
MPI-driven Solutions towards High-Performance Deep
Learning Training and Inference on Modern Clusters

Tutorial at MUG ’25

by

Follow us on

https://twitter.com/mvapich

Jinghan Yao

The Ohio State University

yao.877@osu.edu

http://nowlab.cse.ohio-
state.edu/member/yao.877/

Nawras Alnaasan

The Ohio State University

alnaasan.1@osu.edu

https://www.linkedin.com/in/naw
ras-alnaasan

https://twitter.com/mvapich
https://twitter.com/mvapich

MUG ‘25 2Network Based Computing Laboratory

• Introduction

• Training

– Deep Neural Network Training

– Distributed Deep Learning

• Data Parallelism

• Sharded Data Parallelism

– Training Solutions

• Inference

– Tensor Parallelism

– Expert Parallelism

• Conclusion

Outline

MUG ‘25 3Network Based Computing Laboratory

What is Machine Learning and Deep Learning?

Courtesy: https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-

deep-learning-1pcv3zeg, https://blog.dataiku.com/ai-vs.-machine-learning-vs.-deep-learning,

https://en.wikipedia.org/wiki/Machine_learning

• Machine Learning (ML)

– “the study of computer algorithms to improve

automatically through experience and use of data”

• Deep Learning (DL) – a subset of ML

– Uses Deep Neural Networks (DNNs)

– Perhaps, the most revolutionary subset!

• Based on learning data representation

• DNN Examples: Convolutional Neural Networks, Recurrent

Neural Networks, Hybrid Networks

• Data Scientist or Developer Perspective for using

DNNs

1. Identify DL as solution to a problem

2. Determine Data Set

3. Select Deep Learning Algorithm to Use

4. Use a large data set to train an algorithm

https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-deep-learning-1pcv3zeg
https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-deep-learning-1pcv3zeg
https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-deep-learning-1pcv3zeg
https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-deep-learning-1pcv3zeg
https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-deep-learning-1pcv3zeg
https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-deep-learning-1pcv3zeg
https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-deep-learning-1pcv3zeg
https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-deep-learning-1pcv3zeg
https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-deep-learning-1pcv3zeg
https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-deep-learning-1pcv3zeg
https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-deep-learning-1pcv3zeg
https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-deep-learning-1pcv3zeg
https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-deep-learning-1pcv3zeg
https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-deep-learning-1pcv3zeg
https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-deep-learning-1pcv3zeg
https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-deep-learning-1pcv3zeg
https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-deep-learning-1pcv3zeg
https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-deep-learning-1pcv3zeg
https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-deep-learning-1pcv3zeg
https://blog.dataiku.com/ai-vs.-machine-learning-vs.-deep-learning
https://blog.dataiku.com/ai-vs.-machine-learning-vs.-deep-learning
https://blog.dataiku.com/ai-vs.-machine-learning-vs.-deep-learning
https://blog.dataiku.com/ai-vs.-machine-learning-vs.-deep-learning
https://blog.dataiku.com/ai-vs.-machine-learning-vs.-deep-learning
https://blog.dataiku.com/ai-vs.-machine-learning-vs.-deep-learning
https://blog.dataiku.com/ai-vs.-machine-learning-vs.-deep-learning
https://blog.dataiku.com/ai-vs.-machine-learning-vs.-deep-learning
https://blog.dataiku.com/ai-vs.-machine-learning-vs.-deep-learning
https://blog.dataiku.com/ai-vs.-machine-learning-vs.-deep-learning
https://blog.dataiku.com/ai-vs.-machine-learning-vs.-deep-learning
https://blog.dataiku.com/ai-vs.-machine-learning-vs.-deep-learning
https://blog.dataiku.com/ai-vs.-machine-learning-vs.-deep-learning
https://en.wikipedia.org/wiki/Machine_learning

MUG ‘25 4Network Based Computing Laboratory

History: Milestones in the Development of ML/DL

1940 1950 1960 1970 1980 1990 2000 2010 2020

Electronic
Brain

1943

Perceptron

1957

ADALINE

1960

XOR
Problem

Golden
Age

1969

Multi-layered
Perceptron

(Backpropagation)

1986

Dark Age
(“AI Winter”)

DBN

2006

AlexNet

2012

ResNet

2015

WGAN

2017

Transformers

K-Means

1965

Bayesian
Network

1985

Decision Trees

1979

SVM

1995

KNN

1967

1800 1900 ….

