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Overview of the MVAPICH Project
• High Performance open-source MPI Library 

• Support for multiple interconnects

– InfiniBand, Omni-Path, Ethernet/iWARP, RDMA over Converged Ethernet (RoCE),  AWS EFA, 

OPX, Broadcom RoCE, Intel Ethernet, Rockport Networks, Slingshot 10/11

• Support for multiple platforms

– X86-Xeon, AMD EPYC, OpenPOWER, ARM, Xeon-Phi, GPUs (NVIDIA, Intel, and AMD)

• Started in 2001, first open-source version demonstrated at SC ‘02

• Supports the latest MPI-4.1 standard

• http://mvapich.cse.ohio-state.edu 

• Additional optimized versions for different systems/environments:

– MVAPICH-Plus (Unification of MVAPICH2-X and MVAPICH2-GDR), since 2023

– MVAPICH2-X (Advanced MPI + PGAS), since 2011

– MVAPICH2-GDR with support for NVIDIA (since 2014) and AMD (since 2020) GPUs

– MVAPICH2-MIC with support for Intel Xeon-Phi, since 2014

– MVAPICH2-Virt with virtualization support, since 2015

– MVAPICH2-EA with support for Energy-Awareness, since 2015

– MVAPICH2-Azure for Azure HPC IB instances, since 2019

– MVAPICH2-X-AWS for AWS HPC+EFA instances, since 2019

• Tools:

– OSU MPI Micro-Benchmarks (OMB), since 2003

– OSU InfiniBand Network Analysis and Monitoring (INAM), since 2015

• Used by more than 3,450 organizations in 92 countries 

(listed under the Users Tab of the MVAPICH page)

• More than 1.93 Million downloads from the OSU site 

directly

• Empowering many TOP500 clusters (Jun’25 ranking)

– 21st, 10,649,600-core (Sunway TaihuLight) at NSC, Wuxi, China

– 67th, 448, 448 cores (Frontera) at TACC

– 88th, 288,288 cores (Lassen) at LLNL

– 109th, 570,020 cores (Nurion) in South Korea and many others

• Available with software stacks of many vendors and Linux 

Distros (RedHat, SuSE, OpenHPC, and Spack)

• Partner in the 67th ranked TACC Frontera system

• Empowering Top500 systems for more than 20+ years

http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
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Architecture of MVAPICH Software Family for HPC and DL/ML
High Performance Parallel Programming Models

Message Passing Interface
(MPI)

PGAS
(UPC, OpenSHMEM, CAF, UPC++)

Hybrid --- MPI + X
(MPI + PGAS + OpenMP/Cilk)

High Performance and Scalable Communication Runtime
Diverse APIs and Mechanisms

Point-to-

point 

Primitives

Collectives 

Algorithms

Energy-

Awareness

Remote 

Memory 

Access

I/O and

File Systems

Fault

Tolerance
Virtualization

Active 

Messages
Job Startup

Introspection 

& Analysis

Support for Modern Networking Technology
(InfiniBand, RoCE, Omni-Path, EFA, Slingshot, etc.)

Support for Modern Multi-/Many-core Architectures
(Intel-Xeon, AMD EPYC, ARM, NVIDIA/AMD/Intel GPU)

Transport Protocols Modern Features

RC SRD UD DC UMR ODP
SR-

IOV

Multi 

Rail

Transport Mechanisms

POSIX Shared 

Memory
CMA

Modern Features

CXL NVLink

* Upcoming

XPMEM

CH4 Netmod CH4 Shmmod

ch4:ucx ch4:ofi posix ipc

UALink



MUG’25 4Network Based Computing Laboratory

• https://mvapich-docs.readthedocs.io/en/latest/ 

• Latest RPM install instructions, CVAR names/aliases/etc.

