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Background

" Large-scale data-intensive applications in HPC and Al need distributed processing
across multiple computing nodes
* At this time, complex and frequent communication occurs among computing nodes

* Providing enough memory for these applications is essential for performance improvement

" For example, LLM applications perform distributed training due to the large model and
data sizes [1]
* AllGather and ReduceScatter is used as the main collective communications
* Asthe data and model size increases, the collective communication message size also increases [2]

* However, collective communication suffers from increased latency when handling large messages [3]
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Motivation

" |n a Traditional rack

* Computing nodes consists of CPUs, main memory, PCle, Network — Ethernet/ IB — CXL
Interface Cards (NICs), and Host Channel Adapters (HCAS)

1YY ~fLCPU [MM

* They are connected to a network switch via Ethernet or InfiniBand (IB) ——
IPCleH NIC/HCA{— IPCleH NIC/HCA|

" In a CXL 3.1 enabled rack node 0 CXL node 0

* CPUs that support CXL are directly connected to a CXL switch :
p ; i

* Each node is equipped with significantly less main memory compared to
IPCleHNIC/HCA|

nodes in a traditional rack [cPu| mm |
|PCITI'~IIQ:HCA|- CXL node n-1
. : - -

* The limited memory capaC|t.y can be supplemented by the CXL shared o RITETT
memory pool device, effectively addressing the problem of memory Ml — MEB";’%EP“D'
overprovisioning . ‘

Network Switch = —  CXL Switch
Traditional Rack CX¥L 3.1 enabled Rack

Hardware Configuration of Traditional and CXL Racks




Motivation

" |n a traditional rack

* When PO communicates with P1 using Ethernet, the
communication must traverse the user, kernel, and
hardware layers, including the application layer,
TCP/IP layer, and NIC, taking approximately 2-4 ps

* When using IB for communication, it involves the
application layer and HCA, taking around 1us

= |n a CXL 3.1 enabled rack

* Inter-node communication is enabled through read
and write operations on the CXL shared memory
pool device, which maintains cache coherence

* In this method, communication between PO and P1
takes approximately 300-400 ns

___________________

hardware
HCA HCA
S{Hcale——fHcale- T HeA|

Ethernet (2-4 us)

node 0 node 1

CXL (300-400 ns)

Write/ Read

L

CXL Shared Memory Pool Device

(a) Traditional Rack

(b) CXL 3.1 enabled Rack

Comparison of Inter-Node Communication Latency




Problem Definition

= We observed that as the message size increases, the communication latency of traditional
allgather also increases

= Specifically, the allgather latency increased significantly for large messages

OMB Allgather Latency (N: 4, PPN: 8 M: 2-16K bytes) OMB Allgather Latency (N: 4, PPN: 8 M: 32K-32M bytes)
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Project Goals

* The goal of this study is to enhance the MPI Inter-Node collective communication
performance in a multi-node environment connected by CXL

= Two Specific Goals

* Goal 1. Utilizing the CXL shared memory pool for collective communication
- 15t phase: Sept. 2023 - Aug. 2024

* Goal 2. Utilizing the intelligent CXL switch for collective communication
- 2" phase: Sept. 2024 - Aug. 2025

— To achieve above goals, we proposed iMEX (intelligent Memory EXpander)
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Project Goals

D Main memory (512GB) @ Computing Node = : Data Movement

- CXL memory pool (512GB) @ Memory Pool  n : # of Processes

= Key Concept of iIMEX
|

Data-Intensive Applications of Al and HPC fields

>X Appro.3. MVAPICH2 optimized for IMEX

v All-Reduce v
(AS-IS) Conventional Collective Communication (TO-BE) Proposed Collective Communication
Network Switch Prob. 2 Intelligent CXL Switch (iMEX)
i
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Roles of ETRI and OSU

R h
esearc Focus Research Item
Area
Improving collective communication performance by utilizing the beyond rack scale CXL
memory pool device
Beyond Rack-
OoSsuU Goal 1 Scale CXL
Memory Pool _
Identify and develop promising demonstration applications to showcase the CXL-Based
collective communication proposed in OSU’s research item 1
Single Rack-
Goal 1 Scale CXL Proposed Approach 1. CXL SHM-Based AllGather
ETRI Memory Pool
Goal 2 Intelligent CXL Proposed Approach 2. iMEX-Based Collective Communication
Switch (Intelligent CXL Switch-Based Collective Communication)
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Proposed Approach for Goal 1