Linear
Regression

1805

Turing Machine

1936

Evolutionary
Algorithms

1954

Random Forest

2000

PCA

1901

XGBoost

2014

CatBoost

Deep
Forest

2017

S. McCulloch – W. Pitts F. Rosenblatt B. Widrow – M. Hoff M. Minsky – S. Papert D. Rumelhart – G. Hinton – R. WiliamsA. Legendre – J. Gauss A. TuringK. Pearson J. Pearl V. Vapnik– C. Cortes A. Ng Y. LeCunA. Krizhevsky Y. Bengio

2018

GPT

BERT

MUG ‘25 5Network Based Computing Laboratory

What is Generative AI?

Courtesy: https://www.tutorialspoint.com/gen-ai/ml-and-generative-ai.htm

• Generative AI is a subset of Deep

Learning which creates new content like

text, images, videos, or audio based on

the data it was trained on.

• Examples:

– Text: GPT, LLaMA, and DeepSeek.

– Images: DALL-E and Stable Diffusion.

– Videos: Runway and Sora.

– Audio: AudioPaLM and VALL-E.

• What is not Generative AI?

– Discriminative models that perform:

• Classification

• Regression

• Object detection

• Clustering

• etc.

MUG ‘25 6Network Based Computing Laboratory

• Training: the process of teaching an AI model by optimizing its parameters using

training data, involving both forward and backward passes.

• Inference: the process of using a trained AI model to make predictions on new, unseen

data, involving only the forward pass.

Training vs. Inference

Courtesy: https://www.siemon.com/en/environments/data-centers/generative-ai/

https://www.siemon.com/en/environments/data-centers/generative-ai/
https://www.siemon.com/en/environments/data-centers/generative-ai/
https://www.siemon.com/en/environments/data-centers/generative-ai/
https://www.siemon.com/en/environments/data-centers/generative-ai/
https://www.siemon.com/en/environments/data-centers/generative-ai/

MUG ‘25 7Network Based Computing Laboratory

Generative AI – Inference

Online LLM Inferencing

In inference, the model generates outputs based on input prompts. For autoregressive models (most LLMs),

inference follows an iterative loop, where each generated token (word) is fed back as input for the next step

until completion.

LLM inference requires low-latency, high-throughput

compute with the following key QoS (Quality of Service)

requirements:

– Low Latency – Ensures fast response times, crucial for interactive

applications.

– Efficient Batch Processing – Optimized for serving multiple

queries in parallel to maximize throughput.

– Mixed-Precision Support (FP16/BF16/INT8) – Reduces compute

overhead while maintaining accuracy.

– High-Speed Interconnects (NVLink, InfiniBand) – Required for

multi-GPU inference to minimize communication bottlenecks.

– High Memory Bandwidth – To efficiently load large model

weights and handle activation memory.

MUG ‘25 8Network Based Computing Laboratory

• Introduction

• Training

– Deep Neural Network Training

– Distributed Deep Learning

• Data Parallelism

• Sharded Data Parallelism

– Training Solutions

• Inference

– Tensor Parallelism

– Expert Parallelism

• Conclusion

Outline

MUG ‘25 9Network Based Computing Laboratory

• Example of a 3-layer Deep Neural Network (DNN) – (input layer is not counted)

Understanding the Deep Neural Network Concepts

Courtesy: http://cs231n.github.io/neural-networks-1/

http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/

MUG ‘25 10Network Based Computing Laboratory

Essential Concepts: Learning Rate (α)

Courtesy: https://www.jeremyjordan.me/nn-learning-rate/

https://www.jeremyjordan.me/nn-learning-rate/
https://www.jeremyjordan.me/nn-learning-rate/
https://www.jeremyjordan.me/nn-learning-rate/
https://www.jeremyjordan.me/nn-learning-rate/
https://www.jeremyjordan.me/nn-learning-rate/

MUG ‘25 11Network Based Computing Laboratory

• Batched Gradient Descent

– Batch Size = N

• Stochastic Gradient Descent

– Batch Size = 1

• Mini-batch Gradient Descent

– Somewhere in the middle

– Common:

• Batch Size = 64, 128, 256, etc.

• Finding the optimal batch

size will yield the fastest

learning.

Essential Concepts: Batch Size

Courtesy: https://www.jeremyjordan.me/gradient-descent/

N

Batch Size One full pass over N is called an epoch of training

https://www.jeremyjordan.me/gradient-descent/
https://www.jeremyjordan.me/gradient-descent/
https://www.jeremyjordan.me/gradient-descent/

MUG ‘25 12Network Based Computing Laboratory

Courtesy: https://www.analyticsvidhya.com/blog/2023/07/build-your-own-large-language-models/
https://www.vinayiyengar.com/2022/08/04/the-promise-and-perils-of-large-language-models/

