
Boosting the Performance of HPC Applications with MVAPICH and
MVAPICH-Plus

A Tutorial at MUG’25

Presented by

Nathaniel Shineman and Benjamin Michalowicz

The MVAPICH Team

The Ohio State University

http://mvapich.cse.ohio-state.edu/

http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/

MUG’25 2Network Based Computing Laboratory

Overview of the MVAPICH Project
• High Performance open-source MPI Library

• Support for multiple interconnects

– InfiniBand, Omni-Path, Ethernet/iWARP, RDMA over Converged Ethernet (RoCE), AWS EFA,

OPX, Broadcom RoCE, Intel Ethernet, Rockport Networks, Slingshot 10/11

• Support for multiple platforms

– X86-Xeon, AMD EPYC, OpenPOWER, ARM, Xeon-Phi, GPUs (NVIDIA, Intel, and AMD)

• Started in 2001, first open-source version demonstrated at SC ‘02

• Supports the latest MPI-4.1 standard

• http://mvapich.cse.ohio-state.edu

• Additional optimized versions for different systems/environments:

– MVAPICH-Plus (Unification of MVAPICH2-X and MVAPICH2-GDR), since 2023

– MVAPICH2-X (Advanced MPI + PGAS), since 2011

– MVAPICH2-GDR with support for NVIDIA (since 2014) and AMD (since 2020) GPUs

– MVAPICH2-MIC with support for Intel Xeon-Phi, since 2014

– MVAPICH2-Virt with virtualization support, since 2015

– MVAPICH2-EA with support for Energy-Awareness, since 2015

– MVAPICH2-Azure for Azure HPC IB instances, since 2019

– MVAPICH2-X-AWS for AWS HPC+EFA instances, since 2019

• Tools:

– OSU MPI Micro-Benchmarks (OMB), since 2003

– OSU InfiniBand Network Analysis and Monitoring (INAM), since 2015

• Used by more than 3,450 organizations in 92 countries

(listed under the Users Tab of the MVAPICH page)

• More than 1.93 Million downloads from the OSU site

directly

• Empowering many TOP500 clusters (Jun’25 ranking)

– 21st, 10,649,600-core (Sunway TaihuLight) at NSC, Wuxi, China

– 67th, 448, 448 cores (Frontera) at TACC

– 88th, 288,288 cores (Lassen) at LLNL

– 109th, 570,020 cores (Nurion) in South Korea and many others

• Available with software stacks of many vendors and Linux

Distros (RedHat, SuSE, OpenHPC, and Spack)

• Partner in the 67th ranked TACC Frontera system

• Empowering Top500 systems for more than 20+ years

http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/
http://mvapich.cse.ohio-state.edu/

MUG’25 3Network Based Computing Laboratory

Architecture of MVAPICH Software Family for HPC and DL/ML
High Performance Parallel Programming Models

Message Passing Interface
(MPI)

PGAS
(UPC, OpenSHMEM, CAF, UPC++)

Hybrid --- MPI + X
(MPI + PGAS + OpenMP/Cilk)

High Performance and Scalable Communication Runtime
Diverse APIs and Mechanisms

Point-to-

point

Primitives

Collectives

Algorithms

Energy-

Awareness

Remote

Memory

Access

I/O and

File Systems

Fault

Tolerance
Virtualization

Active

Messages
Job Startup

Introspection

& Analysis

Support for Modern Networking Technology
(InfiniBand, RoCE, Omni-Path, EFA, Slingshot, etc.)

Support for Modern Multi-/Many-core Architectures
(Intel-Xeon, AMD EPYC, ARM, NVIDIA/AMD/Intel GPU)

Transport Protocols Modern Features

RC SRD UD DC UMR ODP
SR-

IOV

Multi

Rail

Transport Mechanisms

POSIX Shared

Memory
CMA

Modern Features

CXL NVLink

* Upcoming

XPMEM

CH4 Netmod CH4 Shmmod

ch4:ucx ch4:ofi posix ipc

UALink

MUG’25 4Network Based Computing Laboratory

• https://mvapich-docs.readthedocs.io/en/latest/

• Latest RPM install instructions, CVAR names/aliases/etc.

