Funding Opportunities at the Office of Advanced Cyberinfrastructure (OAC)

Computer and Information Science and Engineering Directorate (CISE)
Sheikh Ghafoor – Program Director, OAC

Disclaimer

- NSF website and publications are the only official source of information regarding NSF programs, solicitations, and other information.
- These slides and presentation is for non-official personal interpretation, illustration and demonstration by the presenter

Outline

- Overview of NSF/OAC
- OAC programs
- Q&A

NSF is organized a bit like a university

Office of Advanced Cyberinfrastructure

Tracey Zeigler

Operations Deputy

Challenges: Significant ecosystem disruption across many fronts

Growth of data from sensors, detectors and Data instruments creates new user requirements **Post-Moore** Specialized hardware and accelerators Rapid advance and integration of AI into scientific Al applications and workflows **Business** New business models and entrants for computing Models and data infrastructure Cross-agency initiatives, global competition, and **Scaling out** need to broaden access to resources

Opportunities and Strategic Priorities

Discovery through Integration

Enabling discovery through integrations of data, software and the infrastructure ecosystem

Building Workforce, Communities and Partnerships

Growing and developing communities, workforce and partnerships

Advancing Infrastructure

Investments in new technology adoption and scaling advanced infrastructure

Challenges

Data

Al

Scaling out

Business Models

Post-Moore

OAC investment areas

Advanced Computing

Production and operational level advanced cyberinfrastructure capabilities and services

Networking & Cybersecurity

Advanced networking capabilities that preserve security and privacy

Learning & Workforce Development

Foster a national research workforce for creating, utilizing, and supporting advanced CI

Software & Data Cl

Develop a cohesive, federated, national-scale approach to research data infrastructure

Strategic Investments

Special opportunities, cross-cutting and national initiatives, CI for open science and public access

Types of Funding Opportunities

Program Solicitations

- Requests for proposals
- Contains program goals, instructions for proposal prep, award information
- Must also follos rules in the PAPPG (more on this later)

Dear Colleague Letters

- Notifications of special opportunities
- Elevate a specific topic area for existing solicitations
- Competitions for supplements to existing NSF awards and/or conferences

Supplemental Funding

- For existing awards
- Up to 20% of original award amount to complete project activities
- Must contact a PO before submitting

EAGER

- High-risk, highreward research proposal
- Not aligned with existing opportunity
- Can be solicited via DCLs, invited by a PO, or unsolicited
- Must contact a PO before submitting

NSF Proposal and Award Lifecycle

How do I find a program of interest?

1) Search nsf.gov/awardsearch to find an award relevant to your research:

2) Identify a project that looks close to your idea and click on it.

PRIMES: ML-Enhanced Coupling and PDDO-Enhanced ML Approaches for Complex Problems

Award Number: 2446826; Principal Investigator: Burak Aksoylu; Co-Principal Investigator:; Organization: Texas A&M University-San Antonio; NSF Organization: DMS Star Date: 04/01/2025; Award Amount: \$329,432.00; Relevance:

CAP: AI-Ready Institution Transforming Tomorrow's Research and Education with AI Focused on Health and Security (Jag-AI)

Award Number: 2334243; Principal Investigator: Jeong Yang; Co-Principal Investigator: Young Lee, Zechun Cao, Gongbo Liang; Organization: Texas A&M University-San Aorganization: IIS Start Date: 01/01/2024; Award Amount: \$385,475.00; Relevance:

Collaborative Research: CISE-MSI: DP: SCH: Privacy Preserving Tutoring System for Health Education of Low Literacy Hispanic Populations

Award Number: 2219588; Principal Investigator: Zechun Cao; Co-Principal Investigator:; Organization: Texas A&M University-San Antonio; NSF Organization: CNS Start Date: 09/01/2022; Award Amount: \$113,439.00; Relevance:;

- 3) Identify the Program Officer and the program. Read the solicitation!
- 4) Email the PO and ask, "Is my idea a good fit for your program?"

