L0
™~
V=0V o035 o
o
| Z a2z Z scomeas 2z
ILAINAAUAP -
mz NAJTRR. o
q = - =)
o O — LS
H - VYD =220« -
S =l 44
@,AENT JMMTRW <
RTIE <« v < < 0 -
- ZF RN T N
O Z a =
@ I m
OO0 <w :
=L K y
_EGT
-

e © o ° ®
oiooofo T ... °
oO. Le® of ®

®0000000°
®0000 0@
e o

OVERVIEW

* Introduction to Long context LLM training

Memory challenges in Long context training

Hardware hierarchy in offloading

Fully Pipelined Distributed Transformer with sequence parallel and efficient
offloading

Conclusion

LONG CONTEXT LLM

Exponential Growth of Context Length in Language Models

Tracking the growth in input context length over time
Created by: artfish.ai

Gemini 1.5 Pro 2M

Gemini 1.5
1M
® OpenAl
8 Gooals 2M tokens
- ® Anthropic Claude 2.1
=
S GPT-4 Turbo
& Claude 1.2
100K ‘
=
)
5 GPT-4-32K Gemini 1.0
[
o GPT-3.5 Turbo
X ur
£ &)
e i GPT-4
3 ©
o
Fe)
2
c 512 tokens GPT-3
= @
1K

GPT-1 BERT
e o

2018 2019 2020 2021 2022 2023 2024
Model Release Date

Note: Bubble size corresponds with input context length.

artfish.ai

LONG CONTEXT IN LLAMA 3.1

* The latest Llama 3.1 model is trained on 128K context length, using an incremental
scheme.

* Go from 8K sequence length to 128K, data parallel needs to be sacrificed for context
parallel.

GPUs TP | CP | PP DP Seq.Len.

Batch size/DP Tokens/Batch ‘ TFLOPs/GPU BF16 MFU

8,192 8 1 16 64 8,192 32 16M 430 43%
16.384 & 1 16 128 8.192 16 16M 400 41%
116384 8 | 16 | 16 4 131.072 16 16M 380 38% |

Table 4 Scaling configurations and MFU for each stage of Llama 3 405B pre-training. See text and Figure 5 for descriptions
of each type of parallelism.

WHY TRAINING LONG CONTEXT
IS HARD?

* In model training, GPU memory is mostly taken by the following parts:
* Model parameters
* Optimizer states
« Gradients
* Activations

* Params. & Opt. & Grads. are only related to the model size.

* Number of layers, hidden dimension, FFN dimension, etc.

 Activations are directly related to the context length.

 Tensor: [B, S, N, H]

PEAK MEMORY IN ONE
TRANSFORMER BLOCK

* Injust one Transformer block:
» Asingle operation can lead to OOM issue.

» For QKV projection, we need 3x GPU memory.
« Hidden state -> Query, Key, Value

* For Attention in backward, we need 8x GPU

memory.

* q, k, v, attn_fwd_out, grad, dqg, dk, dv

« Though they are all of 0(n),

« We see that these constant factors are non-trivial.

o =
g - £ .
3 £ & 8§ z 2
Activations
Forward Nd 3Nd . ANd 4ANd .,
I 202020
I — | —]
. [] | —
|] |] r—
DR R RN R

OUR INTUITION

» For avery long sequence,
Idle In computing Idle

* When GPU tensor cores are computing some sequence [[|[IEACACHONOOOOONOEIREENEEENEEOEEE

sequences, rest of the tokens does not need to
reside on GPU memory as they will be completely
idle.

* We can move idling tokens to somewhere else to

ease the GPU memory pressure.
Tensor Cores

TO THIS

16x longer sequence

-@- Ulysses *
350 =@~ FPDT w. chunking . /
. . ° ° o w. offloadin " u
* We propose a Fully Pipelined Distributed S FPOT w dovble buter 5 / —"

Transformer (FPDT).

