ENABLING AI Infrastructure ## RoCE Enhancements for Large Scale Multi-Path Ethernet Networks Hemal Shah, Distinguished Engineer and Architect Core Switching Group, Broadcom Inc. MVAPICH2 User Group Conference, August 19, 2025 **OPEN // SCALABLE // POWER EFFICIENT** #### **Al Infrastructure Connectivity** #### **Ethernet** - · Cost-effective, flexible, and scalable ecosystem - High-Bandwidth → 800G and above - Large scale → 100K-1M XPUs - RoCE transport → Low latency, high bandwidth & low overhead #### **PCle** - Ultra Low Latency - · Standard interface on AI server devices - Enables peer-2-peer data transfers #### **Options** - 1. Ethernet → Performance & Scale - 2. NVLink / UALink - 3. PCIe → Simplicity & Cost #### **RoCE for AI/HPC Networks** - Default RDMA transport for AI training and inference clusters - Enables direct data transfer without involving compute engines and/or OS → reduces communication times - Provides efficient high-bandwidth transfer → crucial for distributing massive datasets & parallel processing - Optimizes XPU-XPU communication → RDMA between XPU memories & high XPU utilization - Scales to 100K-1M+ XPUs → supports large-scale AI/HPC cluster deployments ## Multi-Pathing in AI/HPC Ethernet Networks - Large scale AI/HPC networks are N-tier - · Multiple paths available in the network - Benefits of multi-pathing - Network load balancing - Fault-tolerance - Congestion reduction - Out-of-order packet arrival due to packet spraying and drops ### **RoCE Challenges in Large Scale Al/HPC Ethernet Networks** ## **Enhanced RoCE (eRoCE) for Large Scale AI/HPC Ethernet Networks** ## eRoCE Features for AI/HPC | Feature | Description | |------------------------------|--| | Multipath | Header entropy variation (per QP or per packet) Switch load balancing support: ECMP, E-ECMP, DLB flowlet, DLB spray NIC packet spraying across multiple planes Re-ordering at the target NIC | | Out-Of-Order (OOO) Placement | Multi-pathing and packet drops → OOO packets OOO placement of RDMA Write & Read responses (Write w/ Imm delivered in-order) In-order placement/delivery of Sends, RDMA Read Requests, and Atomics Better utilization of packet buffers & PCIe | | Reliable Delivery | SACK and NACK Hardware based selective retransmissions Ordered and unordered delivery | | Congestion Control | End-2-End credit-based congestion control Programmable Path probing | | Telemetry | ECN for marking Packet trimming for drop notifications CSIG and DCN | #### **eRoCE Stack** ## **Summary** - Ethernet with RoCE has been the widely deployed in AI/HPC networks - RoCE faces challenges (go-back-n, no multi-pathing, congestion control..) for large scale Ethernet networks - eRoCE addresses these challenges with reliability, multi-path & congestion control enhancements to RoCE - eRoCE extends RoCE while preserving programming model, RDMA semantics, and baseline RoCE transport - eRoCE supports large-scale AI/HPC cluster deployments