Writing Successful Proposal

- Read the solicitation (carefully 3 times and then read again)
- Know about merit review criteria (IM, BI, & additional solicitation specific criteria)
- Talk with PDs about program fit (Never submit proposal without talking to a PD)
- You are writing to reviewers and program directors
 - Make the proposal contributions clear
 - Don't assume that all reviewers will know the jargon or everything about your topic
 - Make sure the most important things the contributions, the plans receive the most space
 - You are not there to explain
 - Have the proposal read by someone else
- Serve on panel
- Start early

Cyberinfrastructure for Sustained Scientific Innovation (CSSI)

NSF 22-632 (Dec 1, 2025)

Goals

- Supports the development and deployment of robust, reliable and sustainable data and software cyberinfrastructure
- Brings innovative capabilities towards sustained scientific innovation and discovery
- Provides a cross-directorate opportunity to advance common approaches to sustain and innovate research cyberinfrastructures

Software & Data Cl

Project Classes

Panelist Survey

- **Elements:** Small groups that will create and deploy robust capabilities in one or more significant S&E areas. (Awards <= \$600K, up to 3 years)
- Framework Implementations: Larger, interdisciplinary teams organized around the development and application of common infrastructure aimed at solving common research problems in one or more S&E areas. (Awards between \$600K \$5 Million, between 3-5 years)
- Transition to Sustainability: Groups who
 will execute a well-defined sustainability plan for
 existing CI to impact one or more S&T. (Awards
 <= \$1 Million, up to 2 years)

Before Starting on a CSSI Proposal ...

- o Is the basic research leading to CI development done?
- Who is the CI for?
- **X** Your research group only
- X o Your home institution only
- A clearly identified research community
- o Is there a "demonstrated need" in that community?
- O How will you engage the community?
 - Not just as end-users but future contributors who will sustain the CI
- O What are the plans to sustain the CI beyond the years of funding?

Cyberinfrastructure for Sustained Scientific Innovation (CSSI)

- Supports the development and deployment of robust, reliable and sustainable data and software cyberinfrastructure
- Three CSSI Award Classes:
 - Elements: Small groups that will create & deploy robust capabilities for one or more significant areas of S&E (up to \$600k, up to 3 years)
 - Frameworks: Larger, interdisciplinary teams around development and application of common infrastructure aimed at common research problems in on or more areas of S&E. (Awards between \$600k \$5M, between 3-5 years)
 - Transition to Sustainability: Groups who will execute well-defined sustainability plan that enables new avenues of support for long-term sustained impact of the CI (up to \$1M, up to 2 years)
 - NSF 22-632 Proposal Deadline: December 1, 2025

CyberTraining Solicitation Goals

- Long-term vision: Computational and Data-driven Science for All scientists and engineers
 - Prepare, nurture, and grow the **scientific research workforce**, including students, instructors, and research CI professionals
- Ensure broad adoption of CI tools, methods, and resources
- Integrate CI and CDS&E skills into undergraduate and graduate curricula
 - Address emerging needs and unaddressed bottlenecks through innovative and scalable training
 - Catalyze research with training and educational activities
- Broaden Cl access and adoption by varied institutions, scientific communities, and underrepresented groups.

Project Classes

- Pilot: Exploratory projects, \$300K over 2 years
- Small implementation: \$500K over 4 years
- Medium implementation: \$1M over 4 years
 - 1. Identify challenges in research workforce development
 - 2. (a) Broaden use of CI resources and/or (b) CI skills training expected to coordinate with ACCESS (access-ci.org)
 - 3. Scalability and sustainability of the training program
 - 4. Recruitment and evaluation plans
 - 5. Collective impact strategy
 - 6. Fostering a suitable community

NSF 22-520 Proposal Deadline: January 15, 2026

ACCESS coordination

- Share training material in ACCESS
 Knowledge Base (https://support.access-ci.org/knowledge-base)
- Register expertise in https://support.accessci.org/cssn

Closing

- •Questions?
- Sheikh Ghafoor sghafoor@nsf.gov

National-scale CI resources and services

Access to advanced computing

CI services for NSF major and mid-scale RI

Data-focused platforms, systems and services (examples)

Pelican Platform

Science Gateways expertise

How can ACCESS supercharge your research?

