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Background

▪ Large-scale data-intensive applications in HPC and AI need distributed processing 
across multiple computing nodes
• At this time, complex and frequent communication occurs among computing nodes

• Providing enough memory for these applications is essential for performance improvement

▪ For example, LLM applications perform distributed training due to the large model and 
data sizes [1]
• AllGather and ReduceScatter is used as the main collective communications 

• As the data and model size increases, the collective communication message size also increases [2]

• However, collective communication suffers from increased latency when handling large messages [3]
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Message sizes of Allgather in
PyTorch FSDP Training on 16 GPUs [3]

Message Size Distribution for various networks [2]

A snapshot of ZeRO-Infinity training [1]



Motivation 

▪ In a Traditional rack
• Computing nodes consists of CPUs, main memory, PCIe, Network 

Interface Cards (NICs), and Host Channel Adapters (HCAs)

• They are connected to a network switch via Ethernet or InfiniBand (IB)

▪ In a CXL 3.1 enabled rack
• CPUs that support CXL are directly connected to a CXL switch

• Each node is equipped with significantly less main memory compared to 
nodes in a traditional rack

• The limited memory capacity can be supplemented by the CXL shared 
memory pool device, effectively addressing the problem of memory 
overprovisioning
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Hardware Configuration of Traditional and CXL Racks



Motivation

▪ In a traditional rack
• When 𝑃0 communicates with 𝑃1 using Ethernet, the 

communication must traverse the user, kernel, and 
hardware layers, including the application layer, 
TCP/IP layer, and NIC, taking approximately 2-4 μs

• When using IB for communication, it involves the 
application layer and HCA, taking around 1μs

▪ In a CXL 3.1 enabled rack
• Inter-node communication is enabled through read

and write operations on the CXL shared memory 
pool device, which maintains cache coherence

• In this method, communication between 𝑃0 and 𝑃1 
takes approximately 300-400 ns
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Comparison of Inter-Node Communication Latency



Problem Definition 

▪ We observed that as the message size increases, the communication latency of traditional 
allgather also increases

▪ Specifically, the allgather latency increased significantly for large messages
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Experimental Results on ETRI’s QEMU-based 4 Computing Nodes
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Project Goals 

▪ The goal of this study is to enhance the MPI Inter-Node collective communication 
performance in a multi-node environment connected by CXL

▪ Two Specific Goals

• Goal 1. Utilizing the CXL shared memory pool for collective communication

→ 1st phase: Sept. 2023 - Aug. 2024

• Goal 2. Utilizing the intelligent CXL switch for collective communication

→ 2nd phase: Sept. 2024 - Aug. 2025
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→ To achieve above goals, we proposed iMEX (intelligent Memory EXpander)



Project Goals 
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• # of Communication :𝒏𝟐

• Communication Latency : 2-4 𝝁𝒔 (100 GE)
Communication 
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(CXL Switched DDR) 
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Roles of ETRI and OSU
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Research 
Area

Focus Research Item

OSU Goal 1
Beyond Rack-

Scale CXL 
Memory Pool

1
Improving collective communication performance by utilizing the beyond rack scale CXL 
memory pool device

2
Identify and develop promising demonstration applications to showcase the CXL-Based 
collective communication proposed in OSU’s research item 1

ETRI

Goal 1
Single Rack-

Scale CXL 
Memory Pool

1 Proposed Approach 1. CXL SHM-Based AllGather

Goal 2
Intelligent CXL 

Switch
2

Proposed Approach 2. iMEX-Based Collective Communication 
(Intelligent CXL Switch-Based Collective Communication)



Proposed Approach for Goal 1

▪CXL SHM-Based AllGather
− Design and implement AllGather utilizing the CXL shared memory pool as the collective communication buffer

− Measure Allgather latency with OMB for performance validation
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Conventional. Network-Based AllGather Proposed. CXL SHM-Based AllGather
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Implementation for CXL SHM-Based AllGather

▪ We developed five CXL memory APIs that are utilized for the CXL SHM-Based allgather
• MPI ranks running on different computing nodes can utilize the CXL shared memory pool device as the 

communication buffer for collective communication
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① cxlmemoryInitialize ()
② cxlmalloc (size)
③ cxlwrite (data, size, offset)
④ cxlread (data, size, offset)
⑤ cxlfree ()

