
Partial Tensor Operations for

Accurate and Performant

DNN Inference with

Ultra-Low Precision

Eashan

Dash

Arun

Ramachandran

Chandra Kumar

Ramaswamy

Ganesh Prasad

Nagaraja

Phani Shankar

Madineni

2 |

Short Bio Speakers

• Eashan Dash – Staff Machine Learning Engineer at AMD
• Has 5+ years of professional experience in and around AI, DNNs (Deep Neural Networks), and HPC (High

Performance Compute) domains. His primary research areas include DNN acceleration and optimizations at library

and framework level, Large language model optimization, Numerical linear algebra algorithms and optimizations,

BLAS, Low precision GEMM, SIMD AI kernel algorithms etc.

• Arun Coimbatore Ramachandran – Principal Staff Machine Learning Engineer at AMD
• Has 17+ years of industry experience. He is currently pursuing PhD in IISC Bangalore with interest in intersection of

Machine Learning and Systems.

3 |

DNN ACCELERATION – Software Solutions And Processor Trends

Introduction (1/1)

• Accelerating Deep Neural Networks (DNNs) for inference/training

has become inevitable for real time deployment

• Software solutions focus on neural network compression techniques

for network acceleration
• Reduces model size and increases computational efficiency

• Pruning, Quantization, Knowledge distillation

• Future of Computing: Heterogenous architectures combining the

CPU and accelerators with unified memory access
• For example, AMD MI300 APUs – CPUs + GPUs

• Future generation platforms – CPUs + DPUs
• DPU – Deep Learning Processing Unit

• Accelerators support ultra low precision compute like INT4

4 |

Need for Software Solution to utilize AMD’s Heterogenous Architectures

Problem Statement (1/1)

Quantization

Clipping

Xfp32 Xint8

QuantizeXfp32 Xint8
Dequantize Yfp32

Yfp32 = Xfp32 ±

Zfp32

Because of

quantization noise

Scaling

Rounding

Heterogenous Compute platform

CPU Accelerator?

• Several challenges with state-of-the-art solutions implementing neural

network compression techniques
• Major challenge is to retain the accuracy while increasing the speed

• Quantization – Promising technique for DNNs compression
• Uses lower-precision numerical formats (FP16, BF16, INT8, INT4) for

weights and activations

• Accuracy gets a hit during quantization due to loss of information
• Significant accuracy degradations with INT-4, INT-8

• Retraining/Fine-tuning are Data-driven and Iterative
• Requires training data, compute resources and time consuming!

• No state-of-the-art solution addressing these challenges with

heterogenous computing -
• To utilize future generation heterogenous AI platforms – CPUs +

DPUs/GPUs

• To improve accuracy and end to end performance with heterogenous

computations involving low precisions like INT-4, INT-8

• To improve accuracy with Data-Free and Non-Iterative methods

• Modern accelerators support INT4 inference

Unified Memory

5 |

Partial Tensor Retention And Correction.

.

‘PTRAC’ – A Novel Heterogenous Solution Targeting Next Gen AI Architectures

Proposed Solution (1/8)

Heterogenous Compute platform

Heterogenous DNN software

solution –’PTRAC’

CPU Accelerator
Unified Memory

Improved

Performance

Improved

Accuracy

• Partial Tensor Retention And Correction

• We propose a heterogenous software solution 'PTRAC’ for addressing state-of-the-art challenges with

Quantization neural network compression technique
• Reduces quantization noise

• Improves accuracy, CPU utilization and end-to-end performance

• PTRAC includes following three novel ideas:

• Partial Tensor Correction (PTC)
• Novel weight correction scheme, applied to partial weight tensor.

• Improves accuracy with low precisions like INT-4 and INT-8

• Partial Tensor Retention (PTR)
• Heterogenous DNN compute method to improve accuracy and

performance

• Part of weight tensor is retained for CPU operations, rest for

accelerator

• Partial Tensor Retention And Correction (PTRAC): PTC + PTR.
• Achieves superior accuracy and performance with low precision

heterogenous compute

6 |

‘PTC’ – A Novel Weight Correction Method

Proposed Solution (2/8)

Original = σ𝑖=1
𝑁 𝑥iwi

Quantized = σ𝑖=1
𝑁 𝑋iWi

Output Error = σ𝒊=𝟏
𝑵 𝒙iwi - σ𝒊=𝟏

𝑵 𝑿iWi (Eq 1)

MAC computation happens at input channel levels

Output Error

Traditional correction schemes minimizes: MSE(W) = E[(w – W)2]

(W and w denote the dequantized and original weight)

Input channels

Output channels
CNN Weight Tensor: 4 dimension

• Quantization of FP32 weights to ultra-low precision (INT-8,

INT-4) comes with heavy accuracy degradation

• Existing weight correction schemes -
• Are Data-driven and Iterative

• Retraining procedures to regain accuracy

• Requires training data, compute resources and time consuming!