» We incorporate three designs: /i/

* GPU chunking

« Sequence offloading

200

 Double buffer pe

.
\
\

« Our results on 4x A100 80GB, 6.7B model: w ./ /‘/
« Up to 2M sequence length (Training!) . ‘
« 16x longer sequence than SOTA (128K) 16K 32K 644K K e 512K M

e Achieve more than 95% of theoretical TFLOPs
from 256K to 2M

METHODOLOGY

* Chunking
+ Offloading

* Double buffer

METHODOLOGY

« Chunking
« Offloading

* Double buffer

CHUNKING & OFFLOADING

» Given a sequence of size [S, B, D], we split it into

)) S (Optional)
N chunks, each chunk is of size [ﬁ’ B,D]. 1 Input Yy Caching k; , v1 to host memory (Output \
¢ ™,
o All2all initiali
« In this manner, we can control how large the SBD s > Tt] el S.B.D
i a
intermediate memory will be by using Chamkiy a1 A o MLP |
diﬁerent N kl R -)'i;‘l Updat -
R R
« Step 1: (%o]
Caching to Host memory
* GPU i computes q4, kq, V1, and sends out . cru, | \ GPU;) GPU,
+ Step 2:

* GPU j computes attention on @y, E, 71, and
sends result back
« Step 3:
* GPU i computes MLP

CHUNKING &
OFFLOADING

« Same for q,,, we iteratively fetch previously
received k;, v;, calculate the attention, and
update the output.

« As we mentioned, doing chunking on GPU
can already save some memory, and
offloading gives us more. (See later slides)

Gm | | All2all

4 oy
zero initialized
_____________ > G Output
;;_1—)- Partial Attn ﬁ)-[Cutput]
(%)
G
N 2 ¥
ke —»| Partial Attn ﬁ)-[Qutput
o
G
N 2 ¥
k3 > Partial Attn —e)[Output
(=] | All2all
| I T .
n Q;.lt
bl vy ¥
Viee-|--»lk, —» Partial Attn ﬁ)[Output
)Eg """""""
(EE)R)E - - -
Caching to Host memory
GPU;

Output

MLP

GPU;

METHODOLOGY

* Chunking
+ Offloading

 Double buffer

DOUBLE BUFFER WITH
ZERO LATENCY

« Though tensor cores are powerful, as we increase the sequence length, latency in token processing will

increase quadratically.
« We just need to find the chunk size where:

Token Processing Throughput = PCle Throughput

« Then we can do Host-to-Device fetching on the next chunk, while GPU is computing on current chunk.

DOUBLE BUFFER:
FIND THE PROPER POINT

Attn.
Chunk size is too small '
DRAM HBM DRAM / Loading
Sequence [

Latency

GPU is starving

Sequence length

* If chunk size is too small, we are wasting GPU computing power. (Low MFU)

DOUBLE BUFFER:
FIND THE PROPER POINT

Attn.
Chunk size is too large .
DRAM HBM DRAM Loadmg
Sequence

Latency

HBM is wasting

Sequence length

 If chunk size is too large, we are wasting GPU HBM memory. (OOM)

DOUBLE BUFFER:
FIND THE PROPER POINT

Attn.
Chunk size is just proper .
DRAM HBM DRAM . Loading
Sequence ' ' g
Q
e
=1
-
Tensor Cores

Sequence length

Only this gives us a perfect pipeline with no bubbles nor redundancy.

This gives us confidence on how good our method can be.

* We have two principles:

C H 0 o S E » We need to reach a high Emre

FLOPs (>=) e
T H E B E S T 1014 | . : o= - _
* Not consuming too much - :
3 10 et e
CHUNK mermary] R
HE e
S I Z E « We choose the sequence O 1 =< -
== -2
length, where the offloading Wi = aunil i
latency can just be hide by the ook e e ey e

compute latency!

We choose the upper bound:
64k

Attn backward Attn backward

Attn backward Attn backward
p2H | G D2t |dg; |G D2H |dga| G2 D2H |dg3|G'3 Alltoall QKV proj. backward
Allroall | G dqo|dko|dvg dkoldvg dkoldvg dko|dvy dqgo|dko|dvg dcg
H2D | gy | ko | Vo | O H2D | ¢ | O H2D | ga | O: H2D | g3 | O: H2D | 1 | 01 |dgq|G
Attn. Offload 90 | ko [Y0 | %0 d1 |01 q2 | 02 d3 | 03 d1 | 61 |dg1|G1
stream New dAQO di@(} d';)[] New d&l Alitoall | (¢ New dAQZ Alitoall | G5 New dAQB Alitoall | G5 k1 (1
. Free hg
Proj. Offload H2D h,g Free 60 (fg Free (fl dl Free (fg q} Free 63 j;;
stream H2D hl

FPDT

Data is updated in kernel

DOUBLE BUFFER
DESIGN

Memory can be overwritten by other tensors

We leverage multiple CUDA streams, responsible for Alltoall
communication, computation, offloading.