CXL Memory APIs

Host OS (Ubuntu 22.04)

129.254.180.235

QEMU

CPUMM

4GB file
/dev/mem0

cxl-node 0 cxl-node 1

CXL Shared Memory Pool Device

CXL T3

MEM

CXL T3

MEM

CPUMM

CXL T3

MEM

CPU MM

cxl-node0 cxl-node1

QEMU Guest OS of Flight Simulator

P0 P1

CXL

API
MEM



Process of the Traditional AllGather

▪ In Phase 1, ranks within each node copy data from the send buffer to shared main memory

▪ In Phase 2, node leaders transfer data to their left-hand neighbors using a ring algorithm over Ethernet

• This process must repeat 𝑁 − 1 times for all rank

▪ In Phase 3, the node leader copies data received from other nodes into the shared main memory. 
Then, each non-zero rank copies this data into its own receive buffer
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Traditional Allgather



Process of the CXL SHM-Based AllGather

▪ Phases 1 and 3 are identical to those in traditional AllGather, while the key difference is in the 
inter-node communication method of Phase 2

▪ In Phase 2

• Each node leader writes its send buffer data to the CXL shared memory in parallel

• After all nodes’ data is gathered in the CXL shared memory, each node leader reads the data from the CXL shared memory,
excluding its own send buffer
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Proposed CXL SHM-based Allgather



Comparison of the Traditional and CXL SHM-Based AllGather

▪ In traditional Allgather

• After Phase 1’s node-level aggregation, 𝑁 − 1 inter-node 
communication via Ethernet occur, followed by intra-node copy-in 
and copy-out

▪ In the proposed AllGather

• Phases 1 and 3 are conducted as in traditional methods, but Phase 2 
involves only a single inter-node transfer via the CXL interconnect

• The frequency of this transfer is limited solely by the CXL bandwidth, 
independent of the number of nodes, achieving significantly lower 
latency compared to Ethernet-based communication

→ In summary, the proposed AllGather reduces both the number of 
inter-node communications and the latency, as highlighted by the 
'benefit' shown in red.
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Comparison of Communication Events within a Node in
Traditional and Proposed Allgather



Implementation of the CXL SHM-Based AllGather
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▪ We implemented the CXL SHM-based allgather and cxl_memory_manager in the MVAPICH2 2.3.7 

▪ So, the CXL SHM-based allgather utilizes the cxlwrite and cxlread functions for inter-node communication
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2. MPI 
Initialize

3. Channel 
Initialize
(TCP/IP)

4. Perform Collective Communication

1. AllGather
Execution

5. MPI 
Finalize

Intra-Node IPC : Local Mem Copy

src/mpi/coll/cxl_memory_manager.c

src/mpi/coll/cxl_memory_manager.c

★
CXL SHM-based Allgather

cxlWrite

cxlRead
Inter-Node IPC : CXL Shared Memory Pool W/R

Intra-Node IPC : TCP-IP Send/ Recv



Experimental Setup for CXL SHM-Based AllGather

▪ Software emulator 
• Flight Simulator [5], which emulates the Multi-Node CXL 3.1 Shared Memory Pool Device in QEMU 

▪ Experimental Environment
• Host Machine

✓ CPU : AMD EPYC 9754 128-Core Processor

✓ Main memory : 792 GB

• Guest Machine

✓ QEMU cxl-2024-03-05 branch [6]

✓ OS : fedora 38 (kernel version : vmlinuz-6.3.7-200.fc38.x86_64)

▪ Benchmark Suite
• OSU Micro Benchmarks [7]
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Experimental Results for CXL SHM-Based AllGather

▪ The experimental items include the performance with 
• an increasing number of nodes, increasing number of processes per node (PPN), and increasing message size

▪ The proposed allgather significantly reduces communication latency compared to 
traditional allgather by up to 42.14x, with a minimum improvement of 2.91x
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Performance Improvement of SHM-based Allgather over 
Traditional Allgather Across PPN Configurations (1 to 6 ppn)

