

ENABLING AI Infrastructure

RoCE Enhancements for Large Scale Multi-Path Ethernet Networks

Hemal Shah, Distinguished Engineer and Architect Core Switching Group, Broadcom Inc. MVAPICH2 User Group Conference, August 19, 2025

OPEN // SCALABLE // POWER EFFICIENT

Al Infrastructure Connectivity

Ethernet

- · Cost-effective, flexible, and scalable ecosystem
- High-Bandwidth → 800G and above
- Large scale → 100K-1M XPUs
- RoCE transport → Low latency, high bandwidth & low overhead

PCle

- Ultra Low Latency
- · Standard interface on AI server devices
- Enables peer-2-peer data transfers

Options

- 1. Ethernet → Performance & Scale
- 2. NVLink / UALink
- 3. PCIe → Simplicity & Cost

RoCE for AI/HPC Networks

- Default RDMA transport for AI training and inference clusters
- Enables direct data transfer without involving compute engines and/or OS → reduces communication times
- Provides efficient high-bandwidth transfer → crucial for distributing massive datasets & parallel processing
- Optimizes XPU-XPU communication → RDMA between XPU memories & high XPU utilization
- Scales to 100K-1M+ XPUs → supports large-scale AI/HPC cluster deployments

Multi-Pathing in AI/HPC Ethernet Networks

- Large scale AI/HPC networks are N-tier
- · Multiple paths available in the network
- Benefits of multi-pathing
 - Network load balancing
 - Fault-tolerance
 - Congestion reduction
- Out-of-order packet arrival due to packet spraying and drops

RoCE Challenges in Large Scale Al/HPC Ethernet Networks

Enhanced RoCE (eRoCE) for Large Scale AI/HPC Ethernet Networks

eRoCE Features for AI/HPC

Feature	Description
Multipath	 Header entropy variation (per QP or per packet) Switch load balancing support: ECMP, E-ECMP, DLB flowlet, DLB spray NIC packet spraying across multiple planes Re-ordering at the target NIC
Out-Of-Order (OOO) Placement	 Multi-pathing and packet drops → OOO packets OOO placement of RDMA Write & Read responses (Write w/ Imm delivered in-order) In-order placement/delivery of Sends, RDMA Read Requests, and Atomics Better utilization of packet buffers & PCIe
Reliable Delivery	 SACK and NACK Hardware based selective retransmissions Ordered and unordered delivery
Congestion Control	 End-2-End credit-based congestion control Programmable Path probing
Telemetry	 ECN for marking Packet trimming for drop notifications CSIG and DCN

eRoCE Stack

Summary

- Ethernet with RoCE has been the widely deployed in AI/HPC networks
- RoCE faces challenges (go-back-n, no multi-pathing, congestion control..) for large scale Ethernet networks
- eRoCE addresses these challenges with reliability, multi-path & congestion control enhancements to RoCE
- eRoCE extends RoCE while preserving programming model, RDMA semantics, and baseline RoCE transport
- eRoCE supports large-scale AI/HPC cluster deployments