• Runtime instructions, setting up environment variables, OMB installation and 

execution, FAQ

Updated User Guide and Resources

https://mvapich-docs.readthedocs.io/en/latest/
https://mvapich-docs.readthedocs.io/en/latest/
https://mvapich-docs.readthedocs.io/en/latest/
https://mvapich-docs.readthedocs.io/en/latest/
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• CPU Process Mapping with MVAPICH

– Summary of parallel launchers

• CH4 devices and their impact

– UCX, OFI, enhanced libfabrics from OSU

• Dynamic Tuning

– CPU, GPU dynamic tuning

• GPU-Awareness

– NVIDA, AMD, Intel GPU support

• Compression (On-The-Fly for Point-to-Point and Collectives)

– NVIDIA Support

– AMD Support

• Future Plans

Contents
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Common Parallel Launchers
• Hydra – included with MVAPICH/MVAPICH-Plus

– mpiexec/mpirun binaries

– Compatible with all commonly used resource managers

• SLURM, PBS, Flux, etc.

• Uses PMI1 interface standard

• Srun – included with the Slurm resource manager

– Mutually exclusive with hydra and other launchers

• Uses slurm specific PMI2 

• --with-pm=none --with-pmi=slurm
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• Determines Process-to-Core mapping At Runtime via resource managers and parallel job 

launchers

• Supported by both Hydra and srun

– Hydra: “mpiexec/mpirun … -bind-to <x> -map-by <y>” (and use of hwloc)

– Srun:  “srun --cpu-bind=<x>” 

• See slurm documentation for more details

• Common cases 

– “Bunch” 

– “Scatter”

– “Spread”

– Custom mappings

• To see process mappings at runtime: 

– Hydra: set HYDRA_TOPO_DEBUG=1

– Srun: set “SLURM_CPU_BIND_VERBOSE=verbose” or "srun --cpu-bind=verbose[,options]"

CPU Process Mapping

http://www.open-mpi.org/projects/hwloc/
https://slurm.schedmd.com/srun.html#OPT_cpu-bind
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• Allocates ranks sequentially on cores 

– Optimal for near-neighbor communication

– Can heavily leverage shared memory, CMA, XPMEM

– Does not provide optimal resource distribution of memory, network devices, GPU, etc

– Useful when fully subscribing nodes

• Launcher commands:

– Hydra: mpiexec -np <num_tasks> … -map-by core -bind-to core

– Srun: srun –n <num_tasks> … --cpu-bind=core --distribution=block:block

Bunch Mapping
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• Performs a round-robin assignment per-socket

– Prioritizes network device and memory access over intra-node transfers

– Can be applied to other map-by resources, ie NUMA or L3 cache

– Not optimal for applications bound by intra-node communication

– Useful for sparse allocations with heavy network use and multiple network adapters

• Launcher commands:

– Hydra: mpiexec -np <num_tasks> … -map-by socket -bind-to core

– Srun: srun –n <num_tasks> … --cpu-bind=core --distribution=cyclic:cyclic

Scatter Mapping
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• Handles MPI+Threads

workloads

– Works with and without

hyperthreading activated for

a compute node

– Best practice: divide total cores by requested ppn and map each process to N cores

• Launcher Commands:

– Hydra: mpiexec --bind-to core --map-by core:<total_cores / ppn>

– Srun: srun –n <num_tasks> … --cpus-per-task=<total_cores / ppn> --ntasks-per-node=<ppn> 

--cpu-bind=core

Spread Mapping Core0
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• Not all standard mappings work best for all applications

• Need fine-tuning/architecture/numa-aware process placement

• Hydra custom mappings:

– Supports binding/mapping to NUMA, socket, core, hwthread, l1/2/3/4/5 cache, pci devices, 

GPUs, IB HCAs, eth devices, hfi, etc. 

