform forward pass and ] EEEE c] EEEN & LLLL ) EEEN
calculate the prediction i il o T . |
) F L, B F L, B F L, B F L, g 1 2 Forward,
— Calculate Error by comparing | Backward |
. . L, L, L L Lo _Pass_
prediction with actual output
Local Local Local Local
— Perform backward pass and Gradients Gradients Gradients Gradients
_ P [ ] HEEE L[] ] L[]
calculate gradients N
e Step3: Gradient Aggregation DSty
— Call MPI_Allreduce to reduce the | Lgeregation
local gradients Gobs GlohaT Gibbal e
. Gradients Gradients Gradients Gradients
— Update parameters locally using [ [ [] ][] ] [ [ [ ][] L[ [ []
global gradients u/

Update Parameters
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Sharded Data Parallelism (DeepSpeed ZeRO)

Memory Consumption Comm

: s Volume
: Formulation Specific Example
EPUo EPU; EPUN-1 K=12 W=7.58 N,=64
Baseline R+2+K)+W 120GB 1x
' 31.4GB
p 2W + 2@ 4+ 1x
0s N,
p | 2w 2t IR E 16.6GB
os+g “an LR Ad lx
b R2+2+K)» ¥ 1.9GB
Os+g+p N, 1.5x

Parameters Gradients Optimizer States

e Instead of being limited by the device memory, we are now limited by the aggregate memory
e ZeRO-Infinity introduces offload to CPU memory or NVMe disk for the truly desperate

e Since ZeRO removes the DP memory limit, do we still need MP?
— There are still models and data samples that don’t fit inside GPU memory even with ZeRO

— We can use pipeline + tensor parallelism along with ZeRO for these cases.
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MVAPICH (MPI)-driven Infrastructure for ML/DL Training:

o MVAPICH-Plus for o MVAPICH-Plus for
MVAPICH for CPU Training MVAPICH for CPU Training o
GPU Training GPU Training

More details available from: https://github.com/OSU-
Nowlab/pytorch/tree/hidl-2.0 and http://hidl.cse.ohio-state.edu

MPI4DL -
|
1
l
< ML/DL Applications > : < ML/DL Applications >
|
\ i
|
/ \ : \ 4
Tensor Flow PyTorch MXNet i PyTorch
i
|
/‘ :
Horovod E Torch.distributed DeepSpeed ?
I
1
1
|
|
|
1
1
1
|
!
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HiDL 2,0 Release e Vendor-neutral stack with competitive performance

and throughput to GPU-based collective libraries

e Tested on modern HPC clusters (etc, OLCF Frontier,

TACC Vista) with up-to-date accelerator generations
e Full support for PyTorch Native DDP training (etc. AMD NVIDIA)

e Support for PyTorch 2.7.1 and later versions

e Support for optimized MPlI communication e Compatible with

— Efficient large-message collectives (e.g., Allreduce) — InfiniBand Networks: Mellanox InfiniBand adapters (EDR,
on various CPUs and GPUs FDR, HDR, NDR)

— GPU-Direct Ring and Two-level multi-leader

— Slingshot Networks: HPE Slingshot
algorithms for Allreduce operations

— GPU&CPU Support:
e NVIDIA GPU A100, H100, GH200
e AMD MI200 series GPUs

— Software Stack:

— Support for fork safety in distributed training
environments

— Exploits efficient large message collectives in
MVAPICH-Plus 4.0 and later
e CUDA [12.x] and Latest CuDNN

e Open-source PyTorch version with advanced MPI e« ROCM [6.X]
backend support - Available in our PyTorch tag e (NEW)PyTorch [2.7.1]

e (NEW)Python [3.x]

More details available from: https://github.com/0OSU-Nowlab/pytorch/tree/hidl-2.0
and http://hidl.cse.ohio-state.edu
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Distributed Data Parallel Training on GH200 (Vista)

e Torch Distributed

mNCCL2.21.5 mMVAPICH-Plus

e Application: GPT-2 model training
50 4.8734.873

using nanoGPT.

