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Motivation

e The slowing of Moore's Law and end of Dennard Scaling has prompted exploration

outside of generic processors

e Dataflow Architectures
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Deviates from Von Neumann architecture

Instead of data bouncing between compute units (CUs) and the memory hierarchy, data
is explicitly sent from one CU to another

Less time spent idling while fetching data
Fine-grained parallelism
Generally more energy/power efficient due to relative "slimness" of the architecture

Can achieve better performance for applications with irregular memory access
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MUG ‘25

Example Dataflow Architecture
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Chi, Yuze, et al. "SODA: Stencil with optimized dataflow architecture." Proceedings of the International Conference on Computer-Aided Design. 2018.

CollectiveStreams

| 93e3s

Z 98e1s




Motivation

e Research Gap: what about scale-out?

e There are very few works focusing on enabling high-performance communication

between dataflow architectures
e There are some works leveraging direct/indirect networks directly attached to
FPGAs
o Issues with scalability
o Issues with integrating with existing HPC systems
o Issues with hardware resource usage

« What about MPI?

o The compute-then-communicate flow of MPI applications is the anti-thesis of

dataflow
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Problem Statement

e Can we provide a communication interface that
enables scale-out of dataflow architectures?

e Can we make it easy to use?

e Can we integrate it into existing HPC applications?
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Solution

e Offload communication to host processor

o Leverages pre-existing scale-out solutions

o Avoids implementing networking stack on accelerator
* Provide APIs that are dataflow compatible

o Want benefits of MPI with different semantics

o Dataflow applications tend to transfer through streams

o Target High Level Synthesis (HLS)
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Design: APIs
template <typename T>

o |I’\Spif€d by class CollectiveStream{

CollectiveStream(void *host_mem);

hls::stream from Vitis HLS

void startSend<typename T>(int count, int

and persistent MPI rank, int tag, MPI_Comm comm);
void startRecv<typename T>(int count, int
e Beginning of communication rank, int tag, MPI_Comm comm);
iS declared by start caIIs void startBcast<typename T>(int count,
int root, MPI_Comm comm);
e CollectiveStream writes void write(T val);
T read();

begin transfer

void progress();

e CollectiveStream reads block
until data is available
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Design: Implementation

e Based on our API, it is clear we need fine-
grained data transfers

e CUs write data to streams (usually cy |° ¢ | Transaction [© 7| Data Data Memory Stream

& % ) Manager 1 Pusher Puller Interface ~ ~ ~ Interface
implemented as FIFOs) Rank 0
_ - =~ g ~
e The data pusher module internal to the ( Kernel N " K_o _—

CollectiveStream writes data to ring buffers 3 : I

in host memory XX . g
R M ” § breeee-- Rank 2
e A host thread awaits communication data l i Metadata E T
and calls an appropriate MPI call : -— L - H
] “re====-% Rank 3
e The receiving CollectiveStream reads from \_ =/ \meoming  J{ et

host ring buffer into on-chip memory

e Receiving CUs can read from

CollectiveStream

MUG ‘25 CollectiveStreams 8




o . Computed }
Application Bods | 0 | 1| 0 | 1| NN
LU S T A A
. Blocks , \
e Consider LINPACK 2 3 A 3 | |
Top | OOV /A koo [ 0. L1
* 4 core computations Blocks | | | X X
Left 0 1. s Qs sls sk
= LU Decomposition of top Bfocks s s £ o Fees] | BEs2s
| | | 131« e [53ie
left block Jnner ’ 3. S : |
» Update top and left - Blocks ! | | A A
blocks Saved

LU Blocks Left Blocks DTop Blocks | Inner Blocks ime Time

= Update inner blocks

. —

» Between each of these

calculations broadcast is PCle A

needed

r

* Without fine-grained 176 560570 0

EC 1| VAN XA AN |

transfers, communication

doesn't occur until

computation is complete C

MUG ‘25 CollectiveStreams 9




Application

e We can avoid halting computation by following a ATPTRR T, O S—— ) S—
dataflow-centric approach Interface ¥ — ;.
Left (_)Memory L - .
e  Without our contributions, we can easily v Interface | Qs
. . [ topcuy --mwoc2t |
implement the algorithm that allows data to flow Stream === -«
Kernel
immediately from one computation to the next oeast 7] Beast
within a single accelerator (top)
e However scaling out is not trivial... [ A HEM A ]
e By integrating CollectiveStreams into the l »
= ey
solution, the design can easily broadcast outputs ~— (-—Yj
to multiple accelerators with minimal changes to N _)‘\ J LT I
the design Kernel B -)D- B
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Future Work

e Equivalent GPU API

o Allow GPUs to "stream" data to other GPUs or accelerators implementing the same
API

o Multi-level networks
o Use directly attached networks in conjunction with host network
» Exploration with other applications

o Already publishing results on LINPACK and stencil microapplication, but graph
computation or Al applications could have a use case
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THANK YOU!
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Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/
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=~ VVAPICH o3* HIBD
$ MPI, PGAS and Hybrid MPI+PGAS Library High_Performance
Big Data
The High-Performance MPI/PGAS The High-Performance Big Data
Project Project
http://mvapich.cse.ohio-state.edu/ http://hibd.cse.ohio-state.edu/
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High-Performance
Deep Learning

The High-Performance Deep Learning

Project

http://hidl.cse.ohio-state.edu/
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