• Runtime instructions, setting up environment variables, OMB installation and

execution, FAQ

Updated User Guide and Resources

https://mvapich-docs.readthedocs.io/en/latest/
https://mvapich-docs.readthedocs.io/en/latest/
https://mvapich-docs.readthedocs.io/en/latest/
https://mvapich-docs.readthedocs.io/en/latest/

MUG’25 5Network Based Computing Laboratory

• CPU Process Mapping with MVAPICH

– Summary of parallel launchers

• CH4 devices and their impact

– UCX, OFI, enhanced libfabrics from OSU

• Dynamic Tuning

– CPU, GPU dynamic tuning

• GPU-Awareness

– NVIDA, AMD, Intel GPU support

• Compression (On-The-Fly for Point-to-Point and Collectives)

– NVIDIA Support

– AMD Support

• Future Plans

Contents

MUG’25 6Network Based Computing Laboratory

Common Parallel Launchers
• Hydra – included with MVAPICH/MVAPICH-Plus

– mpiexec/mpirun binaries

– Compatible with all commonly used resource managers

• SLURM, PBS, Flux, etc.

• Uses PMI1 interface standard

• Srun – included with the Slurm resource manager

– Mutually exclusive with hydra and other launchers

• Uses slurm specific PMI2

• --with-pm=none --with-pmi=slurm

MUG’25 7Network Based Computing Laboratory

• Determines Process-to-Core mapping At Runtime via resource managers and parallel job

launchers

• Supported by both Hydra and srun

– Hydra: “mpiexec/mpirun … -bind-to <x> -map-by <y>” (and use of hwloc)

– Srun: “srun --cpu-bind=<x>”

• See slurm documentation for more details

• Common cases

– “Bunch”

– “Scatter”

– “Spread”

– Custom mappings

• To see process mappings at runtime:

– Hydra: set HYDRA_TOPO_DEBUG=1

– Srun: set “SLURM_CPU_BIND_VERBOSE=verbose” or "srun --cpu-bind=verbose[,options]"

CPU Process Mapping

http://www.open-mpi.org/projects/hwloc/
https://slurm.schedmd.com/srun.html#OPT_cpu-bind

MUG’25 8Network Based Computing Laboratory

• Allocates ranks sequentially on cores

– Optimal for near-neighbor communication

– Can heavily leverage shared memory, CMA, XPMEM

– Does not provide optimal resource distribution of memory, network devices, GPU, etc

– Useful when fully subscribing nodes

• Launcher commands:

– Hydra: mpiexec -np <num_tasks> … -map-by core -bind-to core

– Srun: srun –n <num_tasks> … --cpu-bind=core --distribution=block:block

Bunch Mapping

MUG’25 9Network Based Computing Laboratory

• Performs a round-robin assignment per-socket

– Prioritizes network device and memory access over intra-node transfers

– Can be applied to other map-by resources, ie NUMA or L3 cache

– Not optimal for applications bound by intra-node communication

– Useful for sparse allocations with heavy network use and multiple network adapters

• Launcher commands:

– Hydra: mpiexec -np <num_tasks> … -map-by socket -bind-to core

– Srun: srun –n <num_tasks> … --cpu-bind=core --distribution=cyclic:cyclic

Scatter Mapping

MUG’25 10Network Based Computing Laboratory

• Handles MPI+Threads

workloads

– Works with and without

hyperthreading activated for

a compute node

– Best practice: divide total cores by requested ppn and map each process to N cores

• Launcher Commands:

– Hydra: mpiexec --bind-to core --map-by core:<total_cores / ppn>

– Srun: srun –n <num_tasks> … --cpus-per-task=<total_cores / ppn> --ntasks-per-node=<ppn>

--cpu-bind=core

Spread Mapping Core0

HWT HWT

HWT

Core2

HWT HWT

HWT

Core1

HWT HWT

HWT

Core3

HWT HWT

HWT

Core0

HWT HWT

HWT

HWT HWT

Core1

HWT HWT

HWT

HWT HWT

Rank0 Rank1

Rank2 Rank3

Core2 HWT Core3 HWT

MUG’25 11Network Based Computing Laboratory

• Not all standard mappings work best for all applications

• Need fine-tuning/architecture/numa-aware process placement

• Hydra custom mappings:

– Supports binding/mapping to NUMA, socket, core, hwthread, l1/2/3/4/5 cache, pci devices,

GPUs, IB HCAs, eth devices, hfi, etc.

