

JINGHAN YAO

SAM ADE JACOBS

MASAHIRO TANAKA

OLATUNJI RUWASE

HARI SUBRAMONI

DHABALESWAR K. PANDA

OVERVIEW

- Introduction to Long context LLM training
- Memory challenges in Long context training
- Hardware hierarchy in offloading
- Fully Pipelined Distributed Transformer with sequence parallel and efficient offloading
- Conclusion

LONG CONTEXT LLM

LONG CONTEXT IN LLAMA 3.1

- The latest Llama 3.1 model is trained on 128K context length, using an incremental scheme.
- Go from 8K sequence length to 128K, data parallel needs to be sacrificed for context parallel.

GPUs	TP	СР	PP	DP	Seq. Len.	Batch size/DP	Tokens/Batch	TFLOPs/GPU	BF16 MFU
8,192	8	1	16	64	8,192	32	16M	430	43%
16,384	8	1	16	128	8,192	16	16M	400	41%
16,384	8	16	16	4	131,072	16	16M	380	38%

Table 4 Scaling configurations and MFU for each stage of Llama 3 405B pre-training. See text and Figure 5 for descriptions of each type of parallelism.

WHY TRAINING LONG CONTEXT IS HARD?

- In model training, GPU memory is mostly taken by the following parts:
 - Model parameters
 - Optimizer states
 - Gradients
 - Activations
- Params. & Opt. & Grads. are only related to the model size.
 - Number of layers, hidden dimension, FFN dimension, etc.
- Activations are directly related to the context length.
 - Tensor: [B, **S**, N, H]

PEAK MEMORY IN ONE TRANSFORMER BLOCK

- In just one Transformer block:
- A single operation can lead to OOM issue.
- For QKV projection, we need 3x GPU memory.
 - Hidden state -> Query, Key, Value
- For Attention in backward, we need 8x GPU memory.
 - q, k, v, attn_fwd_out, grad, dq, dk, dv
- Though they are all of O(n),
- We see that these constant factors are non-trivial.

OUR INTUITION

- For a very long sequence,
- When GPU tensor cores are computing some sequences, rest of the tokens does not need to reside on GPU memory as they will be completely idle.
- We can move idling tokens to somewhere else to ease the GPU memory pressure.

TO THIS

- We propose a Fully Pipelined Distributed Transformer (FPDT).
- We incorporate three designs:
 - GPU chunking
 - Sequence offloading
 - Double buffer
- Our results on 4x A100 80GB, 6.7B model:
 - Up to 2M sequence length (Training!)
 - **16x** longer sequence than SOTA (128K)
 - Achieve more than 95% of theoretical TFLOPs from 256K to 2M

METHODOLOGY

- Chunking
- Offloading
- Double buffer

METHODOLOGY

- Chunking
- Offloading
- Double buffer

CHUNKING & OFFLOADING

- Given a sequence of size [S, B, D], we split it into N chunks, each chunk is of size $[\frac{S}{N}, B, D]$.
- In this manner, we can control how large the intermediate memory will be by using different N.
- Step 1:
 - GPU i computes q_1, k_1, v_1 , and sends out
- Step 2:
 - GPU j computes attention on $\widehat{q_1}$, $\widehat{k_1}$, $\widehat{v_1}$, and sends result back
- Step 3:
 - GPU *i* computes MLP

CHUNKING & OFFLOADING

- Same for q_m , we **iteratively** fetch previously received k_i , v_i , calculate the attention, and update the output.
- As we mentioned, doing chunking on GPU can already save some memory, and offloading gives us more. (See later slides)

METHODOLOGY

- Chunking
- Offloading
- Double buffer

DOUBLE BUFFER WITH ZERO LATENCY

- Though tensor cores are powerful, as we increase the sequence length, latency in token processing will increase quadratically.
- We just need to find the chunk size where:

Token Processing Throughput = PCIe Throughput

• Then we can do Host-to-Device fetching on the next chunk, while GPU is computing on current chunk.

DOUBLE BUFFER: FIND THE PROPER POINT

• If chunk size is too small, we are wasting GPU computing power. (Low MFU)

DOUBLE BUFFER: FIND THE PROPER POINT

• If chunk size is too large, we are wasting GPU HBM memory. (OOM)

DOUBLE BUFFER: FIND THE PROPER POINT

Chunk size is just proper

Only this gives us a perfect pipeline with no bubbles nor redundancy.

This gives us confidence on how good our method can be.

CHOOSE THE BEST CHUNK SIZE

- We have two principles:
 - We need to reach a high FLOPs (>=)
 - Not consuming too much memory (<=)
- We choose the sequence length, where the offloading latency can just be hide by the compute latency!

We choose the upper bound: **64k**

FPDT DOUBLE BUFFER DESIGN

- We leverage multiple CUDA streams, responsible for Alltoall communication, computation, offloading.
- By carefully examine the data dependency in a Transformer block, we overlap most HtoD and DtoH with the attention computation.

PERFORMANCE GPU: 4x A100 80GB

Smaller chunk size gives longer pipeline, but risks at less overlapping.

Among different models, we see that <u>64K</u> chunk performs best.

REDUCED MEMORY SPIKE

HOW WE GET HERE

	Training strategies									Performance		
	TP.	AC.	OC.	UL.	ZeRO-1	ZeRO-2	ZeRO-3	FPDT	Max len.	HBM.	MFU	
	√								32K	64.3G	9.4%	
	✓	\checkmark							128K	61. 2 G	19.4%	
	✓	\checkmark	\checkmark						512K	78.7G	32.7%	
0D I lama 2				\checkmark	\checkmark				64K	58.9G	15.3%	
8B Llama 3 8 GPUs				\checkmark		\checkmark			64K	54.5G	15.3%	
0 01 03				\checkmark			\checkmark		64K	52.3G	21.0%	
		\checkmark	\checkmark	\checkmark	\checkmark				512K	65.5G	46.8%	
		\checkmark	\checkmark	\checkmark		\checkmark			512K	65.5G	46.8%	
		\checkmark	\checkmark	\checkmark			\checkmark		512K	60.1G	47.2%	
		\checkmark	\checkmark				\checkmark	*	4M	68.0G	55.7%	

A comprehensive analysis on long-context LLM training with different training techniques. **TP.** denotes tensor parallel. **AC.** denotes activation checkpoint. **OC.** denotes activation checkpoint with CPU offloading. **UL.** stands for Ulysses. **FPDT** is our proposed Fully Pipelined Distributed Transformer.

CONCLUSION

- Long context is crucial for LLMs in language understanding, multimodal, Al4Sceince, etc.
- Training long context is hardware consuming, even with existing parallel techniques.
- Operations like attention, FFN, solely can lead to OOM as they need non-trivial intermediate buffer.
- By smartly leveraging host memory with our double buffer design, we reach a new SOTA in long context LLM training.
- We increase the context length by 16x, while remaining at over 50% MFU.