HIDL

High-Performance
Deep Learning

Characterizing Communication Patterns in
Distributed Large Language Model Inference

Presented at MUG ’'25

Lang Xu, Kaushik Kandadi Suresh, Quentin Anthony,

Nawras Alnaasan, and Dhabaleswar K (DK) Panda

Department of Computer Science and Engineering,

The Ohio State University, Columbus, Ohio, USA

Presentation Outline

* Introduction and Motivation

* Problem statements

* Analytical Model

* Analysis and Performance Characterization

e Conclusion

Network Based Computing Laborator

Large Language Model Inference

* Inference: The process of using a pre-trained Large Language Model to generate text
or predict on a given input (prompt)

* Emergent capabilities comes with scaling inference-time compute

. Reasoning, Decision Making, Coding
. Reinforcement Learning (GRPO, DPO)
. Better Models (DeepSeek-R1, Gemini 2.5 Pro, OpenAl-03)

Pre-training Scaling

Test

Complex Large Language Model

capability emerges with computation

1 3
—
= |1 l=2sl (23
RE R R4l @3
| 3
A V7 2\ VA
AV 7/
sy 877 97 N

resources allocated to Inference! Status Quo

Foundation Model

I
| Test-time Scaling

Courtesy: “A Survey on Test-Time Scaling in Large Language Models: What, How, Where, and How Well?“
https://arxiv.org/abs/2503.24235

MUG ’25

Large Language Model Inference

W Computation = Communication

 Similar to Pre-Training, Inferencing has similar challenges: e
. Multi-GPU deployment (Tensor/Pipeline Parallelism) 75%
. Communication overhead]
* Prefill-Decode Stages (compute-bound vs memory-bound) § o
. Unique communication pattern " 25%
* Service-level objectives (SLOs) .
. Latency, time-to-first-token (TTFT), time-per-output-token(TPOT) TP=4 PP:Lara"e“sm LayoutTP=1 PPt
.
mimmam 2 ="l
e Sp
/ Pipeline Parallel \ / Tensor Parallel \ 1 Computed onthis step Unembedding

GPU Taken from KV cache <Cheese> h
1T e o mm mm mm e mm mm e mm mm e mm e o mm mm o e mm = Em = = |

GPU GPU,
! (T

L2 L3 L4]
l = I Send i = l
AllGather
Recv ReduceScatter

[L1 L2 L3 L4]

)
N ===

<Puffs>

Decode

MUG ’'25

Presentation Outline

* Problems statements
* Analytical Model

* Analysis and Performance Characterization

e Conclusion

Problem Statements

* What are the predominant types, volumes and patterns of

communication during multi-GPU inferencing?

e Can we develop analytical models to predict such communication
with certain parameters? Parallelism degree, model architecture
and such?

* What is the impact of communication patterns when it comes to
SLOs?

 Given a set of resources, what is the comparative impact of different
parallelism layout?

Network Based Computing Laborator

Presentation Outline

* Analytical Model

* Analysis and Performance Characterization

e Conclusion

Analytical Model

* Modeling communication volume across different parallelism layout.

 Covering Tensor/Pipeline/Hybrid Parallelism

e VvLLM Framework + Llama-based dense transformer architecture

Hidden dimension size
Number of transformer layers
Bytes per element

p» | Prefill sequence-length
Number of attention heads

Q Ty O~

t
P

V
Sd
dhead

Tensor-parallel size
Pipeline-parallel size
Vocabulary size

Decode sequence-length
Head dimension

Network Based Computing Laborator

Analytical Model — Tensor Parallelism

h Hidden dimension size t Tensor-parallel size
* Tensor Parallelism: Distributed matrix multiplication L | Number of transformer layers — p Pipeline-parallel size
b Bytes per element v Vocabulary size
across GPUs Sy, | Prefill sequence-length Sq Decode sequence-length
a Number of attention heads dheaq | Head dimension
* Row-Parallel linear layer: input partitioned along 1
.] — 4"‘\ /;: =
dimension, weight along 2"9 dimension - o \} (— oommman \\1
N JLEEEU,'::QHLSEE o |E& QL
* One All-reduce synchronization per layer X| 53| PR &8 [R[~D2 1P| g SR8 |07 oD <
o (=] = c o | = = c
3| 1P it 3| il
* Each Transformer block: ; =
« MLP down-projection | Model | Model
__Parallel _/ \.___ Parallel
. Attention output projection R i
(forward + backward) (forward + backward)