Evolution of Language Models

https://www.analyticsvidhya.com/blog/2023/07/build-your-own-large-language-models/
https://www.analyticsvidhya.com/blog/2023/07/build-your-own-large-language-models/
https://www.analyticsvidhya.com/blog/2023/07/build-your-own-large-language-models/
https://www.analyticsvidhya.com/blog/2023/07/build-your-own-large-language-models/
https://www.analyticsvidhya.com/blog/2023/07/build-your-own-large-language-models/
https://www.analyticsvidhya.com/blog/2023/07/build-your-own-large-language-models/
https://www.analyticsvidhya.com/blog/2023/07/build-your-own-large-language-models/
https://www.analyticsvidhya.com/blog/2023/07/build-your-own-large-language-models/
https://www.analyticsvidhya.com/blog/2023/07/build-your-own-large-language-models/
https://www.analyticsvidhya.com/blog/2023/07/build-your-own-large-language-models/
https://www.analyticsvidhya.com/blog/2023/07/build-your-own-large-language-models/
https://www.vinayiyengar.com/2022/08/04/the-promise-and-perils-of-large-language-models/
https://www.vinayiyengar.com/2022/08/04/the-promise-and-perils-of-large-language-models/
https://www.vinayiyengar.com/2022/08/04/the-promise-and-perils-of-large-language-models/
https://www.vinayiyengar.com/2022/08/04/the-promise-and-perils-of-large-language-models/
https://www.vinayiyengar.com/2022/08/04/the-promise-and-perils-of-large-language-models/
https://www.vinayiyengar.com/2022/08/04/the-promise-and-perils-of-large-language-models/
https://www.vinayiyengar.com/2022/08/04/the-promise-and-perils-of-large-language-models/
https://www.vinayiyengar.com/2022/08/04/the-promise-and-perils-of-large-language-models/
https://www.vinayiyengar.com/2022/08/04/the-promise-and-perils-of-large-language-models/
https://www.vinayiyengar.com/2022/08/04/the-promise-and-perils-of-large-language-models/
https://www.vinayiyengar.com/2022/08/04/the-promise-and-perils-of-large-language-models/
https://www.vinayiyengar.com/2022/08/04/the-promise-and-perils-of-large-language-models/
https://www.vinayiyengar.com/2022/08/04/the-promise-and-perils-of-large-language-models/
https://www.vinayiyengar.com/2022/08/04/the-promise-and-perils-of-large-language-models/
https://www.vinayiyengar.com/2022/08/04/the-promise-and-perils-of-large-language-models/

MUG ‘25 13Network Based Computing Laboratory

Courtesy: https://www.v7labs.com/blog/convolutional-neural-networks-guide
A Survey on Vision Transformer (Kai Han et. Al 2022) https://arxiv.org/abs/2012.12556

Evolution of Computer Vision Models

1. CNN Architectures

2. Vision Transformer Architectures

https://www.v7labs.com/blog/convolutional-neural-networks-guide
https://www.v7labs.com/blog/convolutional-neural-networks-guide
https://www.v7labs.com/blog/convolutional-neural-networks-guide
https://www.v7labs.com/blog/convolutional-neural-networks-guide
https://www.v7labs.com/blog/convolutional-neural-networks-guide
https://www.v7labs.com/blog/convolutional-neural-networks-guide
https://www.v7labs.com/blog/convolutional-neural-networks-guide
https://arxiv.org/abs/2012.12556

MUG ‘25 14Network Based Computing Laboratory

• Introduction

• Training

– Deep Neural Network Training

– Distributed Deep Learning

• Data Parallelism

• Sharded Data Parallelism

– Training Solutions

• Inference

– Tensor Parallelism

– Expert Parallelism

• Conclusion

Outline

MUG ‘25 15Network Based Computing Laboratory

• Why do we need Parallel Training?

• Larger and Deeper models are being proposed

– Language Models: RNNs -> Transformers -> BERT – GPT – LLaMA

– Vision Models: AlexNet -> ResNet -> NASNet – AmoebaNet → Vision Transformers

– DNNs require a lot of memory and a lot of computation

– Larger models cannot fit a GPU’s memory

• Single GPU training cannot keep up with ever-larger models

• Community has moved to multi-GPU training

• Multi-GPU in one node is good but there is a limit to Scale-up (8-16 GPUs)

• Multi-node (Distributed or Parallel) Training is necessary!!

The Need for Parallel and Distributed Training

MUG ‘25 16Network Based Computing Laboratory

• Some parallelization strategies..