= CXL SHM-Based AllGather

- Design and implement AllGather utilizing the CXL shared memory pool as the collective communication buffer

— Measure Allgather latency with OMB for performance validation

Conventional. Network-Based AllGather

Proposed. CXL SHM-Based AllGather
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Expect performance improvement by
 reducing the number of communications
« achieving performance gains with CXL over ethernet or IB




Implementation for CXL SHM-Based AliGather

= We developed five CXL memory APIs that are utilized for the CXL SHM-Based allgather

* MPI ranks running on different computing nodes can utilize the CXL shared memory pool device as the

communication buffer for collective communication

CXL Shared Memory Pool Device

cxl-node 0

cxl-node 1

CXL Memory APIs

QEMU

[ 129.254.180.235

/dev/mem0O

@ cxlmemorylnitialize ()
@ cxIlmalloc (size)

(3 cxlwrite (data, size, offset)
@ cxlread (data, size, offset)

k® cxlfree ()

Host OS (Ubuntu 22.04)
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QEMU Guest OS of Flight Simulator




Process of the Traditional AliGather

= |[n Phase 1, ranks within each node copy data from the send buffer to shared main memory

" |[n Phase 2, node leaders transfer data to their left-hand neighbors using a ring algorithm over Ethernet

* This process must repeat N - 1 times for all rank

= |[n Phase 3, the node leader copies data received from other nodes into the shared main memory.

Then, each non-zero rank copies this data into its own receive buffer

@i’“ MPI rank Dshared main memory DCXL shared memory Dsend buf. Drecv buf. = Intra-node memcpy —* ethernet Inter-node comm. —* CXL Inter-node memcpy
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Process of the CXL SHM-Based AllGather

= Phases 1 and 3 are identical to those in traditional AllGather, while the key difference is in the
inter-node communication method of Phase 2

= |n Phase 2

* Each node leader writes its send buffer data to the CXL shared memory in parallel

» After all nodes’ data is gathered in the CXL shared memory, each node leader reads the data from the CXL shared memory,
excluding its own send buffer
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Comparison of the Traditional and CXL SHM-Based AliGather

" |n traditional Allgather

* After Phase 1’s node-level aggregation, N - 1 inter-node
communication via Ethernet occur, followed by intra-node copy-in
and copy-out

" |n the proposed AllGather

* Phases 1 and 3 are conducted as in traditional methods, but Phase 2
involves only a single inter-node transfer via the CXL interconnect

* The frequency of this transfer is limited solely by the CXL bandwidth,
independent of the number of nodes, achieving significantly lower
latency compared to Ethernet-based communication

- In summary, the proposed AllGather reduces both the number of
inter-node communications and the latency, as highlighted by the
'benefit' shown in red.

ETRI
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|:| Phase 1. Node-level data aggregation (Intrac,_)
|:| Phase 2. (Traditional) Inter-node comm. via Ethernet (Inter,_sqpi)
|:| Phase 2. (Proposed) Inter-node comm. via CXL (Intery)
|:| Phase 3-1. Intra-node data copy-in (Intrac_)
|:| Phase 3-2. Intra-node data copy-out (Intrac_ )
Node Node

leader 0 i1 (2 ! 3 leader 0 1 {2 13
| b | F

Int?i‘g_:,,-gtpgé |

> benefit

I"t:?ro—mtpi\i—l

L

time

A node in traditional rack A node in CXL 3;1 enabled rack

Comparison of Communication Events within a Node in
Traditional and Proposed Allgather
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Implementation of the CXL SHM-Based AllGather

= We implemented the CXL SHM-based allgather and cxl_memory_manager in the MVAPICH2 2.3.7

= So, the CXL SHM-based allgather utilizes the cxlwrite and cxlread functions for inter-node communication

