
1

Enhancing MPI Collective Communication Performance Using
CXL Shared Memory and an Intelligent CXL Switch

ETRI
Supercomputing System Research Section

August 20, 2025

Hooyoung Ahn

Contents

▪ Background

▪ Motivation

▪ Problem Definition

▪ Project Goals

▪ Roles of ETRI and OSU

▪ Our Approach

▪ Road Map

▪ Conclusion

2

Background

▪ Large-scale data-intensive applications in HPC and AI need distributed processing
across multiple computing nodes
• At this time, complex and frequent communication occurs among computing nodes

• Providing enough memory for these applications is essential for performance improvement

▪ For example, LLM applications perform distributed training due to the large model and
data sizes [1]
• AllGather and ReduceScatter is used as the main collective communications

• As the data and model size increases, the collective communication message size also increases [2]

• However, collective communication suffers from increased latency when handling large messages [3]

3

Message sizes of Allgather in
PyTorch FSDP Training on 16 GPUs [3]

Message Size Distribution for various networks [2]

A snapshot of ZeRO-Infinity training [1]

Motivation

▪ In a Traditional rack
• Computing nodes consists of CPUs, main memory, PCIe, Network

Interface Cards (NICs), and Host Channel Adapters (HCAs)

• They are connected to a network switch via Ethernet or InfiniBand (IB)

▪ In a CXL 3.1 enabled rack
• CPUs that support CXL are directly connected to a CXL switch

• Each node is equipped with significantly less main memory compared to
nodes in a traditional rack

• The limited memory capacity can be supplemented by the CXL shared
memory pool device, effectively addressing the problem of memory
overprovisioning

4

Hardware Configuration of Traditional and CXL Racks

Motivation

▪ In a traditional rack
• When 𝑃0 communicates with 𝑃1 using Ethernet, the

communication must traverse the user, kernel, and
hardware layers, including the application layer,
TCP/IP layer, and NIC, taking approximately 2-4 μs

• When using IB for communication, it involves the
application layer and HCA, taking around 1μs

▪ In a CXL 3.1 enabled rack
• Inter-node communication is enabled through read

and write operations on the CXL shared memory
pool device, which maintains cache coherence

• In this method, communication between 𝑃0 and 𝑃1
takes approximately 300-400 ns

5

Comparison of Inter-Node Communication Latency

Problem Definition

▪ We observed that as the message size increases, the communication latency of traditional
allgather also increases

▪ Specifically, the allgather latency increased significantly for large messages

6
Experimental Results on ETRI’s QEMU-based 4 Computing Nodes

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

2 4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K

La
te

n
cy

 (
μ

s)

Message Size (Bytes)

OMB Allgather Latency (N: 4, PPN: 8 M: 2-16K bytes)

5000

5005000

10005000

15005000

20005000

25005000

30005000

35005000

32K 64K 128K 256K 512K 1M 2M 4M 8M 16M 32M

La
te

n
cy

 (
μ

s)

Message Size (Bytes)

OMB Allgather Latency (N: 4, PPN: 8 M: 32K-32M bytes)

Project Goals

▪ The goal of this study is to enhance the MPI Inter-Node collective communication
performance in a multi-node environment connected by CXL

▪ Two Specific Goals

• Goal 1. Utilizing the CXL shared memory pool for collective communication

→ 1st phase: Sept. 2023 - Aug. 2024

• Goal 2. Utilizing the intelligent CXL switch for collective communication

→ 2nd phase: Sept. 2024 - Aug. 2025

7

→ To achieve above goals, we proposed iMEX (intelligent Memory EXpander)

Project Goals

8

• # of Communication :𝒏𝟐

• Communication Latency : 2-4 𝝁𝒔 (100 GE)
Communication

• # of Communication : 𝒏
• Communication Latency : 300-400 𝒏𝒔

(CXL Switched DDR)