. A total of 2 All-reduce at message size of h elements

. Courtesy: “Megatron-LM: Training Multi-Billion Parameter Language Models Using Model
1 All-reduce at Embedding layer per token Parallelism”
http://arxiv.org/abs/1909.08053

1 Gather at final logit computation per generated token

t—1
Vip = (2L+1) X (Sp+S5—1) xhxbx2 — —|—Sd><%><b

MUG ’25

Analytical Model — Pipeline Parallelism

* Pipeline Parallelism: Places a subset of transformer
layers among GPUs, passing activations using P2P send

& receive h Hidden dimension size t Tensor-parallel size
.]] L Number of transformer layers p Pipeline-parallel size
 Prefill: each pipeline stage forwards 25, hb bytes b | Bytes per element v Vocabulary size
Sp | Prefill sequence-length Sa Decode sequence-length
a Number of attention heads dhead | Head dimension

« Decode: 2hb bytes per generated token

« Number of links: p-1

1%t pipeline rank receives no input, the last pipeline rank
produces no intermediate output

Vip=p—1)x2x (S, +S4—1) xhxb

Network Based Computing Laborator MUG 25

Analytical Model — Hybrid Parallelism

 Hybrid Parallelism: Combining Tensor & Pipeline Para

llelism

 Great for Multi-Node setup as we want to minimize inter-node communication overhead

 Additional All-gather to redistribute activations among tensor parallel workers

* For the 1t pipeline rank, we have an additional embedding All-reduce volume of (S,+S;-1)*h*b

bytes

Vhybrid — Vallfr'educe + VallgatheT + Vgather =+ ‘/202])

2L t—1
Vallreduce — ? X (Sp+Sd—1) X hxbx?2 (T><——

' All-reduce volume reduced by p for pipeline parallel

t—1
Valigather = 2(p — 1) x (Sp +Sa—1) x h x b x (T

(V)
Vgather — Sd X Z X b

h
%Qp:(p_l)XQX(Sp+Sd_1)X?Xb

) h Hidden dimension size t Tensor-parallel size
L Number of transformer layers p Pipeline-parallel size
b Bytes per element v Vocabulary size
Sp | Prefill sequence-length Sy Decode sequence-length
a Number of attention heads dneqaqa | Head dimension

Network Based Computing Laborator

Presentation Outline

* Analysis and Performance Characterization

e Conclusion

Experimental Setup

Hardware:

e (OSC Cardinal system
— Intel Xeon Platinum 8470 (52 cores, 2 GHz)
— 4 NVIDIA H100 (NVLink, 94 GB HBM?2e)
— InfiniBand NDR40O0 (4 NICs/Node)

Software packages:

e PyTorch 2.6 (torch.compile off + no custom allreduce)
e vLLM 0.8.5.postl VO engine

e NCCL2.21.5

Models:

e Llama-3.2-3B (h=3072, L=28, v=128256, Dense)

e Llama-3.1-8B (h=4096, L=32, v=128256, Dense)

e Llama-2-13B (h=5120, L=40, v=32000, Dense)

Serving Configuration: Single Request, Batch Size 1
Profiling: PyTorch Profiler + vLLM RESTful observability API

Network Based Computing Laborator MUG 25

Performance Analysis: Message Size and Frequency

Model | TP Size | Prefill Stage | Decode Stage
| | Collective Count Shape | Collective Count Shape
Llama-3.1- Allreduce 65 [128,4096] Allreduce 8255 [1,4096]
8B Gather 1 [64128] Gather 127 [64128]
gp i 132 Allreduce 65 [128,4096] Allreduce 8255 [1, 4096]
d= Gather 1 [32064] Gather 127 [32064]