• SLURM/srun custom mappings:

– See https://slurm.schedmd.com/mc_support.html for options

– Additionally supports binding to memory regions with “--mem-bind=…”

Custom Mappings

https://slurm.schedmd.com/mc_support.html
https://slurm.schedmd.com/srun.html#OPT_mem-bind

MUG’25 12Network Based Computing Laboratory

• CPU Process Mapping with MVAPICH

– Summary of parallel launchers

• CH4 devices and their impact

– UCX, OFI, enhanced libfabrics from OSU

• Dynamic Tuning

– CPU, GPU dynamic tuning

• GPU-Awareness

– NVIDA, AMD, Intel GPU support

• Compression (On-The-Fly for Point-to-Point and Collectives)

– NVIDIA Support

– AMD Support

• Future Plans

Contents

MUG’25 13Network Based Computing Laboratory

• CH4 device

– Replaced CH3 with MPICH 3.4 in 2021

• 2 components to CH4 device

– Netmods (Network)

– Shmmods (Shared Memory)

• MVAPICH Netmodes:

– UCX (Unified Communications X)

• Recommended for IB/RoCE networks

– OFI (Open Fabrics Interfaces/Libfabrics)

• Recommended for all other networks

• Configure with

– --with-device=ch4:ofi --with-device=ch4:ucx

CH4 Devices – Overview

Courtsey: https://multicore.world/wp-

content/uploads/2024/02/multicoreworld24-brightwell.pdf

https://multicore.world/wp-content/uploads/2024/02/multicoreworld24-brightwell.pdf
https://multicore.world/wp-content/uploads/2024/02/multicoreworld24-brightwell.pdf
https://multicore.world/wp-content/uploads/2024/02/multicoreworld24-brightwell.pdf
https://multicore.world/wp-content/uploads/2024/02/multicoreworld24-brightwell.pdf
https://multicore.world/wp-content/uploads/2024/02/multicoreworld24-brightwell.pdf

MUG’25 14Network Based Computing Laboratory

UCX: Overview

Courtesy: https://www.openucx.org/

MUG’25 15Network Based Computing Laboratory

• Configure UCX path with --with-ucx=/path/to/ucx or embedded

options

• Common UCX environment variables:

– UCX_RNDV_THRESH: transition point for eager/rendezvous message transfer protocols;

provide a number in bytes

– UCX_MAX_RNDV/EAGER_RAILS: number of network devices used per process for eager and

rendezvous-based transfers

(maximum supported is 4 (https://openucx.readthedocs.io/en/master/faq.html))

– UCX_TLS: comma-separated list of transports used by UCX (rc, ud, shm, cma, xpmem, etc.)

– UCX_NET_DEVICES: sets the device(s) UCX will use for message transports

– UCX_LOG_LEVEL: logging information in various verbosities (trace, info, debug, error, fatal)

Using the UCX Netmod

https://openucx.readthedocs.io/en/master/faq.html

MUG’25 16Network Based Computing Laboratory

OFI Provider

OFI: Overview

Courtesy: http://www.slideshare.net/seanhefty/ofi-overview?ref=http://ofiwg.github.io/libfabric/

Open Fabrics Interface (OFI)

Control Services Communication Services Completion Services Data Transfer Services

Discovery Connection

Management

Address Vectors

Event Queues

Counters

Message

Queues

Tag Matching

RMA

Atomics

Tr
ig

ge
re

d

O
p

e
ra

ti
o

n
s

MPI SHMEM PGAS

OFI Enabled Applications

Discovery
Connection

Management

Address Vectors

Event Queues

Counters

Message

Queues

Tag Matching

RMA

Atomics Tr
ig

ge
re

d

O
p

e
ra

ti
o

n
s

NIC
TX Command Queues RX Command Queues

mailto:panda@cse.ohio-state.edu

MUG’25 17Network Based Computing Laboratory

• Configure OFI path with --with-libfabric=/path/to/libfabric or

embedded options

• Common OFI environment variables:

– FI_PROVIDER: forces a specific network provider to be used

• MVAPICH will attempt to choose the highest performing provider that supports your network

• Generally not necessary unless a particular network is required for testing

– MPIR_CVAR_CH4_OFI_CAPABILITY_SETS_DEBUG: set to 1 to view the OFI provider being

selected at runtime

– MVP_CH4_OFI_ENABLE_HMEM: set to 1 to allow OFI provider to use GPU direct RDMA

support

– Highly provider dependent

– More details at https://ofiwg.github.io/libfabric/v2.2.0/man/

Using the OFI Netmod

https://ofiwg.github.io/libfabric/v2.2.0/man/

MUG’25 18Network Based Computing Laboratory

• Provided on all HPE/Cray machines equipped with Slingshot 11 interconnects

– (Frontier, El Capitan, Isambard-AI, Delta-AI, COSMOS, etc.)