– Data Parallelism or Model Parallelism

– Hybrid Parallelism

Parallelization Strategies

Model Parallelism

Data Parallelism
Hybrid (Model and Data) Parallelism

Courtesy: http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks

http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks

MUG ‘25 17Network Based Computing Laboratory

Data Parallelism and MPI Collectives

• Step1: Data Propagation

– Distribute the Data among GPUs

• Step2: Forward Backward Pass

– Perform forward pass and

calculate the prediction

– Calculate Error by comparing

prediction with actual output

– Perform backward pass and

calculate gradients

• Step3: Gradient Aggregation

– Call MPI_Allreduce to reduce the

local gradients

– Update parameters locally using

global gradients

Batch

MUG ‘25 18Network Based Computing Laboratory

Sharded Data Parallelism (DeepSpeed ZeRO)

• Instead of being limited by the device memory, we are now limited by the aggregate memory

• ZeRO-Infinity introduces offload to CPU memory or NVMe disk for the truly desperate

• Since ZeRO removes the DP memory limit, do we still need MP?

– There are still models and data samples that don’t fit inside GPU memory even with ZeRO

– We can use pipeline + tensor parallelism along with ZeRO for these cases.

MUG ‘25 19Network Based Computing Laboratory

• Introduction

• Training

– Deep Neural Network Training

– Distributed Deep Learning

• Data Parallelism

• Sharded Data Parallelism

– Training Solutions

• Inference

– Tensor Parallelism

– Expert Parallelism

• Conclusion

Outline

MUG ‘25 20Network Based Computing Laboratory

MVAPICH (MPI)-driven Infrastructure for ML/DL Training:
MPI4DL

MVAPICH for CPU Training
MVAPICH-Plus for

GPU Training

Horovod

TensorFlow PyTorch MXNet

ML/DL Applications

MVAPICH for CPU Training
MVAPICH-Plus for

GPU Training

Torch.distributed

PyTorch

ML/DL Applications

DeepSpeed

More details available from: https://github.com/OSU-

Nowlab/pytorch/tree/hidl-2.0 and http://hidl.cse.ohio-state.edu

https://github.com/OSU-Nowlab/pytorch/tree/hidl-2.0
https://github.com/OSU-Nowlab/pytorch/tree/hidl-2.0
https://github.com/OSU-Nowlab/pytorch/tree/hidl-2.0
https://github.com/OSU-Nowlab/pytorch/tree/hidl-2.0
https://github.com/OSU-Nowlab/pytorch/tree/hidl-2.0
http://hidl.cse.ohio-state.edu/
http://hidl.cse.ohio-state.edu/
http://hidl.cse.ohio-state.edu/

MUG ‘25 21Network Based Computing Laboratory

HiDL 2.0 Release

• Support for PyTorch 2.7.1 and later versions

• Full support for PyTorch Native DDP training

• Support for optimized MPI communication

– Efficient large-message collectives (e.g., Allreduce)
on various CPUs and GPUs

– GPU-Direct Ring and Two-level multi-leader
algorithms for Allreduce operations

– Support for fork safety in distributed training
environments

– Exploits efficient large message collectives in
MVAPICH-Plus 4.0 and later

• Open-source PyTorch version with advanced MPI
backend support - Available in our PyTorch tag

• Vendor-neutral stack with competitive performance
and throughput to GPU-based collective libraries

• Tested on modern HPC clusters (etc, OLCF Frontier,
TACC Vista) with up-to-date accelerator generations
(etc. AMD NVIDIA)

• Compatible with

– InfiniBand Networks: Mellanox InfiniBand adapters (EDR,
FDR, HDR, NDR)

– Slingshot Networks: HPE Slingshot

– GPU&CPU Support:

• NVIDIA GPU A100, H100, GH200

• AMD MI200 series GPUs

– Software Stack:

• CUDA [12.x] and Latest CuDNN

• ROCm [6.x]

• (NEW)PyTorch [2.7.1]

• (NEW)Python [3.x]

More details available from: https://github.com/OSU-Nowlab/pytorch/tree/hidl-2.0
and http://hidl.cse.ohio-state.edu

https://github.com/OSU-Nowlab/pytorch/tree/hidl-2.0
https://github.com/OSU-Nowlab/pytorch/tree/hidl-2.0
https://github.com/OSU-Nowlab/pytorch/tree/hidl-2.0
https://github.com/OSU-Nowlab/pytorch/tree/hidl-2.0
https://github.com/OSU-Nowlab/pytorch/tree/hidl-2.0
http://hidl.cse.ohio-state.edu/
http://hidl.cse.ohio-state.edu/
http://hidl.cse.ohio-state.edu/

MUG ‘25 22Network Based Computing Laboratory

Distributed Data Parallel Training on GH200 (Vista)
• Torch Distributed

• Application: GPT-2 model training

using nanoGPT.

• Hardware: Vista System @TACC

– GH200 Superchips each with:

• 72 ARM cores with 120 GB LPDDR.

• H100 GPU with 96GB HBM3.