• MPI Computation on CPU
• # of Computation :𝒏

Computation
• MPI Computation on Dedicated Accelerator
• # of Computation : 𝟏

• Low Memory Utilization • High

Memory Pool

Main memory (512GB) N Computing Node

MPCXL memory pool (512GB) 𝑛 : # of Processes

: Data Movement

(AS-IS) Conventional Collective Communication

Data-Intensive Applications of AI and HPC fields

(TO-BE) Proposed Collective Communication

All-Reduce

Total
3TB

Intelligent CXL Switch (iMEX)

MP

N1

N2

N0

N3

MP

N1

N2

N0

N3

time

Network Switch

MPI
Compute

N1

N2

N0

N3

N1

N2

N0

N3

Total
4TB

MPI
Compute

MPI
Compute

MPI
Compute

time
Prob. 1

Prob. 2

Prob. 3
CXL Memory Pool

Manager

Appro. 1

Appro.3

MPI Computation
Accelerator

Appro. 2

※ Appro.3. MVAPICH2 optimized for IMEX▪ Key Concept of iMEX

Roles of ETRI and OSU

9

Research
Area

Focus Research Item

OSU Goal 1
Beyond Rack-

Scale CXL
Memory Pool

1
Improving collective communication performance by utilizing the beyond rack scale CXL
memory pool device

2
Identify and develop promising demonstration applications to showcase the CXL-Based
collective communication proposed in OSU’s research item 1

ETRI

Goal 1
Single Rack-

Scale CXL
Memory Pool

1 Proposed Approach 1. CXL SHM-Based AllGather

Goal 2
Intelligent CXL

Switch
2

Proposed Approach 2. iMEX-Based Collective Communication
(Intelligent CXL Switch-Based Collective Communication)

Proposed Approach for Goal 1

▪CXL SHM-Based AllGather
− Design and implement AllGather utilizing the CXL shared memory pool as the collective communication buffer

− Measure Allgather latency with OMB for performance validation

10 10

Conventional. Network-Based AllGather Proposed. CXL SHM-Based AllGather

time

0

0

1

1

2

2

A B

3

3

C D

A B C D A B C D A B C D A B C D

0

0

1

1

2

2

A B

3

3

C D

A B C D A B C D A B C D A B C D

CXL
SHMEM

A B C D

Expect performance improvement by
• reducing the number of communications
• achieving performance gains with CXL over ethernet or IB

Implementation for CXL SHM-Based AllGather

▪ We developed five CXL memory APIs that are utilized for the CXL SHM-Based allgather
• MPI ranks running on different computing nodes can utilize the CXL shared memory pool device as the

communication buffer for collective communication

1111

① cxlmemoryInitialize ()
② cxlmalloc (size)
③ cxlwrite (data, size, offset)
④ cxlread (data, size, offset)
⑤ cxlfree ()

CXL Memory APIs

Host OS (Ubuntu 22.04)

129.254.180.235

QEMU

CPUMM

4GB file
/dev/mem0

cxl-node 0 cxl-node 1

CXL Shared Memory Pool Device

CXL T3

MEM

CXL T3

MEM

CPUMM

CXL T3

MEM

CPU MM

cxl-node0 cxl-node1

QEMU Guest OS of Flight Simulator

P0 P1

CXL

API
MEM

Process of the Traditional AllGather

▪ In Phase 1, ranks within each node copy data from the send buffer to shared main memory

▪ In Phase 2, node leaders transfer data to their left-hand neighbors using a ring algorithm over Ethernet

• This process must repeat 𝑁 − 1 times for all rank

▪ In Phase 3, the node leader copies data received from other nodes into the shared main memory.
Then, each non-zero rank copies this data into its own receive buffer

12

Traditional Allgather

Process of the CXL SHM-Based AllGather

▪ Phases 1 and 3 are identical to those in traditional AllGather, while the key difference is in the
inter-node communication method of Phase 2