• Correct Complete Weight Tensors
• Complete weight tensor retraining and fine-tuning is time

consuming

• Apply weight corrections at Output channel levels

• Proposed Partial Tensor Correction (PTC) Method
• Novel weight correction scheme, corrects partial weight tensor

• Per-Input Channel level, Data Free, Non-Iterative

• PTC method scales across shallower, deeper and wider

models

• Per-Input Channel level
• Multiply Accumulate (MAC) operation - input channel levels

• PTC corrects error induced by MAC operation at input channels

• PTC minimizes the output error defined in (Eq 1)

7 |

‘PTC’ – A Novel Weight Correction Method

Proposed Solution (3/8)

Partial error correction factor

Output Error

Total Input Channels * alpha %
>

Complete error correction factor

Output Error

Total Input Channels * 100 %

Partial Weight Tensor Complete Weight Tensor

P (error reduction) with Partial error correction

 >
P (error reduction) with Complete error correction

• Data-Free Quantization
• Our experiments show that – Quantization rounding errors of activations < Rounding errors of weights

• Leveraging this we approximate the output error from (Eq 1) as:

 Output Error = σ𝒊=𝟏
𝑵 𝒘i - σ𝒊=𝟏

𝑵 𝑾i (Eq 2)

• Non-Iterative
• Weight Tensor is corrected with error correction factor in one shot

• Partial Tensor Correction
• Traditional weight tensor correction schemes correct the complete weight tensor by certain factor

• PTC corrects alpha % of the tensor by the same error leading to larger correction factor (0 < alpha < 100)

Probability of error correction

Output error is corrected for

alpha % of input channels
Output error is corrected for all input

channels

8 |

‘PTC’ – A Novel Weight Correction Method

Proposed Solution (4/8)
Trained Model FP32 Weight Tensor: 4 dimension

Height * Width * Input Channels * Output Channels

Partial Tensor Correction
Corrects High Precision Weights (Eg. FP32) at

input channel level

Input channels

Output channels

Quantization
High Precision (FP32) weight tensor to lower

precision (INT-4/INT-8)

Compute error for

all input channels

Only these

input channels

are corrected

Techniques Data-driven Iterative Scale

correction

Full weight

correction

Granularity level

PTQ Yes/ No Yes/ No Yes Yes Tensor/ Output

Channel

QAT Yes Yes No Yes Tensor

PTC No No No No Input Channel

• PTC is efficient in reducing the output errors
• Smaller corrections on complete tensor – Under Correction

• Higher correction on complete tensor – Over Correction

• PTC – Same error is corrected for partial tensor

• PTC can co-exist with SOTA
• Does not modify quantization scales, rounding schemes or

threshold-based clipping

• Can be extended with Data-Driven Techniques like QAT and

PQT for improved accuracy

9 |

‘PTR’ – Partial Tensor Retention for Heterogenous Compute

Proposed Solution (5/8)

▪ PTR’s partial quantization technique

▪ In each DNN layer, PTR identifies channels sensitive to

quantization.
▪ ‘T’ sensitive channels from total channels ‘X’.

▪ Retains ‘T’ channels in higher precision.

▪ X-T channels will be in lower precision.

▪ Partial quantization for heterogenous compute

▪ Identified sensitive channels ‘T’ will be deployed on CPUs

with relatively higher precision.

▪ Rest of the channels ‘X-T’ will be deployed on accelerators

with lower precision.

INT8 INT8 INT8 INT8 INT8 INT8 INT8 INT8 INT8 INT8

INT8 INT8 INT8 FP32 INT8 INT8 INT8 INT8 FP32 INT8

‘X’ output channels of a DNN layer (here, X=10)

‘X-T’ in lower precision
‘T’ in higher precision

Partial Quantization

PTR Quantization noise < Original Quantization noise
 (Partially quantized) (All quantized)

PTR implements the idea of partial quantization exploiting the heterogenous compute.
• Achieves superior accuracy along with improved performance.

