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O V E R V I E W
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• Memory challenges in Long context training

• Hardware hierarchy in offloading

• Fully Pipelined Distributed Transformer with sequence parallel and efficient 

offloading

• Conclusion
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• The latest Llama 3.1 model is trained on 128K context length, using an incremental 

scheme.

• Go from 8K sequence length to 128K, data parallel needs to be sacrificed for context 

parallel.



W H Y  T R A I N I N G  L O N G  C O N T E X T  
I S  H A R D ?

• In model training, GPU memory is mostly taken by the following parts:

• Model parameters

• Optimizer states

• Gradients

• Activations

• Params. & Opt. & Grads. are only related to the model size.

• Number of layers, hidden dimension, FFN dimension, etc.

• Activations are directly related to the context length.

• Tensor: [B, S, N, H]



P E A K  M E M O R Y  I N  O N E  
T R A N S F O R M E R  B L O C K

• In just one Transformer block:

• A single operation can lead to OOM issue.

• For QKV projection, we need 3x GPU memory.

• Hidden state -> Query, Key, Value

• For Attention in backward, we need 8x GPU 

memory.

• q, k, v, attn_fwd_out, grad, dq, dk, dv

• Though they are all of 𝑂(𝑛),

• We see that these constant factors are non-trivial.

OOM OOM



O U R  I N T U I T I O N

• For a very long sequence, 

• When GPU tensor cores are computing some 

sequences, rest of the tokens does not need to 

reside on GPU memory as they will be completely 

idle.

• We can move idling tokens to somewhere else to 

ease the GPU memory pressure.



T O  T H I S

• We propose a Fully Pipelined Distributed 

Transformer (FPDT).

• We incorporate three designs:

• GPU chunking

• Sequence offloading

• Double buffer

• Our results on 4x A100 80GB, 6.7B model:

• Up to 2M sequence length (Training!)

• 16x longer sequence than SOTA (128K)

• Achieve more than 95% of theoretical TFLOPs 

from 256K to 2M

16x longer sequence



M E T H O D O L O G Y

• Chunking 

• Offloading

• Double buffer
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C H U N K I N G  &  O F F L O A D I N G

• Given a sequence of size [𝑆, 𝐵, 𝐷], we split it into 

𝑁 chunks, each chunk is of size [
𝑆

𝑁
, 𝐵, 𝐷].

• In this manner, we can control how large the 

intermediate memory will be by using 

different 𝑵.

• Step 1:

• GPU 𝑖 computes 𝑞1, 𝑘1, 𝑣1, and sends out

• Step 2:

• GPU 𝑗 computes attention on ෞ𝑞1, ෢𝑘1, ෞ𝑣1, and 

sends result back

• Step 3:

• GPU 𝑖 computes MLP



C H U N K I N G  &  
O F F L O A D I N G

• Same for 𝑞𝑚, we iteratively fetch previously 

received 𝑘𝑖 , 𝑣𝑖, calculate the attention, and 

update the output.

• As we mentioned, doing chunking on GPU 

can already save some memory, and 

offloading gives us more. (See later slides)



M E T H O D O L O G Y

• Chunking 

• Offloading

• Double buffer



D O U B L E  B U F F E R  W I T H  
Z E R O  L A T E N C Y

• Though tensor cores are powerful, as we increase the sequence length, latency in token processing will 

increase quadratically.

• We just need to find the chunk size where:

                                                      Token Processing Throughput = PCIe Throughput

• Then we can do Host-to-Device fetching on the next chunk, while GPU is computing on current chunk.



F I N D  T H E  P R O P E R  P O I N T

Chunk size is too small

GPU is starving

D O U B L E  B U F F E R :

Sequence length

L
a

te
n

c
y

Attn.

Loading

• If chunk size is too small, we are wasting GPU computing power. (Low MFU)



F I N D  T H E  P R O P E R  P O I N T

D O U B L E  B U F F E R :

Sequence length
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Attn.

Loading
Chunk size is too large

HBM is wasting

• If chunk size is too large, we are wasting GPU HBM memory. (OOM)



F I N D  T H E  P R O P E R  P O I N T

Chunk size is just proper

Only this gives us a perfect pipeline with no bubbles nor redundancy.

D O U B L E  B U F F E R :

Sequence length

L
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n
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Attn.

Loading

This gives us confidence on how good our method can be.



C H O O S E  
T H E  B E S T  

C H U N K  
S I Z E

• We have two principles:

• We need to reach a high 

FLOPs (>=)

• Not consuming too much 

memory (<=)

• We choose the sequence 

length, where the offloading 

latency can just be hide by the 

compute latency!

We choose the upper bound:
                        64k



F P D T
D O U B L E  B U F F E R  
D E S I G N

• We leverage multiple CUDA streams, responsible for Alltoall 

communication, computation, offloading.

• By carefully examine the data dependency in a Transformer block, 

we overlap most HtoD and DtoH with the attention computation.



P E R F O R M A N C E GPU: 4x A100 80GB

6.7B Model, 256K Seq. Length2.7B Model, 256K Seq. Length 13B Model, 256K Seq. Length

Among different models, we see that 64K chunk performs best.

Smaller chunk size gives longer pipeline, but risks at less overlapping.



R E D U C E D  M E M O R Y  S P I K E

38.0 GB

35.5 GB

33.6 GB



H O W  W E  G E T  H E R E



C O N C L U S I O N

• Long context is crucial for LLMs in language understanding, multimodal, AI4Sceince, etc.

• Training long context is hardware consuming, even with existing parallel techniques.

• Operations like attention, FFN, solely can lead to OOM as they need non-trivial 

intermediate buffer.

• By smartly leveraging host memory with our double buffer design, we reach a new SOTA 

in long context LLM training.

• We increase the context length by 16x, while remaining at over 50% MFU.
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