• Must be linked when building MVAPICH on HPE/Cray systems

• CXI provider up-streaming in progress

• Linked at compile time

– Use MVAPICH-Plus ums038 module on frontier

– Request system specific installation on other sites

– Link directly to craype libfabric when compiling open source

Cray OFI (Slingshot 11)

MUG’25 19Network Based Computing Laboratory

• CPU Process Mapping with MVAPICH

– Summary of parallel launchers

• CH4 devices and their impact

– UCX, OFI, enhanced libfabrics from OSU

• Dynamic Tuning

– CPU, GPU dynamic tuning

• GPU-Awareness

– NVIDA, AMD, Intel GPU support

• Compression (On-The-Fly for Point-to-Point and Collectives)

– NVIDIA Support

– AMD Support

• Future Plans

Contents

MUG’25 20Network Based Computing Laboratory

• New in MVAPICH-Plus 4.1

• Enables on-the-fly collective selection tuning

• Combines collective knowledge with real-time, adaptive, system-specific

analysis

• Runs potential algorithms and collects runtime data to determine best collective

algorithm at a given time

Dynamic Collective Tuning

MUG’25 21Network Based Computing Laboratory

• MVP_ENABLE_DYNAMIC_TUNING – allows dynamic tuning to be activated or

deactivated at runtime or within an application

• MVP_FORCE_STATIC_TUNING – force MVAPICH to use static tables

• MVP_DYNAMIC_TUNE_THRESHOLD – when to retest algorithms

• MVP_DYNAMIC_TUNE_TEST_COUNT – how many tests to perform with each

algorithm

• MVP_DYNAMIC_TUNE_LOCAL_EVAL_METRIC – how each process reports its

"best" result

• MVP_DYNAMIC_TUNE_SELECTION_METRIC – metric used by the dynamic

tuning to select the overall best algorithm

Controlling Dynamic Tuning with CVARs

MUG’25 22Network Based Computing Laboratory

• Improves microbenchmark performance on unknown systems

- Match iteration count with MVP_DYNAMIC_TUNE_THRESHOLD for best results

- Set -x 200 -i 1000 for best performance on OMB

• Respond to application specific performance

• Handle real-time network constraints

• Feedback encouraged

Dynamic Tuning Use Cases

MUG’25 23Network Based Computing Laboratory

• CPU Process Mapping with MVAPICH

– Summary of parallel launchers

• CH4 devices and their impact

– UCX, OFI, enhanced libfabrics from OSU

 Dynamic Collective Tuning

CPU, GPU dynamic tuning

• GPU-Awareness

– NVIDA, AMD, Intel GPU support

• Compression (On-The-Fly for Point-to-Point and Collectives)

– NVIDIA Support

– AMD Support

• Future Plans

Contents

MUG’25 24Network Based Computing Laboratory

PCIe

GPU

CPU

NIC

Switch

At Sender:

 cudaMemcpy(s_hostbuf, s_devbuf, . . .);

 MPI_Send(s_hostbuf, size, . . .);

At Receiver:

 MPI_Recv(r_hostbuf, size, . . .);

 cudaMemcpy(r_devbuf, r_hostbuf, . . .);

• Data movement in applications with standard MPI and CUDA interfaces

High Productivity and Low Performance

MPI + CUDA - Naive

MUG’25 25Network Based Computing Laboratory

PCIe

GPU

CPU

NIC

Switch

At Sender:

for (j = 0; j < pipeline_len; j++)

 cudaMemcpyAsync(s_hostbuf + j * blk, s_devbuf + j *

blksz, …);

for (j = 0; j < pipeline_len; j++) {

 while (result != cudaSucess) {

 result = cudaStreamQuery(…);

 if(j > 0) MPI_Test(…);

 }

 MPI_Isend(s_hostbuf + j * block_sz, blksz . . .);

 }

MPI_Waitall();

<<Similar at receiver>>

• Pipelining at user level with non-blocking MPI and CUDA interfaces

Low Productivity and High Performance

MPI + CUDA - Advanced

MUG’25 26Network Based Computing Laboratory

At Sender:

At Receiver:

 MPI_Recv(r_devbuf, size, …);

inside

MVAPICH

• Standard MPI interfaces used for unified data movement

• Takes advantage of Unified Virtual Addressing (>= CUDA 4.0)

• Overlaps data movement from GPU with RDMA transfers

High Performance and High Productivity

MPI_Send(s_devbuf, size, …);