10 |

‘PTR’ – Sensitive Channels And Channel Reorder

Proposed Solution (6/8)

INT8 INT8 INT8 FP32 INT8 INT8 INT8 INT8 FP32 INT8

‘X-T’ in lower precision ‘T’ in higher precision

Channel Reorder

INT8 INT8 INT8 INT8 INT8 INT8 INT8 INT8 FP32 FP32

63

0

0

112

112

63

0

1

112

112

63

0

999

112

112

112

63

0

0

112

112

63

0

1

112

112

63

0

999

112

112

112

63

0

0

112

112

63

0

1

112

112

63

0

999

112

112

112Fully Quantized Single Precision Partially Quantized

KLD LOSS =

0.41570 nats

KLD LOSS =

0.25467 nats

Quantization Error FP32 update

• Sensitive Channels (Filters)
• Some channels are more sensitive to quantization

• Due to difference in weight distribution range

• Sensitive channels are identified
• Data-Free and Data-driven techniques using MSE

and KLD loss

• Fully Quantized vs Partially Quantized
• Our experiments show KLD Loss between

• FP32 and fully quantized (INT-8) is 0.41570 nats

• FP32 and partially quantized versions is reduced to

0.25467 nats

• Sensitive Channel Reordering
• Reordering of sensitive channels such that all the

quantization sensitive channels are contiguous
• To improve memory access latencies

• Partial Tensor Fine-Tuning
• FP32 channels of a DNN layer are only fine-tuned

while the quantized values are frozen to improve

accuracy

11 |

Heterogenous Quantization

Rounding Schemes simulates

Stochastic Rounding

• Rounding to nearest not optimal always

• Every weight value in layer l, can take a

value from the set{ wi
l. floor , wi

l. ciel }

• One device follows round up and other

follows round down

• Improved accuracy and performance

‘PTR’ – Rationale Behind Improved Accuracy And Performance

Proposed Solution (7/8)

Heterogenous Quantization

with CPUs, DPUs and GPUs

reduce Quantization Noise

• Executing few channels in a CPU

supported format (like FP32, BF16,

INT-8) on CPU

• Others, in lower precision format (like

INT4, INT-8, FP-16, other Blocked

FP formats) on a GPU and/or DPU

• Improved performance and/or

accuracy

Heterogenous Quantization Scales

simulates Ensembles

• Our work shows that optimal scale factor

• CPU – Non-power of scale

• DPU – Power of 2 scale

• Leverage different scales format for

different device type computation

• Reduction in quantization noise for a given

node

• Find optimal scale factors for each device

CPU

Accelerator

FP-32, BF16 Non-power of 2 Qnt scales
E.g., Scale

= 252.4
Round up (Ceil)

E.g., Round

(281.66) => 282

INT-4, INT-8 Round down (Floor)
E.g., Round

(281.66)= 281 Power of 2 Qnt scales
E.g., Scale

= 128

12 |

Proposed Solution (8/8)
‘PTRAC’ – Combined Partial Tensor Retention and Correction: PTC + PTR

Partial Tensor Retention Execution

Input channels Output channels or filters

PTC corrected

FP32 weight

tensor only for

output channels to

be executed at

lower precision

Retain part of

weight tensor at

FP32 for CPU

and rest at low

precision for

accelerator

execution

FP32 INT-4 or INT-8

CPU Accelerator (DPU/GPU)

Partial Tensor Correction

Trained FP32

weight tensor

• PTR:
• Around top 25% of quantization sensitive filters are

executed in higher precision on CPU

• Around 75% of filter compute executed with lower

precisions (INT-4 or INT-8) on accelerators

• INT-4, INT-8 suffer heavy accuracy degradation

• Combine PTR with PTC:
• PTC improves accuracy with low precision (INT4,

INT8)

• Correct the rest 75% filters with PTC

• 75% PTC corrected filters are executed on

accelerators for low precision compute

• 25% sensitive filters are executed on CPU for

higher precision

• PTRAC improves end to end accuracies with
• Retaining sensitive filters at higher precision (PTR)

• Correcting rest of the filters for low precision (PTC)

Identify sensitive

output channels to

be retained in FP32

13 |

By retaining the top 25% of quantization sensitive filters of a

DNN node at original format of FP-32, the noise is reduced by

• Data-Free MSE: 89%

• Data-Driven KLD: 55%

Quantization Noise

Models All INT8 Quantized

25% Partial Retention in

FP32

% loss

reduced

Resent50 328.6969 31.5844 90.39

Vgg16 96.8256 3.0276 96.87

GoogleNet 784.5601 137.1241 82.52

Densenet121 365.9569 59.5984 83.71

Squeezenet 153.0169 10.452289 93.16

Alexnet 350.8129 71.7409 79.55

Densenet169 228.3121 38.3161 83.21

Resnet101 285.9481 18.4041 93.56

Resnet152 251.8569 15.9201 93.67

Vgg19 111.3025 4.2436 96.18

Average 89.07

Dataset Imagenet

% INT8 filters 0 25% 50% 75% 100% % loss reduced

(with 25% FP32)
1st Conv Layer KL Divergence loss (nats)