TABLE III: Message size and frequency breakdown for intra-node TP using Llama-3.1-8B

| Llama-3.2-3B | Llama-3.1-8B | Llama-2-13B
Message Size (bytes) 786432 6144 1048576 8192 1310720 10240
Count 57 7239 65 8255 81 10287

TABLE IV: Allreduce message size and count comparison across models for end-to-end inference
e Tensor Parallelism

e All-reduce frequency depends on # Transformer layers and Decoding Steps

e Message Size depends on sequence length and hidden dimension

Network Based Computing Laborator MUG 25

Performance Analysis: Message Size and Frequency

Model | PP Size | Prefill Stage | Decode Stage
| | Operation Count Shape | Operation Count Shape

Llama-3.1- 5 Send 2 [128,4096] Send 254 [1,4096]

8B Recv 2 [128,4096] Recv 254 [1,4096]

gp i gg 4 Send 6 [128,4096] Send 762 [1,4096]

d = Recv 6 [128,4096] Recv 762 [1,4096]

TABLE V: Message size and frequency breakdown for pipeline parallelism
Model | TPxPP | Prefill Stage | Decode Stage

| | Operation Count Shape | Operation Count Shape
Allreduce 33 [128,4096] Allreduce 4191 [1,4096]
lélmfaféé'gB e Gather 1 (64128] Gather 127 [64128]
.S'p _ 198 Allgather 2 [128,4096] Allgather 254 [1,4096]
d = Send/Recv 2 [128,2048] Send/Recv 254 [1,2048]

TABLE VI: Message size and frequency breakdown for hybrid parallelism (TPxPP) using Llama-3.1-8B

e Pipeline Parallelism e Key Takeaway
e P2P frequency depends on # pipeline links e Moderate Message Size with high Frequency

e P2P message size remains small and depends on e Decode Stage is more communication heavy

hidden dimension e All-reduce and P2P are the major operations

MUG ’25

Performance Analysis: Communication Volume

PP=4 = Hybrid TP=PP=2 = TP=4

400 600

Q (-]
£ £
= =
o 300 5]
> > 400
c c
S 200 2
S ;
L £ 200
S 100 g
E E
E E
=] 0 o 0
© 128 256 512 ©
Decoding Sequence Length
(a) Llama-3.2-3B
M Lama3.238 M Llama3.18B Llama-2-13B

400
)
=
® 300
£
3
o
>
c 200
2
©
R
S 100
£
E
o
© 0

PP=4 Hybrid TP=PP=2 TP=4

Parallelism Strategy

PP=4 © Hybrid TP=PP=2 = TP=4 PP=4 = Hybrid TP=PP=2 = TP=4

o 1000
£
=
S 750
c
2 500
]
2

l S 250 I I
£
£
=] 0

128 256 512 o 128 256 512
Decoding Sequence Length Decoding Sequence Length
(b) Llama-3.1-8B (¢) Llama-2-13B

e Key Takeaway

e Tensor Parallelism has the most communication overhead that scales
with model size and sequence length

e Pipeline Parallelism has minimal pressure on network, good for
bandwidth-constrained and long-sequence scenarios. However, it is
under-utilizing GPU compute.

e Hybrid Parallelism strikes a balance in communication overhead, but
need to pay attention to critical boundaries

MUG ’'25

Performance Analysis: SLO Evaluation (Llama-3.2-3B)

2000 150 12.00
10.00

1500
100 8.00

1000 6.00

50 4.00

TTFT (ms)
TPOT (ms)

500
2.00

E2E Latency (ms)

0 0.00
TP=2 TP=4 TP=8 TP=2 TP=4 TP=8 TP=2 TP=4 TP=8

0

Tensor Parallelism Degree Tensor Parallelism Degree Tensor Parallelism Degree

(a) End-to-end Latency (b) Time-to-first-token (¢c) Time-per-output-token

e Tensor Parallelism (TP)
e TTFT: improves as we increase TP degree, since prefill stage is mostly compute-bound

e TPOT: more memory-bound, TP-8 has crossed inter-node boundary

MUG ’25

Performance Analysis: SLO Evaluation (Llama-3.2-3B)

5 3000 20.00
g
S 4 15.00
@ — 2000 _
[3 g E
- - ~ 10.00
3 - -
c 2 LL (o)
g I': 1000 &
L 1 5.00
o
i 0 0 0.00