GPU-Aware (CUDA-Aware) MPI Library: MVAPICH-Plus

MUG’25 27Network Based Computing Laboratory

• Recommended in MVAPICH-Plus

- Basic support only in MVAPICH, uses base MPICH implementation

• Supports NVIDIA, AMD, and Intel GPUs

• Includes optimized designs for pt2pt and collective operations

• Enhanced GPU kernels for certain collectives

• Utilizes GDRCOPY, GPU IPC, and kernel based transfers

GPU Support in MVAPICH

MUG’25 28Network Based Computing Laboratory

Tuning GDRCOPY Designs in MVAPICH-Plus

Parameter Significance Default Notes

MVP_ENABLE_GPU_GD
RCOPY

• Enable / Disable GDRCOPY-
based designs

1
(Enabled)

• Always enable
• Enables NVIDIA GDRCOPY and
AMD LargeBAR support

MVP_GDRCOPY_MAX_
SIZE_H2D

• Maximum message size for
using GDRCOPY from Host to
Device

32768
Bytes

• Tune for your system
• AMD and newer NVIDIA systems
can use higher values

MVP_GDRCOPY_MAX_
SIZE_D2H

• Maximum message size for
using GDRCOPY from Device
to Host

2048
Bytes

• Tune for your system
• Typically lower than H2D for
NVIDIA systems
• Set equal to D2H for AMD

• Refer to CVAR section of MVAPICH-Plus user guide for more information

• https://mvapich-docs.readthedocs.io/en/mvapich-plus/cvar.html

MUG’25 29Network Based Computing Laboratory

Tuning GPU IPC Designs in MVAPICH-Plus

Parameter Significance Default Notes

MVP_CH4_IPC_GPU_P2
P_THRESHOLD

• Minimum message size to
use GPU IPC protocol

16K Bytes • Tune for your system
• Typically at or around the
GDRCOPY H2D limit

MVP_CH4_IPC_GPU_RE
AD_WRITE_PROTOCOL

• Select the IPC protocol used
for GPU transfers
(read/write)

read • Generally keep on read

MVP_ALLREDCE_IPC_M
SG_SIZE_THRESHOLD

• Minimum message size to
use IPC aware Allreduce

16K Bytes • Tune for your system
• IPC aware collectives have some
registration overhead

MVP_REDCE_IPC_MSG
_SIZE_THRESHOLD

• Minimum message size to
use IPC aware Reduce

16K Bytes • Tune for your system
• IPC aware collectives have some
registration overhead

• Refer to CVAR section of MVAPICH-Plus user guide for more information

• https://mvapich-docs.readthedocs.io/en/mvapich-plus/cvar.html

MUG’25 30Network Based Computing Laboratory

• Supported by MVAPICH-Plus

- Provides enhanced support for MI300A APUs

• Supports buffers allocated on CPU or GPU

• Enables flexible GPU transfers using both CPU and GPU techniques

Enhancements for APUs

MUG’25 31Network Based Computing Laboratory

Tuning Unified APU Designs in MVAPICH-Plus

Parameter Significance Default Notes

MVP_GPU_UNIFIED_DIRECT
_COPY_MAX

• Maximum number of
bytes for which
MVAPICH-Plus will use
direct CPU memcpy
support

4M • Tune for your system
• Only effective on MI300A unified
APU builds
• Higher message sizes will use
kernel driven methods

• Refer to CVAR section of MVAPICH-Plus user guide for more information

• https://mvapich-docs.readthedocs.io/en/mvapich-plus/cvar.html

https://mvapich-docs.readthedocs.io/en/mvapich-plus/cvar.html
https://mvapich-docs.readthedocs.io/en/mvapich-plus/cvar.html
https://mvapich-docs.readthedocs.io/en/mvapich-plus/cvar.html
https://mvapich-docs.readthedocs.io/en/mvapich-plus/cvar.html
https://mvapich-docs.readthedocs.io/en/mvapich-plus/cvar.html
https://mvapich-docs.readthedocs.io/en/mvapich-plus/cvar.html

MUG’25 32Network Based Computing Laboratory

• CPU Process Mapping with MVAPICH

– Summary of parallel launchers

• CH4 devices and their impact

– UCX, OFI, enhanced libfabrics from OSU

• Dynamic Tuning

– CPU, GPU dynamic tuning

• GPU-Awareness

– NVIDA, AMD, Intel GPU support

• Compression (On-The-Fly for Point-to-Point and Collectives)

– NVIDIA Support

– AMD Support

• Future Plans

Contents

MUG’25 33Network Based Computing Laboratory

• For HPC and data science applications on modern GPU clusters

– With larger problem sizes, applications exchange orders of magnitude more data on the network

– Leads to significant increase in communication times for these applications on larger scale (AWP-ODC)

– On modern HPC systems, there is disparity between intra-node and inter-node GPU communication

bandwidths that prevents efficient scaling of applications on larger GPU systems

– CUDA-Aware MPI libraries saturate the bandwidth of IB network

– Compression can reduce the data size and lower the pressure on network with limited bandwidth