User

mipirun -n 3 TestA

MPI Initialization

Channel Initialization : ch3:sock

src/mpifinitfinit.c/
PMPI_Init{)

src/mpifinit/
initthread.c

src/mpid/ch3/channels/sock/src/
ch3_init.c

Collective Communication

‘ src/mpifcoll/allgather.c ‘l‘ fsrc/mpi/coll/helper_fns.h ‘

MPI Finalizatoin

IIGather}

MPIR_Init_thread _

2. MPI

| MPIDI_CH3_Init

[ = e

src/util/fprocmap/local_proc.c ‘ | src/mpifcomm/comm_rank.c ‘

I src/mpifinit/finalize ‘

src/mpi/coll/cxl_memory_manager.c

4. Perform Colle:ctive Communication

3. Channel P2P-based Communication __/ [aI:IGather] ; :
1. A"Gather om0 (0 e e ae MPIR_Allgather_impl ! 5. MPI
Execution Initialize Initialize : Finalize
| ‘MPIR_Allgather_int )
(TCP/IP) : gather_intra : :
E ; helper_fns / [local copy, sendrecy, w;ait] |
1 1
| %Localmpy «—Intra-Node IPC : Local Mem Copy
: Copying 4 bytes from Ux?ﬁc%b%?c?s to 0x594371530b50
] 1 .
cxIWrite d | MPILI Find lacal and external |
& — ':| <«—I|nter-Node IPC : CXL Shared Memory Pool W/R
cxinea J | | PMPI_Cemm_rak
XL SHM-based Allgather X
] MPIC_Sendrecv ! I
i <—Intra-Node IPC : TCP-IP Send/ Recv
1 |
! MPIC_Wait : i
| — '
E : | PMPI_Final
) | <~
_ Done 1 1 |
i :
L

User

T,

src/mpifinitfinit.c/
PMPI_Init()

src/mpifinit/
initthread.c

src/mpid/ch3/channels/sock/src/
ch3_init.c

‘ src/mpifcoll/allgather.c ‘ ‘ fsrc/mpi/coll/helper_fns.h

src/utilfprocmap/local_proc.c ‘ | src/mpifcomm/comm_rank.c ‘

‘ src/mpifinit/finalize ‘

src/mpi/coll/cxl_memory_manager.c




Experimental Setup for CXL SHM-Based AliGather

= Software emulator
* Flight Simulator [5], which emulates the Multi-Node CXL 3.1 Shared Memory Pool Device in QEMU

" Experimental Environment

* Host Machine
v' CPU : AMD EPYC 9754 128-Core Processor
v' Main memory : 792 GB
* Guest Machine
v QEMU cxI-2024-03-05 branch [6]
v' 0OS : fedora 38 (kernel version : vmlinuz-6.3.7-200.fc38.x86_64)

= Benchmark Suite
* OSU Micro Benchmarks [7]

ETIiIRI



Experimental Results for CXL SHM-Based AllGather PREREm

" The experimental items include the performance with

* anincreasing number of nodes, increasing number of processes per node (PPN), and increasing message size

" The proposed allgather significantly reduces communication latency compared to
traditional allgather by up to 42.14x, with a minimum improvement of 2.91x

Performance Improvement of SHM-based Allgather over 108 OMB Aligather Latency for PPN: 6, M: Eﬂ-ﬁ—4 -
. . . 2 Traditiona| S .0 SeC
Traditional Allgather Across PPN Configurations (1 to 6 ppn) Proposed
No. N M Performance Improvement a4x105

L=1] L=2 | L=4 | L=6

] 8 | SI2KB | 2.91x | 6.84x | 13.25x | 20.15x -
2 TMB | 357x | 668x | 12.57x | 19.2x = 3n10° |
3 10 | 512KB | 4.23x | 7.66x | 16.06x | 24.12x : 42.14x
4 10 | 32MB 4.0x 820x | 16.92x | 22.93x 5 2x108 |
5 12 | 512KB | 5.05x | 9.01x | 19.15x | 28.71x
6 12 | 32MB | 5.34x | 1028x | 20.89x | 30.29x 1108 _
7 16 512KB 6.18x | 12.55x | 25.59x | 38.22x
1-';_; 1-":'.

N : Number of Nodes M : Message Size L : Processes Per Node (PPN)

Mumber of N-:u:EE.