▪ In Phase 2

• Each node leader writes its send buffer data to the CXL shared memory in parallel

• After all nodes’ data is gathered in the CXL shared memory, each node leader reads the data from the CXL shared memory,
excluding its own send buffer

13

Proposed CXL SHM-based Allgather

Comparison of the Traditional and CXL SHM-Based AllGather

▪ In traditional Allgather

• After Phase 1’s node-level aggregation, 𝑁 − 1 inter-node
communication via Ethernet occur, followed by intra-node copy-in
and copy-out

▪ In the proposed AllGather

• Phases 1 and 3 are conducted as in traditional methods, but Phase 2
involves only a single inter-node transfer via the CXL interconnect

• The frequency of this transfer is limited solely by the CXL bandwidth,
independent of the number of nodes, achieving significantly lower
latency compared to Ethernet-based communication

→ In summary, the proposed AllGather reduces both the number of
inter-node communications and the latency, as highlighted by the
'benefit' shown in red.

14

Comparison of Communication Events within a Node in
Traditional and Proposed Allgather

Implementation of the CXL SHM-Based AllGather

15

▪ We implemented the CXL SHM-based allgather and cxl_memory_manager in the MVAPICH2 2.3.7

▪ So, the CXL SHM-based allgather utilizes the cxlwrite and cxlread functions for inter-node communication

1515

2. MPI
Initialize

3. Channel
Initialize
(TCP/IP)

4. Perform Collective Communication

1. AllGather
Execution

5. MPI
Finalize

Intra-Node IPC : Local Mem Copy

src/mpi/coll/cxl_memory_manager.c

src/mpi/coll/cxl_memory_manager.c

★
CXL SHM-based Allgather

cxlWrite

cxlRead
Inter-Node IPC : CXL Shared Memory Pool W/R

Intra-Node IPC : TCP-IP Send/ Recv

Experimental Setup for CXL SHM-Based AllGather

▪ Software emulator
• Flight Simulator [5], which emulates the Multi-Node CXL 3.1 Shared Memory Pool Device in QEMU

▪ Experimental Environment
• Host Machine

✓ CPU : AMD EPYC 9754 128-Core Processor

✓ Main memory : 792 GB

• Guest Machine

✓ QEMU cxl-2024-03-05 branch [6]

✓ OS : fedora 38 (kernel version : vmlinuz-6.3.7-200.fc38.x86_64)

▪ Benchmark Suite
• OSU Micro Benchmarks [7]

16

Experimental Results for CXL SHM-Based AllGather

▪ The experimental items include the performance with
• an increasing number of nodes, increasing number of processes per node (PPN), and increasing message size

▪ The proposed allgather significantly reduces communication latency compared to
traditional allgather by up to 42.14x, with a minimum improvement of 2.91x

17

Performance Improvement of SHM-based Allgather over
Traditional Allgather Across PPN Configurations (1 to 6 ppn)

N : Number of Nodes M : Message Size L : Processes Per Node (PPN)

Performance Improvement of SHM-based Allgather Compared to
Traditional Allgather Across the Number of Nodes (4 to 16)

42.14x

4.8 sec

0.11 sec

Published in
IEEE BIgData’24

Proposed Approach for Goal 2
▪ iMEX-Based Collective Communication

− Design and implement ReduceScatter and AllReduce utilizing iMEX for MPI communication and computation

− Measure the latency of ReduceScatter and AllReduce using OMB for performance validation

※ r : CPU reduction operation

※ sr : CXL switch reduction operation

time

0

0

1

1

2

2

3

3

Conventional. Network-Based Collective Communication

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

r (, , ,)
= 4

1 1 1 1 r (, , ,)
= 8

2 2 2 2 r (, , ,)
= 12

3 3 3 3 r (, , ,)
= 16

4 4 4 4

0 1 2 3

Proposed. iMEX-Based Collective Communication

0 1 2 3

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

CXL
SHMEM sr (, , ,)1 1 1 1 sr (, , ,)2 2 2 2 sr (, , ,)3 3 3 3 sr (, , ,)4 4 4 4