MVAPICH-Plus: “On-the-fly” Compression – Motivation

(b) Saturated bandwidth at large message size

(a) Disparity between intra-node and inter-node GPU communication on Sierra

OpenPOWER supercomputer [1]
[1] K. S. Khorassani, C.-H. Chu, H. Subramoni, and D. K. Panda, “Performance Evaluation of MPI Libraries on GPU-enabled OpenPOWER Architectures: Early Experiences”, in

International Workshop on Open-POWER for HPC (IWOPH 19) at the 2019 ISC High Performance Conference, 2018.

MUG’25 34Network Based Computing Laboratory

• ZFP

– Lossy compression

– Requires MVAPICH-Plus enhanced ZFP library

– Bundled with MVAPICH-Plus on request

• Upcoming support for lossless compression algorithms

• Support for pt2pt and some collectives

– Alltoall, Allgather, Allreduce, Reduce_scatter

MVAPICH-Plus Compression Support

MUG’25 35Network Based Computing Laboratory

Tuning Pt2pt Compression Designs in MVAPICH-Plus

Parameter Significance Default Notes

MVP_ENABLE_PT2PT_
GPU_COMPRESSION

• Enable/disable
compression for pt2pt GPU
transfers

0
(disabled)

• Enable only when application can
tolerate compression related data
loss

MVP_PT2PT_GPU_CO
MPRESSION_THRESHO
LD

• Minimum message size to
use pt2pt compression

1M Bytes • Tune for your system/application

• Refer to CVAR section of MVAPICH-Plus user guide for more information

• https://mvapich-docs.readthedocs.io/en/mvapich-plus/cvar.html

MUG’25 36Network Based Computing Laboratory

Tuning Collective Compression Designs in MVAPICH-Plus

Parameter Significance Default Notes

MVP_ENABLE_COMPRE
SSION

• Enable/disable
compression enabled
collectives

0
(disabled)

• Enable only when application can
tolerate compression related data
loss

MVP_<coll>_GPU_COM
PRESSION_THRESHOLD

• Minimum message size for
using compression
enabled collective

4M Bytes • Supports alltoall,
allgather, allreduce,
reduce_scatter for coll
• Only effective when compression
enabled algorithm is in use

MVP_<coll>_INTRA_AL
GORITHM

• Set to
osu_gpu_compression to
utlize compression
designs

auto/dyn
amic

• Compression designs will only be
enabled when the
osu_gpu_compression algorithm is
forced

• Refer to CVAR section of MVAPICH-Plus user guide for more information

• https://mvapich-docs.readthedocs.io/en/mvapich-plus/cvar.html

MUG’25 37Network Based Computing Laboratory

• CPU Process Mapping with MVAPICH

– Summary of parallel launchers

• CH4 devices and their impact

– UCX, OFI, enhanced libfabrics from OSU

• GPU-Awareness

– NVIDA, AMD, Intel GPU support

• Dynamic Tuning

– CPU, GPU dynamic tuning

• Compression (On-The-Fly for Point-to-Point and Collectives)

– NVIDIA Support

– AMD Support

• Future Plans

Contents

MUG’25 38Network Based Computing Laboratory

• Incorporation of new research from MVAPICH team

– Enhanced intra-node performance (CPU shared memory)

• Alltoall, Allreduce, Reduce

– Enhanced GPU support for AMD, Intel, NVIDIA GPUs

– Unified Compression Layer

• Support for lossless compression algorithms

• SHARP collective support

MVAPICH-Plus 4.2 Upcoming Release

MUG’25 39Network Based Computing Laboratory

• Total refactor of MPI benchmarks for easier contributions

– Reduced files, less duplicated code, easier patches

• Enhanced runtimes to facilitate easier MPI library testing

– Similar to IMB all-in-one tests

– Run multiple tests from one MPI launch command

• `mpiexec -np <np> … ./omb_coll [benchmark1[,benchmark2,...]]>

• Will remain backwards compatible

OSU Microbenchmarks (OMB) Version 8.0

MUG’25 40Network Based Computing Laboratory

• NOWLAB Github: https://github.com/OSU-Nowlab

– Currently features many open-source developments from MVAPICH team

– Increase opportunities for community engagement

• Coming with v8.0 release

OMB Public GitHub

https://github.com/OSU-Nowlab
https://github.com/OSU-Nowlab
https://github.com/OSU-Nowlab

MUG’25 41Network Based Computing Laboratory

Funding Acknowledgments

Funding Support by

Equipment Support by

MUG’25 42Network Based Computing Laboratory

Acknowledgments to all the Heroes (Past/Current Students and Staffs)
Current Students (Under/Graduate)

– N. Alnaasan (Ph.D.)