Performance Improvement of SHM-based Allgather Compared to

Traditional Allgather Across the Number of Nodes (4 to 16)
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Proposed Approach for Goal 2

X r: CPU reduction operation

X sr: CXL switch reduction operation

= iMEX-Based Collective Communication

— Design and implement ReduceScatter and AllReduce utilizing iMEX for MPI communication and computation

— Measure the latency of ReduceScatter and AllReduce using OMB for performance validation

Conventional. Network-Based Collective Communication

Proposed. iIMEX-Based Collective Communication

[1]2]3]4]

[1]2]3]4]

r(llll) r(llll) r ([3]/31[3]3) r([4][4][4][4]

ETIiIRI

=12 =16

(e.g., ReduceScatter, sum)

1]2]3]4]

[SHCQEM sr ([ [l [2][z)sr ([2I[2)[2)2Dsr (31[31[3][BDsr @E@)J

(e.g., ReduceScatter, sum)

X sr: intelligent CXL switch’s reduction operation

Expect performance improvement by reducing
* the number of communications
« the CPU workload by offloading MPI computation to the switch’s accelerator




Implementation for IMEX-Based Collective Communication

= We design and implement the iMEX CXL Switch, which consists of an MPI accelerator

= \We define the Offloading and Result Packet Structures of the iIMEX CXL switch
= We extend MVAPICH2 2.3.7 to leverage the iMEX CXL switch

CXL Host Layer

Host Host Host
Node Node Node

iIMEX CXL Switch

with ACC

MLD

Host
Node

\ CXL M2S_REQ Header

: System CXL.mem Mem com_ packet
1 \l,number of communications Header Header |~ Opcode " | opcode index
: H MEM_INV = 0b0000 S’lelml = g:gg? 0-31

. ¥ CPU computation workload on each node MEMRD = o0omt S ot

1 MEM_COM= 0b1110

1

GFAM

Logical Dev0 SLDs ':I
Logical Devl

MLD: Multi Logical Device
_ SLD: Single Logical Device
GFAM: Global Fabric Attached Memory

______________________________________________________________

_______________________

Fabric
Manager

______________________________

______________________________

Node, Node,,
Node, Node,
Node, | | Node, |

iMEX-Based Collective Communication Architecture

T

Offloading Packet Structure

CXL S2M_DRS Header

System | CXL.mem com_ packet
Header Header |~ Obcde " | opcode index Dt
MEM_DATA = 0b00O SUM = 0b000
. MIN = 0b0O01
MA b

Result Packet Structure

Issuing offloading command
——==p Gathering data into the accelerator
C_} Collective operation on the accelerator (e.g., SUM/MIN/MAX)
- Broadcasting collective operation result

XYool MPI communication and computation accelerator 19




Experiments for IMEX-Based Collective Communication

= Experimental Setup

e Software emulator

v' OpenClIS (https://www.opencis.io/), which is an open-source SW simulator that models various CXL components in the
gemu environment

* Benchmark Suite
v" OSU Micro Benchmarks [7]

= Experimental Results
* We plan to submit a paper, including the experimental results, to IPDPS 2026

*  We will compare two baselines and our proposed approach:
v’ Baseline 1 is InfiniBand-based, Baseline 2 is CXL 3.1-based, and the proposed system is iMEX-based.

ETIiIRI
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Road Map

= We aim to improve the performance of data-intensive applications in multi-node systems

-

Host
Processor

PCle

Commercial FPGA board-Based MEX
Up to 32GB expanded memory
Prototype version of accelerator
Support a single node

Expanded
Memory

Compute Node

Accelerator
(protype)

Commercial FPGA
board-Based MEX

\X MEX (Memory EXpander)

~

/

ETIiIRI

Now, we are here

-

memory capacity

e Support multi-node system using CXL

e Accelerate MPI collective operation
using dedicated accelerator

e Use CXL Memory Pool for expanded

\X iIMEX (intelligent MEX)

Host _
Processor IMEX
Compute Node 0 Expanded
CXL Memory
Host Accelerator
Processor ‘
Intelligent
Compute Node 1 CXL-Switch

based on MEX

~

/

-

e Improvement the scalability of iIMEX

e Multiple iIMEX devices will be connected
to a CXL spine Switch

e Support more complex topology

~

CXL
Switch
] 11
L1 11
Compute Compute B
Node O Node 1 |
ou —{me—| -
Compute Compute ~ |
Node 2 Node 3 —
21



Conclusion

" Improved memory utilization for Al and HPC systems through the CXL Memory Pool as
an MPI communication buffer

= Enhanced collective communication performance with iMEX’s MPI Accelerator

" Reduced communication cost leading to better Al and HPC application performance
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