4.5
e Hardware: Vista System @TACC =40
o 3.5
— GH200 Superchips each with: = 3.0
e 72 ARM cores with 120 GB LPDDR. 225 2460 2.446
e H100 GPU with 96GB HBM3. g 20
o 1.5 1.237 1.235
— NVIDIA NDR InfiniBand (400Gb/s) £ 10
_ 0.626 0.624
* Software: o0 II Bl o s o
— PyTorch 2.6.0 1 2 4 8 16 32 64
— NCCL2.21.5 # GH200 Nodes (1 GPU per node)

— MVAPICH-Plus 4.1




Distributed Data Parallel Training (Frontier)

GPT-2 DDP 1.5 Million Token per lter

MVAPICH-Plus 4.1 [ RCCL 2.21.5 + OFI
49932.449932.4

ms per iter

50000

40000

30000

25329.425215.2

20000

12804.112649.2

10000

0

1 GPU

2 GPU 4 GPU

# GPUs

GPT-2 DDP 1.5 Million Token per Ilter

ms per iteration

@ MVAPICH-Plus 41 [l RCCL 2.21.5 + OFI

4000

3293.73314.7

3000

2000 1640.31674.7

1000

16 GPU

32 GPU 64 GPU 128GPU

# GPUs

End-to-end GPT-2 Training with Openwebtext using Distributed Data Parallel

12.4% less ms per iteration (compared to RCCL 2.21.5 + OFI) for 128 GPUs
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Distributed TensorFlow on ORNL Summit (1,536 GPUs)

e ResNet-50 Training using

TensorFlow benchmark on MVAPICH2-GDR 2.3.4

SUMMIT -- 1536 Volta S 200 ImageNet-1k has 1.2 million images
GPUs! g oo
o 2 200 MVAPICH2-GDR reaching ~0.42 million
o
@ images per second for ImageNet-1k!
e 1,281,167 (1.2 mil.) images & 2> gesp d J
S 200
o
g 150
e Time/epoch = 3 seconds - 100
50 l
0 — [ |
e Total Time (90 epochs) 1 2 4 6 12 24 48 96 192 384 768 1536
=3 x90 =270 seconds = 4.5 Number of GPUs
minutes! B MVAPICH2-GDR 2.3.4

Platform: The Summit Supercomputer (#2 on Top500.org) — 6 NVIDIA Volta GPUs per node connected with NVLink, CUDA 10.1
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Distributed TensorFlow on TACC Frontera (2048 CPU nodes)

e Scaled TensorFlow to 2048 nodes on
Frontera using MVAPICH2 and IntelMPI

262144 —
65536 o
_ _ , 16384 o
e MVAPICH2 delivers close to the ideal S 4056 . _—
performance for DNN training § 1024 o
L
E 64
e Report a peak of 260,000 images/sec on 16
4
2048 nodes .
1 2 4 8 16 32 64 128 256 512 10242048
. Nodes
e On 2048 nodes, ResNet-50 can be trained
——MVAPICH2-X Ideal

in 7 minutes!

A. Jain, A. A. Awan, H. Subramoni, DK Panda, “Scaling TensorFlow, PyTorch, and MXNet using MVAPICH2 for High-Performance Deep
Learning on Frontera”, DLS 19 (SC ’19 Workshop).
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AccDP: Exploiting Data Parallelism

Multi node with ResNet18 Multi node with ShuffleNet
e ResNetl8 training throughput comparison between | ¢ ShuffleNet training throughput comparison between
regular training and AccDP (proposed design) for regular training and AccDP (proposed design) for
different DNN models on up to 8 nodes 2 GPUs per different DNN models on up to 8 nodes 2 GPUs per
node (16 GPUs) with 4 MPS clients per GPU node (16 GPUs) with 4 MPS clients per GPU.
- g4 e e VR w50 Regular Training
ﬁ S B AccDP 30% g 2 5 AccDP 62%
s 330 < 340
2 2 3 3
£ " g £30
2 — — = 20
o @ 10
£ o NN N g, N N §
2 4 8 16 =
H#GPUs 2 4 uopys 8 16

N. Alnaasan, A. Jain, A. Shafi, H. Subramoni, and DK Panda, “AccDP: Accelerated Data-Parallel Distributed DNN Training for Modern
GPU-Based HPC Clusters”, HiPC’22.
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MPI4DL v0.6

MPI4DL v0.6 is a distributed, accelerated and memory efficient training framework for very high-resolution images
that integrates Spatial Parallelism, Bidirectional Parallelism, Layer Parallelism, and Pipeline Parallelism.