By carefully examine the data dependency in a Transformer block,
we overlap most HtoD and DtoH with the attention computation.

TFLOPs

240

8K 16K

32K

2.7B Model, 256K Seq. Length 6.7B Model, 256K Seq. Length 13B Model, 256K Seq. Length

64K
Chunk size

PERFORMANCE cpru:axat00806e

e A
-
-
-
-
-
) ~
_//-/ - 36 61
—_— -~ —_
- @ e o
5 0 - Q
Z ~ N
c 7] ~ _ 0
7.0 © o //] o
£ Q £ [=)
- 24 o
L] W 1] TR
L= = = =
= 220 = -3 =
| m
I =
0) =
~ -)
—e— TFLOPs e ~ —e— TFLOPs 17 —e— TFLOPs
--- Theoretical TFLOPs upper bound 180- y - -== Theoretical TFLOPs upper bound -~ Theoretical TFLOPs upper bound
—=— HBM Memory o ~m— HBM Memory 150 - —m— HBM Memory =55
128K 8K 16K 32K 64K 128K 8K 16K 32K 64K 128K
Chunk size Chunk size

Smaller chunk size gives longer pipeline, but risks at less overlapping.

Among different models, we see that 64K chunk performs best.

;iBM i\ﬂem_ory (.('SB)

REDUCED MEMORY SPIKE

(c) 8 chunks in attention, 16 chunks in FFN

HOW WE GET HERE

Training strategies Performance
TP. AC. OC. UL. ZeRO-1 ZeRO-2 ZeRO-3 FPDT | Maxlen. HBM. MFU
v 32K 643G 9.4%
v v 128K 61.2G 19.4%
v v v 512K 787G 32.7%
v v 64K 589G 15.3%
55 Llama 3 v v 64K 545G 15.3%
v v 64K 523G 21.0%
v v v v 512K 65.5G 46.8%
v v v v 512K 65.5G 46.8%
v v v v 512K 60.1G 47.2%
v v v * 4M 68.0G 55.7%

A comprehensive analysis on long-context LLLM training with different training techniques. TP. denotes tensor parallel. AC.
denotes activation checkpoint. OC. denotes activation checkpoint with CPU offloading. UL. stands for Ulysses. FPDT is our proposed
Fully Pipelined Distributed Transformer.

CONCLUSION

Long context is crucial for LLMs in language understanding, multimodal, Al4Sceince, etc.
Training long context is hardware consuming, even with existing parallel techniques.

Operations like attention, FFN, solely can lead to OOM as they need non-trivial
intermediate buffer.

By smartly leveraging host memory with our double buffer design, we reach a new SOTA
in long context LLM training.

We increase the context length by 16x, while remaining at over 50% MFU.

	Slide 1: Democratizing long context llm training and finetuning
	Slide 2: Overview
	Slide 3: Long context llm
	Slide 4: Long context in Llama 3.1
	Slide 5: Why training long context is hard?
	Slide 6: Peak Memory in one Transformer block
	Slide 7: Our intuition
	Slide 8: TO this
	Slide 9: methodology
	Slide 10: methodology
	Slide 11: Chunking & offloading
	Slide 12: Chunking & offloading
	Slide 13: methodology
	Slide 14: Double buffer with zero latency
	Slide 15: Find the proper point
	Slide 16: Find the proper point
	Slide 17: Find the proper point
	Slide 18: Choose the best chunk size
	Slide 19: Fpdt double buffer design
	Slide 20: Performance
	Slide 21: Reduced memory spike
	Slide 22: How we get here
	Slide 23: Conclusion