PP=2 PP=4 PP=8 PP=2 PP=4 PP=8 PP=2 PP=4 PP=8
Pipeline Parallelism Degree Pipeline Parallelism Degree Pipeline Parallelism Degree
(a) End-to-end Latency (b) Time-to-first-token (c) Time-per-output-token

e Pipeline Parallelism (PP)

e TTFT: Data dependency + latency scales with # links, PP-8 crosses node boundary

e TPOT: memory-bound, dominated by critical links

Performance Analysis: SLO Evaluation (Llama-2-13B)

20 3000 125

)
g 15 100
9 - 2000 -
o, = g 75
> 10 — -
e i o 50
o ~ 1000 o
® 5 - -
~ 25
w
[
w 0 0 : 0

TP=2PP=4 TP=4 PP=2 TP=8 PP=1 TP=1PP=8 TP=2PP=4 TP=4 PP=2 TP=8 PP=1 TP=1PP=8 TP=2PP=4 TP=4 PP=2 TP=8 PP=1 TP=1PP=8

Parallelism Strategy Parallelism Strategy Parallelism Strategy
(a) End-to-end Latency (b) Time-to-first-token (c) Time-per-output-token

e Hybrid Parallelism (TP + PP)
e Pure Tensor Parallelism has the best Latency, TTFT and TPOT (Keeping GPUs busy)
e Fits low-latency and short generation applications
e Pure Pipeline Parallelism has acceptable E2E Latency & TPOT

e TP=4, PP=2 remains mostly unbalanced, small TP collectives + internode link

e PP =8 wins with only one inter-node link and much less communication

Conclusions

e Inference workloads impose communications with moderate message size and high frequency.
e Decode stage dominates communication frequency.
e All-reduce and P2P are the two major primitives in Tensor, Pipeline and Hybrid Parallelism.

e Tensor Parallelism offers better GPU utilization and computation efficiency but substantial
communication overhead .

e Fits latency sensitive and short generation tasks.

e Pipeline Parallelism offers minimal communication overhead but low GPU utilization and data
dependency, which is detrimental to latency.

e Fits low-bandwidth environments, and long generation tasks.

e While computational parallelization can overcome communication overhead for short
sequences, it diminishes with longer sequences and inter-node deployments.

Network Based Computing Laborator

The High-Performance MPI/PGAS Project

Thank Youl!

{xu.3304, kandadisuresh.1, anthony.301, alnaasan.1}@osu.edu, panda@cse.ohio-state.edu

pased C,
g
3 "3%

AC
] & Full paper is on Arxiv!
https://arxiv.org/abs/250

/.14392

Laboratory

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

MVAPICH N SRXHIDL

MPI, PGAS and Hybrid MPI+PGAS Library

{1

High-Petrformance

https://x.com/mvapich :
Deep Learning

The High-Performance Deep Learning Project

http://mvapich.cse.ohio-state.edu/ htto://hidl.cse.ohio-state.edu/

http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
https://twitter.com/mvapich

	Slide 1: Characterizing Communication Patterns in Distributed Large Language Model Inference
	Slide 2
	Slide 3: Large Language Model Inference
	Slide 4: Large Language Model Inference
	Slide 5
	Slide 6: Problem Statements
	Slide 7
	Slide 8: Analytical Model
	Slide 9: Analytical Model – Tensor Parallelism
	Slide 10: Analytical Model – Pipeline Parallelism
	Slide 11: Analytical Model – Hybrid Parallelism
	Slide 12
	Slide 13: Experimental Setup
	Slide 14: Performance Analysis: Message Size and Frequency
	Slide 15: Performance Analysis: Message Size and Frequency
	Slide 16: Performance Analysis: Communication Volume
	Slide 17: Performance Analysis: SLO Evaluation (Llama-3.2-3B)
	Slide 18: Performance Analysis: SLO Evaluation (Llama-3.2-3B)
	Slide 19: Performance Analysis: SLO Evaluation (Llama-2-13B)
	Slide 20: Conclusions
	Slide 21: Thank You!

