
A Collective Streaming Interface for Scale-
Out of Dataflow-centric Acceleration

Nicholas Contini

{contini.26, queiser.5, ramesh.113, subramoni.1}@osu.edu

panda@cse.ohio-state.edu

Department of Computer Science and Engineering
The Ohio State University



2MUG ‘25 CollectiveStreams

Motivation

• The slowing of Moore's Law and end of Dennard Scaling has prompted exploration 

outside of generic processors

• Dataflow Architectures

• Deviates from Von Neumann architecture

• Instead of data bouncing between compute units (CUs) and the memory hierarchy, data 

is explicitly sent from one CU to another

• Less time spent idling while fetching data

• Fine-grained parallelism

• Generally more energy/power efficient due to relative "slimness" of the architecture

• Can achieve better performance for applications with irregular memory access



3MUG ‘25 CollectiveStreams

Example Dataflow Architecture

Chi, Yuze, et al. "SODA: Stencil with optimized dataflow architecture." Proceedings of the International Conference on Computer-Aided Design. 2018.



4MUG ‘25 CollectiveStreams

Motivation

• Research Gap: what about scale-out?

• There are very few works focusing on enabling high-performance communication 

between dataflow architectures

• There are some works leveraging direct/indirect networks directly attached to 

FPGAs

o Issues with scalability

o Issues with integrating with existing HPC systems

o Issues with hardware resource usage

• What about MPI?

o The compute-then-communicate flow of MPI applications is the anti-thesis of 

dataflow



5MUG ‘25 CollectiveStreams

Problem Statement

• Can we provide a communication interface that 

enables scale-out of dataflow architectures?

• Can we make it easy to use?

• Can we integrate it into existing HPC applications?



6MUG ‘25 CollectiveStreams

• Offload communication to host processor

o Leverages pre-existing scale-out solutions

o Avoids implementing networking stack on accelerator

• Provide APIs that are dataflow compatible

o Want benefits of MPI with different semantics

o Dataflow applications tend to transfer through streams

o Target High Level Synthesis (HLS)

Solution



7MUG ‘25 CollectiveStreams

template <typename T>

class CollectiveStream{

 CollectiveStream(void *host_mem);

 void startSend<typename T>(int count, int 

rank, int tag, MPI_Comm comm);

 void startRecv<typename T>(int count, int 

rank, int tag, MPI_Comm comm);

 void startBcast<typename T>(int count, 

int root, MPI_Comm comm);

 void write(T val);

 T read();

 void progress();

}

Design: APIs
• Inspired by 

hls::stream from Vitis HLS 

and persistent MPI

• Beginning of communication 

is declared by start calls

• CollectiveStream writes 

begin transfer

• CollectiveStream reads block 

until data is available



8MUG ‘25 CollectiveStreams

Design: Implementation
• Based on our API, it is clear we need fine-

grained data transfers

• CUs write data to streams (usually 

implemented as FIFOs)

• The data pusher module internal to the 

CollectiveStream writes data to ring buffers 

in host memory

• A host thread awaits communication data 

and calls an appropriate MPI call

• The receiving CollectiveStream reads from 

host ring buffer into on-chip memory

• Receiving CUs can read from 

CollectiveStream



9MUG ‘25 CollectiveStreams

Application
• Consider LINPACK

• 4 core computations

▪ LU Decomposition of top 

left block

▪ Update top and left 

blocks

▪ Update inner blocks

• Between each of these 

calculations broadcast is 

needed

• Without fine-grained 

transfers, communication 

doesn't occur until 

computation is complete



10MUG ‘25 CollectiveStreams

Application
• We can avoid halting computation by following a 

dataflow-centric approach

• Without our contributions, we can easily 

implement the algorithm that allows data to flow 

immediately from one computation to the next 

within a single accelerator (top)

• However scaling out is not trivial...

• By integrating CollectiveStreams into the 

solution, the design can easily broadcast outputs 

to multiple accelerators with minimal changes to 

the design



11MUG ‘25 CollectiveStreams

Results
• Using this design improved computational 

throughput by up to 18%, 14%, and 11% for 4, 9, 

and 16 accelerators respectively

• If we measure only the optimized portion of the 

application, we see a 5%, 29%, 19%, and 11% 

improvement in execution time for the 1, 4, 9, 

and 16 accelerators

• Improvement comes overlap of communication 

and computation, overlap of different 

computations, and reduced kernel launches



12MUG ‘25 CollectiveStreams

• Equivalent GPU API

o Allow GPUs to "stream" data to other GPUs or accelerators implementing the same 

API

• Multi-level networks

o Use directly attached networks in conjunction with host network

• Exploration with other applications

o Already publishing results on LINPACK and stencil microapplication, but graph 

computation or AI applications could have a use case

Future Work



13MUG ‘25 CollectiveStreams

THANK YOU!

N
et
w
or

k
Bas
ed Com

pu
ti n
g

Laboratory
Network-Based Computing Laboratory

http://nowlab.cse.ohio-state.edu/

The High-Performance MPI/PGAS
 Project

http://mvapich.cse.ohio-state.edu/

The High-Performance Big Data 
Project

http://hibd.cse.ohio-state.edu/

The High-Performance Deep Learning 
Project

http://hidl.cse.ohio-state.edu/

http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/

	Main Slides
	Slide 1: A Collective Streaming Interface for Scale-Out of Dataflow-centric Acceleration

	Intro
	Slide 2: Motivation
	Slide 3: Example Dataflow Architecture
	Slide 4: Motivation
	Slide 5: Problem Statement
	Slide 6: Solution
	Slide 7: Design: APIs
	Slide 8: Design: Implementation
	Slide 9: Application
	Slide 10: Application
	Slide 11: Results
	Slide 12: Future Work
	Slide 13