ACCESS resources available at no cost to US-based researchers and educators

- Computing systems
 - Varying core counts & memory sizes
 - Cloud resources (persistent services)
- Accelerators
 - GPUs, vector processors, FPGAs
- Data storage systems
 - Archival, object, tiered
- Data repositories
- Software & workflow managers
- High performance networking
- CI Professionals & support tools
- System performance monitoring

available on many ACCESS machines

access-ci.org

Current ACCESS Resources https://allocations.access-ci.org/resources

	i ittpo://ai	100alloriolaccocc chorg/100carcoc
ACES	Texas A&M	Test bed with GPUs and novel accelerators in a composable environment
Anvil	Purdue	Supports traditional HPC and modern AI applications.
Bridges-2	PSC	Data-centric HPC, AI, and HPDA (High Performance Data Analytics) with a flexible software environment.
Delta	NCSA	Delivering a highly capable GPU-focused compute environment for GPU and CPU workloads.
DeltaAl	NCSA	Targets the computational needs of Artificial Intelligence/Machine Learning (AI/ML) workloads.
Derecho	NCAR	HPE Cray EX duster 19.87-petaflops system for work in Earth systems science and related sciences.
Expanse	SDSC	5.16 peak petaflops, Composable Systems and Cloud Bursting.
FASTER	Texas A&M	Provisions CPUs, GPUs, and (Non-Volatile MemoryExpress-based storage in a composable environment.
Granite	NCAR	Tape archive system for long-term archive datasets
Jets tream2	Indiana U	Provides 8 petaFLOPS user-friendly doud environment designed to allow "always on" interactive computing and data analysis resources on demand .
KyRI C	U Kentucky	Supports specialized disciplines such as Bioinformatics and System Biology, Large Graph and Network Analysis.
Launch	Texas A&M	Dell duster with AMD EPYC Genoa 9654 processors and NVIDIA A30 GPUs, HDR100 InfiniBand for MPI, and storage.
Neo cortex	PSC	Facilitates Al-powered scientific discovery and algorithm development for Al and graph analytics.
Ookami	Stony Brook	Access to the Riken/Fujitsu A64FX processor.
Open Storage Network		Distributed data sharing and high bandwidth transfer service between research organizations, communities and projects.
OSG Open Science Pool	OSG Consortium	Distributed high-throughput computing (dHTC) and data capacity organized as a single virtual cluster.
Ranch Archive System	TACC	High capacity long-term storage via high performance file system and tape-based backing store.
Stampede3	TACC	Provides many-core processors and accelerated technologies, for simulation, data intensive computations, and beyond.
Vo yager	SDSC	Supports Al and deep-learning based S&E research.
FABRIC	RENCI	Distributed "in network" computing and storage resources at 35 national and international high-bandwidth connected sites enables new protocols, architectures and applications
MATCH Services	(ACCESS)	Connects researchers with professionals to help solve their research problems.

FABRIC

RENCI

Distributed "in network" computing and a storage resources at 35 national and international high-bandwidth connected sites enables new protocols, architectures and applications

MATCH Services

(ACCESS)

Connects researchers with professionals to help solve their research problems.

Al@Edge cyberinfrastructure - Field-deployed nodes enable advanced real-time, in-situ data analysis of various sens or datas treams.

SGX3

Science Gateways
CoE

Supports science gateways through both complementary and paid services.

>18,000 active users on ACCESS systems (includes Frontera, Cloudbank and PaTh)

National AI Research Resource (NAIRR) - A vision to drive US AI innovation, discovery, and competitiveness

National goals

- Accelerate AI and AI-powered discovery and innovation.
- Expand the US AI R&D workforce and train the next generation of AI researchers and educators.
- Increase integration and use of world-class public and commercial AI resources.
- Advance public trust in Al.

Envisioned NAIRR Architecture

Computing and software

Educational

materials and

training tools

Datasets and Models

User support and expertise

NAIRR Task Force Report

About NAIRR & NAIRR Pilot

NAIRR Pilot is now serving **hundreds of researchers and educators** with compute, data, model, and educational.

NAIRR Pilot

CLASSROOM AND EDUCATOR RESOURCES

Request access to educational platforms (such as computational notebooks).

Apply

RESEARCHER RESOURCES

Request access to advanced computing, cloud computing, models, software, platforms, and collaborations.

Apply

DATA, MODELS, AND MORE

Additional government and government-funded resources that do not require an application.

View