• SLURM/srun custom mappings:

– See https://slurm.schedmd.com/mc_support.html for options 

– Additionally supports binding to memory regions with “--mem-bind=…”

Custom Mappings

https://slurm.schedmd.com/mc_support.html
https://slurm.schedmd.com/srun.html#OPT_mem-bind
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• CH4 device

– Replaced CH3 with MPICH 3.4 in 2021

• 2 components to CH4 device

– Netmods (Network)

– Shmmods (Shared Memory)

• MVAPICH Netmodes:

– UCX (Unified Communications X)

• Recommended for IB/RoCE networks

– OFI (Open Fabrics Interfaces/Libfabrics)

• Recommended for all other networks

• Configure with 

– --with-device=ch4:ofi --with-device=ch4:ucx

CH4 Devices – Overview

Courtsey: https://multicore.world/wp-

content/uploads/2024/02/multicoreworld24-brightwell.pdf 

https://multicore.world/wp-content/uploads/2024/02/multicoreworld24-brightwell.pdf
https://multicore.world/wp-content/uploads/2024/02/multicoreworld24-brightwell.pdf
https://multicore.world/wp-content/uploads/2024/02/multicoreworld24-brightwell.pdf
https://multicore.world/wp-content/uploads/2024/02/multicoreworld24-brightwell.pdf
https://multicore.world/wp-content/uploads/2024/02/multicoreworld24-brightwell.pdf
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UCX: Overview

Courtesy: https://www.openucx.org/
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• Configure UCX path with --with-ucx=/path/to/ucx or embedded 

options

• Common UCX environment variables:

– UCX_RNDV_THRESH: transition point for eager/rendezvous message transfer protocols; 

provide a number in bytes

– UCX_MAX_RNDV/EAGER_RAILS: number of network devices used per process for eager and 

rendezvous-based transfers

(maximum supported is 4 (https://openucx.readthedocs.io/en/master/faq.html))

– UCX_TLS: comma-separated list of transports used by UCX (rc, ud, shm, cma, xpmem, etc.)

– UCX_NET_DEVICES: sets the device(s) UCX will use for message transports

– UCX_LOG_LEVEL: logging information in various verbosities (trace, info, debug, error, fatal)

Using the UCX Netmod

https://openucx.readthedocs.io/en/master/faq.html
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OFI Provider

OFI: Overview 

Courtesy: http://www.slideshare.net/seanhefty/ofi-overview?ref=http://ofiwg.github.io/libfabric/

Open Fabrics Interface (OFI)
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• Configure OFI path with --with-libfabric=/path/to/libfabric or 

embedded options

• Common OFI environment variables:

– FI_PROVIDER: forces a specific network provider to be used

• MVAPICH will attempt to choose the highest performing provider that supports your network

• Generally not necessary unless a particular network is required for testing

– MPIR_CVAR_CH4_OFI_CAPABILITY_SETS_DEBUG: set to 1 to view the OFI provider being 

selected at runtime

– MVP_CH4_OFI_ENABLE_HMEM: set to 1 to allow OFI provider to use GPU direct RDMA 

support

– Highly provider dependent

– More details at https://ofiwg.github.io/libfabric/v2.2.0/man/ 

Using the OFI Netmod

https://ofiwg.github.io/libfabric/v2.2.0/man/
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• Provided on all HPE/Cray machines equipped with Slingshot 11 interconnects

– (Frontier, El Capitan, Isambard-AI, Delta-AI, COSMOS, etc.)

• Must be linked when building MVAPICH on HPE/Cray systems

• CXI provider up-streaming in progress

• Linked at compile time

– Use MVAPICH-Plus ums038 module on frontier

– Request system specific installation on other sites

– Link directly to craype libfabric when compiling open source

Cray OFI (Slingshot 11)
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• New in MVAPICH-Plus 4.1

• Enables on-the-fly collective selection tuning

• Combines collective knowledge with real-time, adaptive, system-specific 

analysis

• Runs potential algorithms and collects runtime data to determine best collective 

algorithm at a given time

Dynamic Collective Tuning
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• MVP_ENABLE_DYNAMIC_TUNING – allows dynamic tuning to be activated or 