– Q. Anthony (Ph.D.)

– C.-C. Chen (Ph.D.)

– T. Chen (Ph.D.)

– N. Contini (Ph.D.)

Past Students

– A. Awan (Ph.D.)

– A. Augustine (M.S.)

– P. Balaji (Ph.D.)

– M. Bayatpour (Ph.D.)

– R. Biswas (M.S.)

– S. Bhagvat (M.S.)

– A. Bhat (M.S.)

– D. Buntinas (Ph.D.)

– L. Chai (Ph.D.)

– B. Chandrasekharan (M.S.)

– S. Chakraborthy (Ph.D.)

– N. Dandapanthula (M.S.)

– V. Dhanraj (M.S.)

– C.-H. Chu (Ph.D.)

– S. Pai (M.S.)

– S. Potluri (Ph.D.)

– J. Queiser (M.S.)

– K. Raj (M.S.)

– R. Rajachandrasekar (Ph.D.)

– B. Ramesh (Ph.D.)

– D. Shankar (Ph.D.)

– G. Santhanaraman (Ph.D.)

– N. Sarkauskas (B.S. and M.S)

– V. Sathu (M.S.)

– N. Senthil Kumar (M.S.)

– A. Singh (Ph.D.)

– J. Sridhar (M.S.)

– S. Srivastava (M.S.)

– H. Subramoni (Ph.D.)

Past Research Scientists

– K. Hamidouche

– S. Sur

– X. Lu

– M. Abduljabbar

– A. Shafi

Past Post-Docs

– D. Banerjee

– X. Besseron

– M. S. Ghazimirsaeed

– T. Gangadharappa (M.S.)

– K. Gopalakrishnan (M.S.)

– R. Gulhane (M.S.)

– J. Hashmi (Ph.D.)

– M. Han (M.S.)

– W. Huang (Ph.D.)

– A. Jain (Ph.D.)

– J. Jani (M.S.)

– W. Jiang (M.S.)

– J. Jose (Ph.D.)

– M. Kedia (M.S.)

– K. S. Khorassani (Ph.D.)

– S. Kini (M.S.)

– M. Koop (Ph.D.)

– P. Kousha (Ph.D.)

– K. Kulkarni (M.S.)

– R. Kumar (M.S.)

– S. Krishnamoorthy (M.S.)

– K. Kandalla (Ph.D.)

– M. Li (Ph.D.)

– P. Lai (M.S.)

– J. Liu (Ph.D.)

– M. Luo (Ph.D.)

– A. Mamidala (Ph.D.)

– G. Marsh (M.S.)

– V. Meshram (M.S.)

– A. Moody (M.S.)

– S. Naravula (Ph.D.)

– R. Noronha (Ph.D.)

– X. Ouyang (Ph.D.)

– S. Gumaste (Ph.D.)

– J. Hatef (Ph.D.)

– G. Kuncham (Ph.D.)

– S. Lee (Ph.D.)

– B. Michalowicz (Ph.D.)

– H.-W. Jin

– J. Lin

– M. Luo

Past Senior Research Associate

– J. Hashmi

Past Programmers

– A. Reifsteck

– D. Bureddy

– J. Perkins

– B. Seeds

– A. Guptha

– N. Pavuk

– E. Mancini

– K. Manian

– S. Marcarelli

Current Software Engineers

– N. Shineman

– M. Lieber

Past Research Specialist

– M. Arnold

– J. Smith

– J. Oswal (Ph.D.)

– T. Tran (Ph.D.)

– L. Xu (P.h.D.)

– S. Xu (Ph.D.)

– J. Yao (Ph.D.)

– A. Ruhela

– J. Vienne

– H. Wang

Current Research Specialist

– R. Motlagh

– S. Sur (Ph.D.)

– K. K. Suresh (Ph.D.)

– K. Vaidyanathan

(Ph.D.)

– A. Vishnu (Ph.D.)

– J. Wu (Ph.D.)

– W. Yu (Ph.D.)

– J. Zhang (Ph.D.)

– Q. Zhou (Ph.D.)

– N. Chmura (B.S.)

Past Faculty

– H. Subramoni

– S. Zhang (Ph.D.)

– S. Mohammad

(M.S.)

– B. Lampe (B.S.)

– N. Klein (B.S.)