4 8 12 16

Expect performance improvement by reducing
• the number of communications
• the CPU workload by offloading MPI computation to the switch’s accelerator

※ sr: intelligent CXL switch’s reduction operation

(e.g., ReduceScatter, sum)

(e.g., ReduceScatter, sum)

Implementation for iMEX-Based Collective Communication

19

▪ We design and implement the iMEX CXL Switch, which consists of an MPI accelerator

▪ We define the Offloading and Result Packet Structures of the iMEX CXL switch

▪ We extend MVAPICH2 2.3.7 to leverage the iMEX CXL switch

CXL Switch
iMEX CXL Switch

with CoCoA
Fabric

Manager

Host
Node

Host
Node

Host
Node

Host
Node

MLD

Logical Dev0

Logical Dev1

Logical Dev2

GFAM Nodex’

Nodey’

Nodez’

DRAM

Nodex

Nodey

Nodez

NVM

CXL Host Layer

CXL Switch Layer

CXL Device Layer

SLDs

MLD: Multi Logical Device
SLD: Single Logical Device
GFAM: Global Fabric Attached Memory

ACC

↓number of communications
↓CPU computation workload on each node

Offloading Packet Structure

Result Packet Structure

iMEX-Based Collective Communication Architecture

Gathering data into the accelerator

Collective operation on the accelerator (e.g., SUM/MIN/MAX)

Broadcasting collective operation result

Issuing offloading command

ACC MPI communication and computation accelerator

Experiments for iMEX-Based Collective Communication

▪ Experimental Setup
• Software emulator

✓ OpenCIS (https://www.opencis.io/), which is an open-source SW simulator that models various CXL components in the
qemu environment

• Benchmark Suite

✓ OSU Micro Benchmarks [7]

▪ Experimental Results
• We plan to submit a paper, including the experimental results, to IPDPS 2026

• We will compare two baselines and our proposed approach:

✓ Baseline 1 is InfiniBand-based, Baseline 2 is CXL 3.1-based, and the proposed system is iMEX-based.

20

https://www.opencis.io/

Road Map

21

▪ We aim to improve the performance of data-intensive applications in multi-node systems

Now, we are here

Stage 1. MEX

• Commercial FPGA board-Based MEX

• Up to 32GB expanded memory

• Prototype version of accelerator

• Support a single node

Host
Processor Accelerator

(protype)

Expanded
MemoryPCIe

Compute Node

Commercial FPGA
board-Based MEX

Stage 3

• Improvement the scalability of iMEX

• Multiple iMEX devices will be connected
to a CXL spine Switch

• Support more complex topology

Stage 2. iMEX

• Support multi-node system using CXL

• Accelerate MPI collective operation
using dedicated accelerator

• Use CXL Memory Pool for expanded
memory capacity

Accelerator

Expanded
MemoryCXL

Intelligent
CXL-Switch

based on MEX

Host
Processor

Compute Node 0

Host
Processor

Compute Node 1

iMEX

※ MEX (Memory EXpander) ※ iMEX (intelligent MEX)

CXL

Compute
Node 0

Compute
Node 1

Compute
Node 2

Compute
Node 3

IMEX

CXL
Switch

Conclusion

▪ Improved memory utilization for AI and HPC systems through the CXL Memory Pool as
an MPI communication buffer

▪ Enhanced collective communication performance with iMEX’s MPI Accelerator

▪ Reduced communication cost leading to better AI and HPC application performance

22

References
1. Rajbhandari, Samyam, et al. "Zero-infinity: Breaking the gpu memory wall for extreme scale deep learning." Proceedings of the

International Conference for High Performance Computing, Networking, Storage and Analysis. 2021.