– NVIDIA NDR InfiniBand (400Gb/s)

• Software:

– PyTorch 2.6.0

– NCCL 2.21.5

– MVAPICH-Plus 4.1

MUG ‘25 23Network Based Computing Laboratory

Distributed Data Parallel Training (Frontier)

• End-to-end GPT-2 Training with Openwebtext using Distributed Data Parallel

• 12.4% less ms per iteration (compared to RCCL 2.21.5 + OFI) for 128 GPUs

MUG ‘25 24Network Based Computing Laboratory

Distributed TensorFlow on ORNL Summit (1,536 GPUs)

• ResNet-50 Training using

TensorFlow benchmark on

SUMMIT -- 1536 Volta

GPUs!

• 1,281,167 (1.2 mil.) images

• Time/epoch = 3 seconds

• Total Time (90 epochs)

= 3 x 90 = 270 seconds = 4.5

minutes!

0

50

100

150

200

250

300

350

400

450

1 2 4 6 12 24 48 96 192 384 768 1536

Im
ag

e
p

er
 s

ec
o

n
d

Th
o

u
sa

n
d

s

Number of GPUs

MVAPICH2-GDR 2.3.4

MVAPICH2-GDR 2.3.4

Platform: The Summit Supercomputer (#2 on Top500.org) – 6 NVIDIA Volta GPUs per node connected with NVLink, CUDA 10.1

MVAPICH2-GDR reaching ~0.42 million

images per second for ImageNet-1k!

ImageNet-1k has 1.2 million images

MUG ‘25 25Network Based Computing Laboratory

Distributed TensorFlow on TACC Frontera (2048 CPU nodes)
• Scaled TensorFlow to 2048 nodes on

Frontera using MVAPICH2 and IntelMPI

• MVAPICH2 delivers close to the ideal

performance for DNN training

• Report a peak of 260,000 images/sec on

2048 nodes

• On 2048 nodes, ResNet-50 can be trained

in 7 minutes!

A. Jain, A. A. Awan, H. Subramoni, DK Panda, “Scaling TensorFlow, PyTorch, and MXNet using MVAPICH2 for High-Performance Deep
Learning on Frontera”, DLS ’19 (SC ’19 Workshop).

1

4

16

64

256

1024

4096

16384

65536

262144

1 2 4 8 16 32 64 128 256 512 1024 2048

Im
ag

es
 p

er
 s

ec

Nodes

MVAPICH2-X Ideal

MUG ‘25 26Network Based Computing Laboratory

AccDP: Exploiting Data Parallelism

• ResNet18 training throughput comparison between
regular training and AccDP (proposed design) for
different DNN models on up to 8 nodes 2 GPUs per
node (16 GPUs) with 4 MPS clients per GPU

• ShuffleNet training throughput comparison between
regular training and AccDP (proposed design) for
different DNN models on up to 8 nodes 2 GPUs per
node (16 GPUs) with 4 MPS clients per GPU.

Multi node with ResNet18 Multi node with ShuffleNet

N. Alnaasan, A. Jain, A. Shafi, H. Subramoni, and DK Panda, “AccDP: Accelerated Data-Parallel Distributed DNN Training for Modern
GPU-Based HPC Clusters”, HiPC’22.

MUG ‘25 27Network Based Computing Laboratory

MPI4DL v0.6

MPI4DL v0.6 is a distributed, accelerated and memory efficient training framework for very high-resolution images
that integrates Spatial Parallelism, Bidirectional Parallelism, Layer Parallelism, and Pipeline Parallelism.

Features:

• Based on PyTorch

• Support for training very high-resolution images

• Distributed training support for:

• Support for different image sizes and custom datasets.

• Exploits collective features of MVAPICH2-GDR

• Model Parallelism

- Layer Parallelism (LP)

- Pipeline Parallelism (PP)

• Spatial Parallelism for High Resolution Images

- Spatial and Layer Parallelism (SP+LP)

- Spatial and Pipeline Parallelism (SP+PP)

• Memory Efficient Bidirectional Parallelism (GEMS)

- Bidirectional and Layer Parallelism (GEMS+LP)

- Bidirectional and Pipeline Parallelism (GEMS+PP)

- Spatial, Bidirectional and Layer Parallelism (SP+GEMS+LP)

- Spatial, Bidirectional and Pipeline Parallelism (SP+GEMS+PP)

https://github.com/OSU-Nowlab/MPI4DL
https://github.com/OSU-Nowlab/MPI4DL

MUG ‘25 28Network Based Computing Laboratory

Throughput comparison of Pipeline Parallelism and Pipeline + Spatial Parallelism techniques for AmoebaNet on 1024 * 1024 and 2048

* 2048 image sizes.