N : Number of Nodes    M : Message Size    L : Processes Per Node (PPN)

Performance Improvement of SHM-based Allgather Compared to 
Traditional Allgather Across the Number of Nodes (4 to 16)

42.14x

4.8 sec

0.11 sec

Published in 
IEEE BIgData’24



Proposed Approach for Goal 2
▪ iMEX-Based Collective Communication

− Design and implement ReduceScatter and AllReduce utilizing iMEX for MPI communication and computation

− Measure the latency of ReduceScatter and AllReduce using OMB for performance validation

※ r : CPU reduction operation 

※ sr : CXL switch reduction operation 
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Expect performance improvement by reducing
• the number of communications
• the CPU workload by offloading MPI computation to the switch’s accelerator

※ sr: intelligent CXL switch’s reduction operation

(e.g., ReduceScatter, sum)

(e.g., ReduceScatter, sum)



Implementation for iMEX-Based Collective Communication
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▪ We design and implement the iMEX CXL Switch, which consists of an MPI accelerator

▪ We define the Offloading and Result Packet Structures of the iMEX CXL switch

▪ We extend MVAPICH2 2.3.7 to leverage the iMEX CXL switch

CXL Switch
iMEX CXL Switch

with CoCoA
Fabric 

Manager

Host 
Node

Host 
Node

Host 
Node

Host 
Node

MLD

Logical Dev0

Logical Dev1

Logical Dev2

GFAM Nodex’

Nodey’

Nodez’

DRAM

Nodex

Nodey

Nodez

NVM

CXL Host Layer

CXL Switch Layer

CXL Device Layer

SLDs

MLD:   Multi Logical Device
SLD:    Single Logical Device
GFAM: Global Fabric Attached Memory

ACC

↓number of communications
↓CPU computation workload on each node

Offloading Packet Structure 

Result Packet Structure 

iMEX-Based Collective Communication Architecture

Gathering data into the accelerator

Collective operation on the accelerator (e.g., SUM/MIN/MAX)

Broadcasting collective operation result

Issuing offloading command

ACC MPI communication and computation accelerator



Experiments for iMEX-Based Collective Communication

▪ Experimental Setup
• Software emulator 

✓ OpenCIS (https://www.opencis.io/), which is an open-source SW simulator that models various CXL components in the 
qemu environment

• Benchmark Suite

✓ OSU Micro Benchmarks [7]

▪ Experimental Results
• We plan to submit a paper, including the experimental results, to IPDPS 2026

• We will compare two baselines and our proposed approach: 

✓ Baseline 1 is InfiniBand-based, Baseline 2 is CXL 3.1-based, and the proposed system is iMEX-based.
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https://www.opencis.io/


Road Map
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▪ We aim to improve the performance of data-intensive applications in multi-node systems

Now, we are here

Stage 1. MEX

• Commercial FPGA board-Based MEX

• Up to 32GB expanded memory

• Prototype version of accelerator

• Support a single node

Host
Processor Accelerator

(protype)

Expanded
MemoryPCIe

Compute Node

Commercial FPGA 
board-Based MEX

Stage 3

• Improvement the scalability of iMEX

• Multiple iMEX devices will be connected 
to a CXL spine Switch

• Support more complex topology

Stage 2. iMEX

• Support multi-node system using CXL

• Accelerate MPI collective operation 
using dedicated accelerator

• Use CXL Memory Pool for expanded 
memory capacity

Accelerator

Expanded
MemoryCXL

Intelligent
CXL-Switch 

based on MEX

Host
Processor

Compute Node 0

Host
Processor

Compute Node 1

iMEX

※ MEX (Memory EXpander) ※ iMEX (intelligent MEX)

CXL

Compute 
Node 0

Compute 
Node 1

Compute 
Node 2

Compute 
Node 3

IMEX

CXL
Switch



Conclusion

▪ Improved memory utilization for AI and HPC systems through the CXL Memory Pool as 
an MPI communication buffer

▪ Enhanced collective communication performance with iMEX’s MPI Accelerator

▪ Reduced communication cost leading to better AI and HPC application performance
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