deactivated at runtime or within an application

• MVP_FORCE_STATIC_TUNING – force MVAPICH to use static tables

• MVP_DYNAMIC_TUNE_THRESHOLD – when to retest algorithms

• MVP_DYNAMIC_TUNE_TEST_COUNT – how many tests to perform with each 

algorithm

• MVP_DYNAMIC_TUNE_LOCAL_EVAL_METRIC – how each process reports its 

"best" result

• MVP_DYNAMIC_TUNE_SELECTION_METRIC – metric used by the dynamic 

tuning to select the overall best algorithm 

Controlling Dynamic Tuning with CVARs



MUG’25 22Network Based Computing Laboratory

• Improves microbenchmark performance on unknown systems

- Match iteration count with MVP_DYNAMIC_TUNE_THRESHOLD for best results

- Set -x 200 -i 1000 for best performance on OMB

• Respond to application specific performance

• Handle real-time network constraints

• Feedback encouraged

Dynamic Tuning Use Cases
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PCIe

GPU

CPU

NIC

Switch

At Sender: 

   cudaMemcpy(s_hostbuf, s_devbuf, . . .);

    MPI_Send(s_hostbuf, size, . . .);

At Receiver:

  MPI_Recv(r_hostbuf, size, . . .);

    cudaMemcpy(r_devbuf, r_hostbuf, . . .);

• Data movement in applications with standard MPI and CUDA interfaces 

High Productivity and Low Performance

MPI + CUDA - Naive
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PCIe

GPU

CPU

NIC

Switch

At Sender: 

for (j = 0; j < pipeline_len; j++) 

     cudaMemcpyAsync(s_hostbuf + j * blk, s_devbuf + j * 

blksz, …);

for (j = 0; j < pipeline_len; j++) {

        while (result != cudaSucess) {

              result = cudaStreamQuery(…);

               if(j > 0) MPI_Test(…);

         } 

         MPI_Isend(s_hostbuf + j * block_sz, blksz . . .);

 }

MPI_Waitall();

<<Similar at receiver>>

• Pipelining at user level with non-blocking MPI and CUDA interfaces

Low Productivity and High Performance

MPI + CUDA - Advanced
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At Sender:

  

At Receiver:

    MPI_Recv(r_devbuf, size, …);

inside

MVAPICH

• Standard MPI interfaces used for unified data movement

• Takes advantage of Unified Virtual Addressing (>= CUDA 4.0) 

• Overlaps data movement from GPU with RDMA transfers 

High Performance and High Productivity

MPI_Send(s_devbuf, size, …);

GPU-Aware (CUDA-Aware) MPI Library: MVAPICH-Plus 
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• Recommended in MVAPICH-Plus

- Basic support only in MVAPICH, uses base MPICH implementation

• Supports NVIDIA, AMD, and Intel GPUs

• Includes optimized designs for pt2pt and collective operations

• Enhanced GPU kernels for certain collectives

• Utilizes GDRCOPY, GPU IPC, and kernel based transfers

GPU Support in MVAPICH
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Tuning GDRCOPY Designs in MVAPICH-Plus

Parameter Significance Default Notes

MVP_ENABLE_GPU_GD
RCOPY

• Enable / Disable GDRCOPY-
based designs

1   
(Enabled)

• Always enable 
• Enables NVIDIA GDRCOPY and 
AMD LargeBAR support 

MVP_GDRCOPY_MAX_
SIZE_H2D

• Maximum message size for 
using GDRCOPY from Host to 
Device

32768 
Bytes

• Tune for your system
• AMD and newer NVIDIA systems 
can use higher values

MVP_GDRCOPY_MAX_
SIZE_D2H

• Maximum message size for 
using GDRCOPY from Device 
to Host

2048 
Bytes

• Tune for your system
• Typically lower than H2D for 
NVIDIA systems
• Set equal to D2H for AMD

• Refer to CVAR section of MVAPICH-Plus user guide for more information

• https://mvapich-docs.readthedocs.io/en/mvapich-plus/cvar.html
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Tuning GPU IPC Designs in MVAPICH-Plus

Parameter Significance Default Notes

MVP_CH4_IPC_GPU_P2
P_THRESHOLD

• Minimum message size to 
use GPU IPC protocol

16K Bytes • Tune for your system 
• Typically at or around the 
GDRCOPY H2D limit