Throughput comparison of Spatial Parallelism and Spatial + Bidirectional Parallelism for AmoebaNet and ResNet with the following

configurations: 5 model splits,4 spatial parts, and 2 model replicas for Bidirectional Parallelism.

MUG ‘25 29Network Based Computing Laboratory

• Introduction

• Training

– Deep Neural Network Training

– Distributed Deep Learning

• Data Parallelism

• Sharded Data Parallelism

– Training Solutions

• Inference

– Tensor Parallelism

– Expert Parallelism

• Conclusion

Outline

MUG ‘25 30Network Based Computing Laboratory

• Training:

o Key metrics: Throughput, batch size, MFU (Model

FLOPs Utilization, i.e., hardware utilization) …

o Example (LLaMA 3 405B pre-training) ->

• Inference:

o Optimization order: First minimize Latency, then

maximize throughput.

o LLM serving example --- Service Level Objectives

(SLOs):

▪ Time to First Token (TTFT): < 5 seconds

▪ Time between Tokens (TBT): < 25 milliseconds

o Goal: Without exceeding SLO thresholds, increase

throughput as much as possible.

Introduction to Inference

Let's see how to optimize latency!

MUG ‘25 31Network Based Computing Laboratory

• LLM models consist of matrix multiplications.

• Tensor Parallelism splits along hidden dim, and distributes the computation to

multiple GPUs.

Tensor Parallelism

Batch

Hidden dim

Hidden dim

Output dim

Batch

Output dim

Batch

Hidden dim

Hidden dim

Output dim

Batch

Output dim

Batch

Hidden dim

Hidden dim Batch

Output dim

GPU 0:

GPU 1:

All Reduce

Input tensor Model weights

MUG ‘25 32Network Based Computing Laboratory

• Tensor Parallelism (TP) is widely used in both training and inference.

• For training, TP is used to distribute model weights and hence increase the

batch size.

• For inference, TP is used to reduce the latency of loading model weights.

Tensor Parallelism

Hidden dimGPU 0:

GPU 1:

Output dim

Hidden dim

MUG ‘25 33Network Based Computing Laboratory

• Introduction

• Training

– Deep Neural Network Training

– Distributed Deep Learning

• Data Parallelism

• Sharded Data Parallelism

– Training Solutions

• Inference

– Tensor Parallelism

– Expert Parallelism

• Conclusion

Outline

MUG ‘25 34Network Based Computing Laboratory

• Mixture of Expert (MoE)

o MoE in LLM was first proposed by Google

in 2021.

o In 2025, MoE is widely used in almost ALL

leading LLMs

▪ GPT-4/5, DeepSeek V3/R1, Qwen 3,

LLaMA 4, …

• Sparsity in MoE:

o Compared to dense models, MoE is much

more sparse

o Experts can diverse to different

tasks, improving the performance.

Mixture of Experts

MUG ‘25 35Network Based Computing Laboratory

• There are two ways to distribute MoE models.

• Tensor Parallel

• Each GPU will hold a shard of each expert.

o Given an input token of size [1, d], and each expert is of size [d, d]

o As we use AllReduce in TP, the overall communication volume is

4x[1, d]

Tensor Parallel in MoE

MUG ‘25 36Network Based Computing Laboratory

Expert Parallel in MoE

• Expert Parallel

• Each GPU will hold one expert completely.

o Given an input token of size [1, d], and each expert is of size [d, d]

o In EP, the overall communication volume is

2x[1, d]

Compared to TP: 4x[1, d]
Num. of GPUs TP EP

4 4x[1,d] 2x[1,d]

8 8x[1,d] 2x[1,d]

16 16x[1,d] 2x[1,d]

MUG ‘25 37Network Based Computing Laboratory

• In MoE, we need two Alltoall.

o All-to-All Dispatch: tokens go to experts

o All-to-All Combine: tokens go back to the

original GPU.

Alltoall in Expert Parallel

Layer 0 Layer 1 Layer 2

MUG ‘25 38Network Based Computing Laboratory

• During the two All-to-all communication, other operations will be blocked.

• A simple solution is pipelining.

• Assume we have 2 batches,

o Perform operations per batch, and overlap different stages with the other batch.

Overlapping communication with computation

Issue: GPU communication libraries use SM to perform the RDMA read/write.

MUG ‘25 39Network Based Computing Laboratory

Overlapping communication with computation

What's more?