Features:

e Based on PyTorch

e Support for training very high-resolution images
e Distributed training support for:

* Model Parallelism  Spatial Parallelism for High Resolution Images * Memory Efficient Bidirectional Parallelism (GEMS)
- Layer Parallelism (LP) - Spatial and Layer Parallelism (SP+LP) - Bidirectional and Layer Parallelism (GEMS+LP)
- Pipeline Parallelism (PP) - Spatial and Pipeline Parallelism (SP+PP) - Bidirectional and Pipeline Parallelism (GEMS+PP)

- Spatial, Bidirectional and Layer Parallelism (SP+GEMS+LP)
- Spatial, Bidirectional and Pipeline Parallelism (SP+GEMS+PP)

e Support for different image sizes and custom datasets.
e Exploits collective features of MVAPICH2-GDR

MUG ‘25
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AmeobaNet 214 Image Size 1024 * 1024 AmeobaNet f214 Image Size 2048 * 2048

¥ Pipeline Parallelism i Spatial + Pipeline Parallelism 2 Pipeline Parallelism # Spatial + Pipeline Parallelism
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Throughput comparison of Pipeline Parallelism and Pipeline + Spatial Parallelism techniques for AmoebaNet on 1024 * 1024 and 2048

* 2048 image sizes.
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Throughput comparison of Spatial Parallelism and Spatial + Bidirectional Parallelism for AmoebaNet and ResNet with the following

configurations: 5 model splits,4 spatial parts, and 2 model replicas for Bidirectional Parallelism.
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e |nference
— Tensor Parallelism
— Expert Parallelism
e Conclusion
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Introduction to Inference

e Training:

o Key metrics: Throughput, batch size, MFU (Model

GPUs TP CP PP DP Seq.Len. Batchsize/DP Tokens/Batch | TFLOPs/GPU BF16 MFU

FLOPs Utilization, i.e., hardware utilization) ...

8192 8 1 16 64 8192 32 16M 430 43%
o 16384 8 1 16 128 8,192 16 16M 400 41%
O Example(LLaMA34OSB pre-tralnlng) -> 16384 8 16 16 8 131,072 16 16M 380 38%
 Inference:
.. . . e MPT-7B: Throughput vs Latency
o Optimization order: First minimize Latency, then input tokens: 512, output tokens: 64

= 1x-A10 = 2x-A10 1%-A100-40G = 2x-A100-40G = 4x-A100-40G = 8x-A100-40G

maximize throughput.

o LLM serving example --- Service Level Objectives
(SLOs):
= Time to First Token (TTFT): < 5 seconds

40000.0
30000.0

20000.0

= Time between Tokens (TBT): < 25 milliseconds

o Goal: Without exceeding SLO thresholds, increase

10000.0

Throughput: (input+output) tokens/sec

throughput as much as possible.

0.0

1000 2000 3000 4000 5000

Latency (ms)

Let's see how to optimize latency!

Network Based Computing Laborator MUG ‘25



Tensor Parallelism

e |LLM models consist of matrix multiplications.

Input tensor Model weights
Batch Hidden dim = Batch |
Hidden dim Output dim
Output dim

e Tensor Parallelism splits along hidden dim, and distributes the computation to
multiple GPUs.

GPU Q: Batch Hidden dim - Batch | . \

Hidden dim ) Output dim /’
Output dim All Reduce
GPU 1: Batch Hidden dim S— Batch | J
Hidden dim Output dim

MUG ‘25



Tensor Parallelism

e Tensor Parallelism (TP) is widely used in both training and inference.

e Fortraining, TP is used to distribute model weights and hence increase the
batch size.