2. KLENK, Benjamin, et al. An in-network architecture for accelerating shared-memory multiprocessor collectives. In: 2020 ACM/IEEE 47th
Annual International Symposium on Computer Architecture (ISCA). IEEE, 2020. p. 996-1009.

3. Zhou, Qinghua, et al. "Accelerating distributed deep learning training with compression assisted allgather and reduce-scatter
communication." 2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS). IEEE, 2023.

4. "Enfabrica Scaling CXL Memory Using High Speed Networking ", https://www.youtube.com/watch?v=YdJWhqeT5DM

5. “MemVerge Flight simulator, ” https://memverge.com/cxl-qemuemulating-cxl-shared-memory-devices-in-qemu/

6. “QEMU-CXL branch,” https://gitlab.com/jic23/qemu

7. “OSU Micro-Benchmarks,” https://mvapich.cse.ohio-state.edu/benchmarks/

8. “OpenCIS,” https://www.opencis.io/

9. Qin, Ruoyu, et al. "Mooncake: Trading more storage for less computation—a {KVCache-centric} architecture for serving {LLM} chatbot."
23rd USENIX Conference on File and Storage Technologies (FAST 25). 2025.

10. Lee, H., Kim, H., Park, J., & Son, J. (2025). Disk-Based Shared KV Cache Management for Fast Inference in Multi-Instance LLM RAG Systems. Proceedings of the IEEE
International Conference on Cloud Computing (CLOUD 2025)

11. Chen, S., Wu, Y., Wang, Z., Lin, M., Chen, Z., & Tang, J. (2025). RetroInfer: A Vector-Storage Approach for Scalable Long-Context LLM Inference. arXiv preprint
arXiv:2505.02922.

12. Zhang, H., Xu, W., Liu, J., Wu, L., Sun, L., Wang, Z., … & Liu, X. (2025). AlayaDB: The Data Foundation for Efficient and Effective Long-Context LLM Inference. arXiv preprint
arXiv:2504.10326.

13. Kwon, Woosuk, et al. "Efficient memory management for large language model serving with pagedattention." Proceedings of the 29th
symposium on operating systems principles. 2023.

14. “P2P NCCL Connector,” https://docs.vllm.ai/en/latest/design/p2p_nccl_connector.html#overall-process

23

https://www.youtube.com/watch?v=YdJWhqeT5DM
https://memverge.com/cxl-qemuemulating-cxl-shared-memory-devices-in-qemu/
https://gitlab.com/jic23/qemu
https://mvapich.cse.ohio-state.edu/benchmarks/
https://www.opencis.io/

Thank You!

24

Contacts : ahnhy@etri.re.kr

mailto:ahnhy@etri.re.kr

	기본 구역
	슬라이드 1
	슬라이드 2: Contents
	슬라이드 3: Background
	슬라이드 4: Motivation
	슬라이드 5: Motivation
	슬라이드 6: Problem Definition
	슬라이드 7: Project Goals
	슬라이드 8: Project Goals
	슬라이드 9: Roles of ETRI and OSU
	슬라이드 10: Proposed Approach for Goal 1
	슬라이드 11: Implementation for CXL SHM-Based AllGather
	슬라이드 12: Process of the Traditional AllGather
	슬라이드 13: Process of the CXL SHM-Based AllGather
	슬라이드 14: Comparison of the Traditional and CXL SHM-Based AllGather
	슬라이드 15: Implementation of the CXL SHM-Based AllGather
	슬라이드 16: Experimental Setup for CXL SHM-Based AllGather
	슬라이드 17: Experimental Results for CXL SHM-Based AllGather
	슬라이드 18: Proposed Approach for Goal 2
	슬라이드 19: Implementation for iMEX-Based Collective Communication
	슬라이드 20: Experiments for iMEX-Based Collective Communication
	슬라이드 21: Road Map
	슬라이드 22: Conclusion
	슬라이드 23: References
	슬라이드 24