1. For example, NCCL defaultly reserves up to 32/64 thread blocks for communication.

2. We have less SM for computation.

3. On H100, each SM has CUDA cores and Tensor cores,

1. Computation uses both CUDA cores and (mostly)Tensor cores.

2. Communication only uses CUDA cores.

MUG ‘25 40Network Based Computing Laboratory

• First introduced in DeepSeek R1 (March 2025)

• Leverage NVSHMEM

o Requires symmetric memory allocation

o Allows RDMA get/put inside a GPU kernel function

All-to-all with InfiniBand GPUDirect Async (IBGDA)

MUG ‘25 41Network Based Computing Laboratory

• Fine-grained overlapping

o All SMs are used for computation.

o Within each thread block, threads are splitted to perform computation-RDMA

overlapping.

All-to-all InfiniBand GPUDirect Async (IBGDA)

MUG ‘25 42Network Based Computing Laboratory

• 128 GPUs, 16 nodes

• InfiniBand with CX-7 NIC

More on IBGDA in MoE

https://www.perplexity.ai/hub/blog/efficient-and-portable-mixture-of-experts-communication

MUG ‘25 43Network Based Computing Laboratory

• Introduction

• Training

– Deep Neural Network Training

– Distributed Deep Learning

• Data Parallelism

• Sharded Data Parallelism

– Training Solutions

• Inference

– Tensor Parallelism

– Expert Parallelism

• Conclusion

Outline

MUG ‘25 44Network Based Computing Laboratory

• Exponential growth in in Deep Learning frameworks and workloads.

• Provided an overview of issues, challenges, and opportunities for

designing efficient communication runtimes for training and inference

– Efficient, scalable, and hierarchical designs are crucial for DL frameworks

– Co-design of communication runtimes and DL frameworks will be essential

• Presented a set of state-of-the-art solutions to demonstrate the complex

interaction between DL middleware with the underling HPC technologies

and middleware

• Demonstrated the scalability of efficient solutions on a diverse set of DL

workloads.

Conclusion

MUG ‘25 45Network Based Computing Laboratory

Acknowledgments to all the Heroes (Past/Current Students and Staffs)
Current Students (Under/Graduate)

– N. Alnaasan (Ph.D.)

– Q. Anthony (Ph.D.)

– C.-C. Chen (Ph.D.)

– T. Chen (Ph.D.)

– N. Contini (Ph.D.)

Past Students

– A. Awan (Ph.D.)

– A. Augustine (M.S.)

– P. Balaji (Ph.D.)

– M. Bayatpour (Ph.D.)

– R. Biswas (M.S.)

– S. Bhagvat (M.S.)

– A. Bhat (M.S.)

– D. Buntinas (Ph.D.)

– L. Chai (Ph.D.)

– B. Chandrasekharan (M.S.)

– S. Chakraborthy (Ph.D.)

– N. Dandapanthula (M.S.)

– V. Dhanraj (M.S.)

– C.-H. Chu (Ph.D.)

– S. Pai (M.S.)

– S. Potluri (Ph.D.)

– J. Queiser (M.S.)

– K. Raj (M.S.)

– R. Rajachandrasekar (Ph.D.)

– B. Ramesh (Ph.D.)

– D. Shankar (Ph.D.)

– G. Santhanaraman (Ph.D.)

– N. Sarkauskas (B.S. and M.S)

– V. Sathu (M.S.)

– N. Senthil Kumar (M.S.)

– A. Singh (Ph.D.)

– J. Sridhar (M.S.)

– S. Srivastava (M.S.)

– H. Subramoni (Ph.D.)

Past Research Scientists

– K. Hamidouche

– S. Sur

– X. Lu

– M. Abduljabbar

– A. Shafi

Past Post-Docs

– D. Banerjee

– X. Besseron

– M. S. Ghazimirsaeed

– T. Gangadharappa (M.S.)

– K. Gopalakrishnan (M.S.)

– R. Gulhane (M.S.)

– J. Hashmi (Ph.D.)

– M. Han (M.S.)

– W. Huang (Ph.D.)

– A. Jain (Ph.D.)

– J. Jani (M.S.)

– W. Jiang (M.S.)

– J. Jose (Ph.D.)

– M. Kedia (M.S.)

– K. S. Khorassani (Ph.D.)

– S. Kini (M.S.)

– M. Koop (Ph.D.)

– P. Kousha (Ph.D.)

– K. Kulkarni (M.S.)

– R. Kumar (M.S.)

– S. Krishnamoorthy (M.S.)

– K. Kandalla (Ph.D.)

– M. Li (Ph.D.)

– P. Lai (M.S.)

– J. Liu (Ph.D.)

– M. Luo (Ph.D.)

– A. Mamidala (Ph.D.)

– G. Marsh (M.S.)

– V. Meshram (M.S.)

– A. Moody (M.S.)

– S. Naravula (Ph.D.)

– R. Noronha (Ph.D.)

– X. Ouyang (Ph.D.)