* Forinference, TP is used to reduce the latency of loading model weights.

Automatic Tensor Parallelism

Throughput and Batch Size
V100, OPT-13B, Max New Tokens = 1024

GPU 0: Hidden dim l—’ :

Output dim

GPU 1: Hidden dim |

Throughtput Per GPU (TFlops)
w

1 2 4 8 16 32 64
Batch Size

—&—Baseline —®—2GPU —@—4GPU

Network Based Computing Laborator MUG ‘25
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e |nference

— Expert Parallelism
e Conclusion
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Mixture of Experts

Dense Model | Sparse Model | | |

e Mixture of Expert (MoE)

. _ 000 0Q0.
o MoE in LLM was first proposed by Google Eipot Eupotz Eapor 3 Evporta
9021 0]0]0/0[0)0/0/000e0) 0000000000
in :
000 J—0e0 .
o In 2025, MoE is widely used in almost ALL TT1 g
leading LLMs . LI
= GPT-4/5, DeepSeek V3/R1, Qwen 3,
LLaMA 4, oo 307 ~—— 350M dense

1.3B dense
2.8 1.3B+MoE-128

e Sparsity in MoE:

—— 6.7B dense

o Compared to dense models, MoE is much

Validation loss

Mmore sparse

o Experts can diverse to different
tasks, improving the performance. 0 60B 1208 180B  240B 3008

Tokens
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Tensor Parallel in MoE

e There are two ways to distribute MoE models.

e Tensor Parallel

Expert 0 Expert 1 Expert 2

‘oenl FonalEoRElFonn

GPU O GPU 1

* Each GPU will hold a shard of each expert.

o Given an input token of size [1, d], and each expert is of size [d, d]

o As we use AllReduce in TP, the overall communication volume is

4x[1, d]

Network Based Computing Laborator




Expert Parallel in MoE

e Expert Parallel

Expert 0 { Expert 1 l Expert 2
T S ~ \“‘

GPUO GPU 1

GPU 2 GPU 3

* Each GPU will hold one expert completely.

o Given an input token of size [1, d], and each expert is of size [d, d]

o In EP, the overall communication volume is

Network Based Computing Laborator

2x[1, d]
Compared to TP: 4x[1, d]

MUG ‘25

Num. of GPUs TP EP
4 4x[1,d] | 2x[1,d]
8 8x[1,d] | 2x[1,d]
16 16x[1,d] | 2x[1,d]




Alltoall in Expert Parallel

:i> MoE Transfomer Encoder
with device placement
Encoder Encoder
[ output (shard 1) J [ output (shard E) ]

T

| 1

[~ e & Norw N\ [ MemNom |\ * In MoE, we need two Alltoall.
Feed F d Feed Forward .

[ e } L PN } o All-to-All Dispatch: tokens go to experts
— | o All-to-All Combine: tokens go back to the
—> Add & Norm —> Add & Norm ..

: : : original GPU.

Multi-Head Multi-Head
Attention Attention
(N/2)x (N/2)x
—> Add & Norm Add & Norm
] Layer0 Layerl Layer2
FFNq J
gin—— 2B S 00 |eruo
—> Add & Norm ll ‘I. : l|1 :
Multi-Head Devices ,: “ '. “ :
‘\ Attention TiaeE | Context Token - 1 - 1 GPU 1
\— Device 1 / Device y
: e Attention
Input embeddings + Input embeddmgs. +
(Positional embeddings} [P“itimal embeddmgs}
(shard 1) (shard E)
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Overlapping communication with computation

e During the two All-to-all communication, other operations will be blocked.
e Asimple solution is pipelining.
e Assume we have 2 batches,

o Perform operations per batch, and overlap different stages with the other batch.

Traditional overlapping with communication SMs

.....................................................................................................................................................................................................................................

Issue: GPU communication libraries use SM to perform the RDMA read/write.
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Overlapping communication with computation

Traditional overlapping with communication SMs

What's more?
1. For example, NCCL defaultly reserves up to 32/64 thread blocks for communication.
2. We have less SM for computation.
3. On H100, each SM has CUDA cores and Tensor cores,
1. Computation uses both CUDA cores and (mostly)Tensor cores.