Resnet50v1.5 0 5.144 18.326 36.48 74.37 50.95

Resnet50v1 0 6.395 26.24 54.71 120.45 54.58

Vgg16 0 5.11 14.44 29.38 60.04 51.07

Mobilenetv1-12 0 4.54 26.26 68.17 136.06 49.90

Shufflenet 0 4.34 11.51 25.35 64.37 60.62

Data-Free Quantization noise reduction computed with MSE

Data-Driven Quantization noise reduction computed with KLD loss

Resnet50 Inceptionv3Mobilenet Vgg16

Quantization Noise Reduction
All INT-8 quantized with PTR - Heterogenous Quantization Scale

Average original noise with original power of 2 quantization scales factors

Average noise with 25% non-power of 2 quantization scales factors

Average noise with 50% non-power of 2 quantization scales factors

25%

50%

For all INT-8 quantized with heterogenous scale factors,

• noise reduces by ~ 25% with 25% non-power of 2 scale factors

• noise reduces by ~ 50% with 50% non-power of 2 scale factors

Results (1/3) – Quantization Noise Reduction with PTR

14 |

Model INT4 – 100% INT8 – 100% INT4: 75%, INT8: 25% INT4: 50%, INT8: 50%

Alexnet 33.2 56.5 40.2 52.3

Vgg16 28.4 68.3 58.1 65.5

Vgg19 51 68.8 58.6 64.6

Squeezenet 38.6 57.2 46.7 52

Resnet50 49.1 73.2 62.4 64

Resnet101 53.5 73.02 64.7 68.44

Resnet152 57.3 74 67 71.3

Densenet121 53.7 75.5 64.96 70.53

Densenet161 62.6 75.3 66.8 71.1

Results (2/3) – Accuracy Gains with PTC, PTR and PTC+PTR

Model INT4 Per Channel PTC INT4 Per Channel

Inception 59.9 61.9

VGG16 28.4 66

Resnet50 49.1 61.7

Squeezenet 38.6 46.8

Densenet121 53.46 65.07

Alexnet 33.2 52.3

VGG19 51 65.1

Resnet 101 53.5 63.2

PTR PTC + PTR

Model INT-4 INT-8 INT4: 75%, INT8: 25% INT4: 75%, INT8: 25%

Alexnet 33.2 56.5 40.2 53

VGG16 28.4 68.3 58.1 64

VGG19 51 68.8 58.6 65.7

Squeezenet 38.6 57.2 46.7 50.9

Resnet50 49.1 73.2 62.4 66.6

Resnet101 53.5 73.02 64.7 68.7

Densenet121 53.7 75.5 64.96 68.4

Densenet161 62.6 75.3 66.8 69.5

Top-1 Accuracy (%) improvements with PTC for INT-4

Top-1 Accuracy (%) improvements with PTR for heterogenous compute: INT4 + INT8

Top-1 Accuracy (%) improvements with PTC + PTR for INT4 + INT8

0%

10%

20%

30%

40%

50%

60%

70%

80%

38% 40% 40%

10%

PTC PTR PTC + PTR

Maximum Top-1 Accuracy (%) improvements over baseline INT4

Baseline

INT4

PTC

PTR

15 |

Results (3/3) – Performance Gains and Model Size Reduction

Simulation results - Performance Improvement with PTRAC: EPYC Milan (FP32) + ALVEO V70

Accelerator (INT8)

Size in MB

Models FP32

INT4: 75%,

Float: 25%

INT4: 75%,

INT8: 25%

Resnet50 98 33.68 15.31

Resnet101 171 58.78 26.71

Resnet152 232 79.75 36.25

VGG16 528 181.5 82.5

VGG19 549 188.72 85.78
ConvNeXt

Large 755 259.53 117.96
ConvNeXtX

Large 1310 450.32 204.7

Model Size Reduction with PTRAC

Data-Free Non-Iterative Accuracy

Performance close to low

precision performance

FP32 + INT4 performance

close to INT4 performance

Up to 55% wrt DPU

Up to 3.8X wrt CPU

Performance

Accuracies close to

high precision model

accuracies

FP32 + INT4 accuracy

close to FP32 accuracy.

Up to 40% wrt INT4

Model Size

No dependency on

training data for PTC

and PTR

Can be extended to

data-driven techniques

like PTQ and QAT

One shot weight

correction to improve

accuracy with low

precision

Can be used with

retraining and fine-

tuning techniques

FP32 + INT4 size

reduces by ~65% w.r.t.

FP32 model size

INT8 + INT4 size

reduces by ~84% w.r.t.

FP32 model size.

Up to 84%

CPU + DPU: FP32 + INT8 in 1:2 ratio
Mixed precision computation

Data – Batch, Input

Channels, Input Size % gain over only DPU % gain over only CPU

256,9,64 50.00 3.8 X

64,11,128 26.36 3.08 X

128,11,128 40.56 3.32 X

256,11,128 53.33 3.79 X

512,11,128 36.36 3.65 X

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