MVP_CH4_IPC_GPU_RE
AD_WRITE_PROTOCOL

• Select the IPC protocol used 
for GPU transfers 
(read/write)

read • Generally keep on read

MVP_ALLREDCE_IPC_M
SG_SIZE_THRESHOLD

• Minimum message size to 
use IPC aware Allreduce

16K Bytes • Tune for your system
• IPC aware collectives have some 
registration overhead

MVP_REDCE_IPC_MSG
_SIZE_THRESHOLD

• Minimum message size to 
use IPC aware Reduce 

16K Bytes • Tune for your system
• IPC aware collectives have some 
registration overhead

• Refer to CVAR section of MVAPICH-Plus user guide for more information

• https://mvapich-docs.readthedocs.io/en/mvapich-plus/cvar.html
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• Supported by MVAPICH-Plus

- Provides enhanced support for MI300A APUs

• Supports buffers allocated on CPU or GPU 

• Enables flexible GPU transfers using both CPU and GPU techniques

Enhancements for APUs
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Tuning Unified APU Designs in MVAPICH-Plus

Parameter Significance Default Notes

MVP_GPU_UNIFIED_DIRECT
_COPY_MAX

• Maximum number of 
bytes for which 
MVAPICH-Plus will use 
direct CPU memcpy 
support

4M • Tune for your system
• Only effective on MI300A unified 
APU builds 
• Higher message sizes will use 
kernel driven methods

• Refer to CVAR section of MVAPICH-Plus user guide for more information

• https://mvapich-docs.readthedocs.io/en/mvapich-plus/cvar.html

https://mvapich-docs.readthedocs.io/en/mvapich-plus/cvar.html
https://mvapich-docs.readthedocs.io/en/mvapich-plus/cvar.html
https://mvapich-docs.readthedocs.io/en/mvapich-plus/cvar.html
https://mvapich-docs.readthedocs.io/en/mvapich-plus/cvar.html
https://mvapich-docs.readthedocs.io/en/mvapich-plus/cvar.html
https://mvapich-docs.readthedocs.io/en/mvapich-plus/cvar.html
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• For HPC and data science applications on modern GPU clusters

– With larger problem sizes, applications exchange orders of magnitude more data on the network 

– Leads to significant increase in communication times for these applications on larger scale (AWP-ODC)

– On modern HPC systems, there is disparity between intra-node and inter-node GPU communication 

bandwidths that prevents efficient scaling of applications on larger GPU systems

– CUDA-Aware MPI libraries saturate the bandwidth of IB network

– Compression can reduce the data size and lower the pressure on network with limited bandwidth 

MVAPICH-Plus: “On-the-fly” Compression – Motivation

(b) Saturated bandwidth at large message size

(a) Disparity between intra-node and inter-node GPU communication on Sierra 

OpenPOWER supercomputer [1]
[1] K. S. Khorassani, C.-H. Chu, H. Subramoni, and D. K. Panda, “Performance Evaluation of MPI Libraries on GPU-enabled OpenPOWER Architectures: Early Experiences”, in 

International Workshop on Open-POWER for HPC (IWOPH 19) at the 2019 ISC High Performance Conference, 2018.
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• ZFP

– Lossy compression

– Requires MVAPICH-Plus enhanced ZFP library

– Bundled with MVAPICH-Plus on request

• Upcoming support for lossless compression algorithms

• Support for pt2pt and some collectives

– Alltoall, Allgather, Allreduce, Reduce_scatter

MVAPICH-Plus Compression Support
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Tuning Pt2pt Compression Designs in MVAPICH-Plus

Parameter Significance Default Notes

MVP_ENABLE_PT2PT_
GPU_COMPRESSION

• Enable/disable 
compression for pt2pt GPU 
transfers

0 
(disabled)

• Enable only when application can 
tolerate compression related data 
loss

MVP_PT2PT_GPU_CO
MPRESSION_THRESHO
LD

• Minimum message size to 
use pt2pt compression

1M Bytes • Tune for your system/application

• Refer to CVAR section of MVAPICH-Plus user guide for more information

• https://mvapich-docs.readthedocs.io/en/mvapich-plus/cvar.html
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Tuning Collective Compression Designs in MVAPICH-Plus