– S. Gumaste (Ph.D.)

– J. Hatef (Ph.D.)

– G. Kuncham (Ph.D.)

– S. Lee (Ph.D.)

– B. Michalowicz (Ph.D.)

– H.-W. Jin

– J. Lin

– M. Luo

Past Senior Research Associate

– J. Hashmi

Past Programmers

– A. Reifsteck

– D. Bureddy

– J. Perkins

– B. Seeds

– A. Guptha

– N. Pavuk

– E. Mancini

– K. Manian

– S. Marcarelli

Current Software Engineers

– N. Shineman

– M. Lieber

Past Research Specialist

– M. Arnold

– J. Smith

– J. Oswal (Ph.D.)

– T. Tran (Ph.D.)

– L. Xu (P.h.D.)

– S. Xu (Ph.D.)

– J. Yao (Ph.D.)

– A. Ruhela

– J. Vienne

– H. Wang

Current Research Specialist

– R. Motlagh

– S. Sur (Ph.D.)

– K. K. Suresh (Ph.D.)

– K. Vaidyanathan

(Ph.D.)

– A. Vishnu (Ph.D.)

– J. Wu (Ph.D.)

– W. Yu (Ph.D.)

– J. Zhang (Ph.D.)

– Q. Zhou (Ph.D.)

– N. Chmura (B.S.)

Past Faculty

– H. Subramoni

– S. Zhang (Ph.D.)

– S. Mohammad

(M.S.)

– B. Lampe (B.S.)

– N. Klein (B.S.)

MUG ‘25 46Network Based Computing Laboratory

Funding Acknowledgments

Funding Support by

Equipment Support by

MUG ‘25 47Network Based Computing Laboratory

Interested in more? Join us at IEEE Hot Interconnects 2025!

Hot Interconnects Registration (free) https://hoti.org/register.html

https://hoti.org/register.html
https://hoti.org/register.html
https://hoti.org/register.html

MUG ‘25 48Network Based Computing Laboratory

Thank You!

N
et
w
or

k B
ased Com

pu
ti n
g

LaboratoryNetwork-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

{alnaasan.1, yao.877}@osu.edu

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/

http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
mailto:%7Balnaasan.1%7D@osu.edu

	Slide 1
	Slide 2: Outline
	Slide 3: What is Machine Learning and Deep Learning?
	Slide 4: History: Milestones in the Development of ML/DL
	Slide 5: What is Generative AI?
	Slide 6: Training vs. Inference
	Slide 7: Generative AI – Inference
	Slide 8: Outline
	Slide 9: Understanding the Deep Neural Network Concepts
	Slide 10: Essential Concepts: Learning Rate (α)
	Slide 11: Essential Concepts: Batch Size
	Slide 12: Evolution of Language Models
	Slide 13: Evolution of Computer Vision Models
	Slide 14: Outline
	Slide 15: The Need for Parallel and Distributed Training
	Slide 16: Parallelization Strategies
	Slide 17: Data Parallelism and MPI Collectives
	Slide 18: Sharded Data Parallelism (DeepSpeed ZeRO)
	Slide 19: Outline
	Slide 20: MVAPICH (MPI)-driven Infrastructure for ML/DL Training: MPI4DL
	Slide 21: HiDL 2.0 Release
	Slide 22: Distributed Data Parallel Training on GH200 (Vista)
	Slide 23: Distributed Data Parallel Training (Frontier)
	Slide 24: Distributed TensorFlow on ORNL Summit (1,536 GPUs)
	Slide 25: Distributed TensorFlow on TACC Frontera (2048 CPU nodes)
	Slide 26: AccDP: Exploiting Data Parallelism
	Slide 27: MPI4DL v0.6
	Slide 28
	Slide 29: Outline
	Slide 30: Introduction to Inference
	Slide 31: Tensor Parallelism
	Slide 32: Tensor Parallelism
	Slide 33: Outline
	Slide 34: Mixture of Experts
	Slide 35: Tensor Parallel in MoE
	Slide 36: Expert Parallel in MoE
	Slide 37: Alltoall in Expert Parallel
	Slide 38: Overlapping communication with computation
	Slide 39: Overlapping communication with computation
	Slide 40: All-to-all with InfiniBand GPUDirect Async (IBGDA)
	Slide 41: All-to-all InfiniBand GPUDirect Async (IBGDA)
	Slide 42: More on IBGDA in MoE
	Slide 43: Outline
	Slide 44: Conclusion
	Slide 45: Acknowledgments to all the Heroes (Past/Current Students and Staffs)
	Slide 46: Funding Acknowledgments
	Slide 47: Interested in more? Join us at IEEE Hot Interconnects 2025!
	Slide 48: Thank You!