2. Communication only uses CUDA cores.

MUG ‘25



All-to-all with InfiniBand GPUDirect Async (IBGDA)

e Firstintroduced in DeepSeek R1 (March 2025)

GPUD GPU1 | GPUN

(PE D) (PE 1) (PEn)
e Leverage NVSHMEM i ‘ | e
o Requires symmetric memory allocation ;‘3 o

o Allows RDMA get/put inside a GPU kernel function -

GPU #A GPU #B

src=(int*)nvshmem_malloc( ... ) src=(int*)nvshmem_malloc( ... )
L
| | 1
nvshmem_int_put_nbi(dst +0, src, 3, B) | | nvshmem_int_put_nbi(dst +1 1, A)
J IBGDA/EFA/NVLINK

; J

dst=(int#*)nvshmem_malloc( ... )

dst=(int*)nvshmem_malloc( ... )

Network Based Computi
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All-to-all InfiniBand GPUDirect Async (IBGDA)

e Fine-grained overlapping
o All SMs are used for computation.

o Within each thread block, threads are splitted to perform computation-RDMA
overlapping.

Traditional overlapping with communication SMs

* Overlapping without communication SMs

— Faster computation with more SMs

.....................................................................................................................................................................................................................................

MoE 0 MoE 1

Dispatch 0 receive Dispatch 1 receive Combine 0 receive

Dispatch 0 issue : ) . . . o
b = Dispatch 1 issue Combine 0 issue Combine 1 issue

Network Based Computing MUG ‘25



More on IBGDA in MoE

e 128 GPUs, 16 nodes
e InfiniBand with CX-7 NIC

128 TOKENS PER GPU, MULTI-NODE EP128 [EH]

pplx Dispatch (18epA) ([ 077 = .00

DeepEP Dispatch B zos

pplx Combine (IBGDA) - 593.9 + 6.6us
pplx Combine (IBRC) _ 1184.8 + 79.7ps
DeepEP Combine - 369.0us

0 1008 2000 3000 4000 5000 6000 7000

LATENCY (ps)

https://www.perplexity.ai/hub/blog/efficient-and-portable-mixture-of-experts-communication
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Outline

e Conclusion
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Conclusion

e Exponential growth in in Deep Learning frameworks and workloads.

e Provided an overview of issues, challenges, and opportunities for
designing efficient communication runtimes for training and inference
— Efficient, scalable, and hierarchical designs are crucial for DL frameworks

— Co-design of communication runtimes and DL frameworks will be essential

e Presented a set of state-of-the-art solutions to demonstrate the complex
interaction between DL middleware with the underling HPC technologies
and middleware

e Demonstrated the scalability of efficient solutions on a diverse set of DL
workloads.

Network Based Computing Laborator
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Interested in more? Join us at IEEE Hot Interconnects 2025!

IEEE Hot Interconnects Symposium 2025 - Online
(Aug 20 - 22, 2025)

Time Location Event Speaker(s)

Wednesday, August 20

12:00PM - 12:00PM Virtual Characterizing Communication Patterns in Distributed Large Language Model L. Xu
Over Inference
Zoom

[Technical Paper]

Friday, August 22

8:30AM - 12:00PM Virtual Principles and Practice of Scalable and Distributed Deep Neural Networks Training DK Panda
Over and Inference N. Alnaasan
Z
oom [Tutorial]
1:00PM - 4:30PM Virtual High-Performance and Smart Networking Technologies for HPC and Al DK Panda
Over , B. Michalowicz
[Tutorial]
Zoom

Hot Interconnects Registration (free) https://hoti.org/register.html
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Thank You!

{alnaasan.1, vao.877}@osu.edu

Laboratory

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

2= MVAPICH %:HIDL
~t/ MPL, PGAS and Hybrid MPI+PGAS Library High-Performance
Deep Learning
The High-Performance MPI/PGAS Project The High-Performance Deep Learning Project
http://mvapich.cse.ohio-state.edu/ http://hidl.cse.ohio-state.edu/
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