Parameter Significance Default Notes

MVP_ENABLE_COMPRE
SSION

• Enable/disable 
compression enabled 
collectives

0 
(disabled)

• Enable only when application can 
tolerate compression related data 
loss

MVP_<coll>_GPU_COM
PRESSION_THRESHOLD

• Minimum message size for 
using compression 
enabled collective 

4M Bytes • Supports alltoall, 
allgather, allreduce, 
reduce_scatter for coll
• Only effective when compression 
enabled algorithm is in use

MVP_<coll>_INTRA_AL
GORITHM

• Set to 
osu_gpu_compression to 
utlize compression 
designs

auto/dyn
amic

• Compression designs will only be 
enabled when the 
osu_gpu_compression algorithm is 
forced 

• Refer to CVAR section of MVAPICH-Plus user guide for more information

• https://mvapich-docs.readthedocs.io/en/mvapich-plus/cvar.html
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• Incorporation of new research from MVAPICH team

– Enhanced intra-node performance (CPU shared memory)

• Alltoall, Allreduce, Reduce

– Enhanced GPU support for AMD, Intel, NVIDIA GPUs

– Unified Compression Layer

• Support for lossless compression algorithms

• SHARP collective support

MVAPICH-Plus 4.2 Upcoming Release
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• Total refactor of MPI benchmarks for easier contributions

– Reduced files, less duplicated code, easier patches

• Enhanced runtimes to facilitate easier MPI library testing

– Similar to IMB all-in-one tests

– Run multiple tests from one MPI launch command

• `mpiexec -np <np> … ./omb_coll [benchmark1[,benchmark2,...]]>

• Will remain backwards compatible

OSU Microbenchmarks (OMB) Version 8.0
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• NOWLAB Github: https://github.com/OSU-Nowlab 

– Currently features many open-source developments from MVAPICH team

– Increase opportunities for community engagement

• Coming with v8.0 release

OMB Public GitHub

https://github.com/OSU-Nowlab
https://github.com/OSU-Nowlab
https://github.com/OSU-Nowlab
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Interested in more? Check out our Tutorials at IEEE HOTI 2025!

• “High-Performance and Smart Network Technologies for HPC and AI” -- https://hoti.org/tutorials-smart-

network.html 

• Friday, 22 August 2025, 13:00 – 16:30 Pacific Time (16:00 – 19:30 Eastern Time)

• Discussion on Networking Technologies across IB, RoCE, Slingshot, EFA, NVLink/Switch, AMD 

InfinityFabric/xGMI, DPUs/SmartNICs

• Case Studies and Results using MVAPICH/MVAPICH-Plus and OMB Features shown here!!

• “Principles and Practice of Scalable and Distributed Deep Neural Networks Training and Inference” --

https://hoti.org/tutorials-dl-training.html 

• Friday, 22 August 2025, 8:30 – 12:00 Pacific Time (11:30 – 15:00 Eastern Time)

• Discussion on Parallelizing Training and Inference for Deep Neural Networks and Large Language Models 

on heterogeneous CPU/GPU/DPU architectures on modern HPC clusters

• HOTI Registration is free!! https://hoti.org/register.html 

https://hoti.org/tutorials-smart-network.html
https://hoti.org/tutorials-smart-network.html
https://hoti.org/tutorials-smart-network.html
https://hoti.org/tutorials-smart-network.html
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https://hoti.org/tutorials-dl-training.html
https://hoti.org/tutorials-dl-training.html
https://hoti.org/tutorials-dl-training.html
https://hoti.org/tutorials-dl-training.html
https://hoti.org/tutorials-dl-training.html
https://hoti.org/register.html
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Thank You!
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LaboratoryNetwork-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

shineman.5@osu.edu, michalowicz.2@osu.edu 

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/

The High-Performance Big Data Project
http://hibd.cse.ohio-state.edu/

Follow us on

https://x.com/mvapich 

http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
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https://twitter.com/mvapich
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