MUG’25 43Network Based Computing Laboratory

Interested in more? Check out our Tutorials at IEEE HOTI 2025!

• “High-Performance and Smart Network Technologies for HPC and AI” -- https://hoti.org/tutorials-smart-

network.html

• Friday, 22 August 2025, 13:00 – 16:30 Pacific Time (16:00 – 19:30 Eastern Time)

• Discussion on Networking Technologies across IB, RoCE, Slingshot, EFA, NVLink/Switch, AMD

InfinityFabric/xGMI, DPUs/SmartNICs

• Case Studies and Results using MVAPICH/MVAPICH-Plus and OMB Features shown here!!

• “Principles and Practice of Scalable and Distributed Deep Neural Networks Training and Inference” --

https://hoti.org/tutorials-dl-training.html

• Friday, 22 August 2025, 8:30 – 12:00 Pacific Time (11:30 – 15:00 Eastern Time)

• Discussion on Parallelizing Training and Inference for Deep Neural Networks and Large Language Models

on heterogeneous CPU/GPU/DPU architectures on modern HPC clusters

• HOTI Registration is free!! https://hoti.org/register.html

https://hoti.org/tutorials-smart-network.html
https://hoti.org/tutorials-smart-network.html
https://hoti.org/tutorials-smart-network.html
https://hoti.org/tutorials-smart-network.html
https://hoti.org/tutorials-smart-network.html
https://hoti.org/tutorials-dl-training.html
https://hoti.org/tutorials-dl-training.html
https://hoti.org/tutorials-dl-training.html
https://hoti.org/tutorials-dl-training.html
https://hoti.org/tutorials-dl-training.html
https://hoti.org/register.html

MUG’25 44Network Based Computing Laboratory

Thank You!

N
et
w
or

k B
ased Com

pu
ti n
g

LaboratoryNetwork-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

shineman.5@osu.edu, michalowicz.2@osu.edu

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/

The High-Performance Big Data Project
http://hibd.cse.ohio-state.edu/

Follow us on

https://x.com/mvapich

http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
mailto:shineman.5@osu.edu
mailto:michalowicz.2@osu.edu
https://twitter.com/mvapich

	Slide 1: Boosting the Performance of HPC Applications with MVAPICH and MVAPICH-Plus
	Slide 2: Overview of the MVAPICH Project
	Slide 3: Architecture of MVAPICH Software Family for HPC and DL/ML
	Slide 4: Updated User Guide and Resources
	Slide 5: Contents
	Slide 6: Common Parallel Launchers
	Slide 7: CPU Process Mapping
	Slide 8: Bunch Mapping
	Slide 9: Scatter Mapping
	Slide 10: Spread Mapping
	Slide 11: Custom Mappings
	Slide 12: Contents
	Slide 13: CH4 Devices – Overview
	Slide 14: UCX: Overview
	Slide 15: Using the UCX Netmod
	Slide 16: OFI: Overview
	Slide 17: Using the OFI Netmod
	Slide 18: Cray OFI (Slingshot 11)
	Slide 19: Contents
	Slide 20: Dynamic Collective Tuning
	Slide 21: Controlling Dynamic Tuning with CVARs
	Slide 22: Dynamic Tuning Use Cases
	Slide 23: Contents
	Slide 24: MPI + CUDA - Naive
	Slide 25: MPI + CUDA - Advanced
	Slide 26: GPU-Aware (CUDA-Aware) MPI Library: MVAPICH-Plus
	Slide 27: GPU Support in MVAPICH
	Slide 28: Tuning GDRCOPY Designs in MVAPICH-Plus
	Slide 29: Tuning GPU IPC Designs in MVAPICH-Plus
	Slide 30: Enhancements for APUs
	Slide 31: Tuning Unified APU Designs in MVAPICH-Plus
	Slide 32: Contents
	Slide 33: MVAPICH-Plus: “On-the-fly” Compression – Motivation
	Slide 34: MVAPICH-Plus Compression Support
	Slide 35: Tuning Pt2pt Compression Designs in MVAPICH-Plus
	Slide 36: Tuning Collective Compression Designs in MVAPICH-Plus
	Slide 37: Contents
	Slide 38: MVAPICH-Plus 4.2 Upcoming Release
	Slide 39: OSU Microbenchmarks (OMB) Version 8.0
	Slide 40: OMB Public GitHub
	Slide 41: Funding Acknowledgments
	Slide 42: Acknowledgments to all the Heroes (Past/Current Students and Staffs)
	Slide 43: Interested in more? Check out our Tutorials at IEEE HOTI 2025!
	Slide 44: Thank You!

