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/High-performance computing (HPC) systems are becoming increasingly water-intensive due to their reliance on water-based cooling and the energy used in power generation.\
However, the water footprint of HPC remains relatively underexplored—especially in contrast to the growing focus on carbon emissions. In this paper, we present a comprehensive
water footprint analysis for HPC systems. Our approach incorporates region-specific metrics, including Water Usage Effectiveness (WUE), Power Usage Effectiveness (PUE), and
Energy Water Factor (EWF), to quantify water consumption using real-world data. By evaluating four representative HPC systems, Marconi, Fugaku, Polaris, and Frontier, we provide
iImplications for HPC system planning and management. Furthermore, we explore the impact of regional water scarcity and nuclear-based energy strategies on HPC sustainability. Our

kﬁndings aim to advance the development of water-aware, environmentally responsible computing infrastructures.
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" Motivation. Some HPC centers are located in relatively water-scarce regions. Currently, the
carbon footprint of energy sources as main influencing factors when determining where HPC
centers should be located and how they should be operated.

J

Water Consumption in HPC
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Indirect Water. Water used in power generation, Direct Water. Water used for system cooling
Embodied Water. Water used in hardware manufacturing
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ThirstyFLOPS: Tool for Estimating Water Footprint

Parameter Parameter Description Input O/Derive A Data Range

Data Source

Unit

Reference

Nic Number of ICs (CPU/GPU/memory/storage) O 9-26 (Vary across hardware) From hardware design None [25, 40]
Wie Packaging water overhead A 0.6 From manufacturer L [58, 69]
Adie Die size of processors (CPU/GPU) O Vary across hardware From CPU/GPU design mm?* (45, 47, 65)
kP Yield Fab yield rate of hardware manufaturing (@) 0-1 (0.875 as default) From manufacturer None [25] P a ra m ete rS Of
%‘ Location Manufacturing location of hardware (@) TSMC or GlobalFoundries From manufacturer None (74]
2 Process Node Semiconductor manufacturing process of CPU/GPU O 3-28 (Vary across hardware) From CPU/GPU design nm (6] T h i rSt F L O P S f O r
= UPW Ultrapure water usage during manufatruing A 5.9-14.2 (Vary across process node) From manufacturer L (6] y
PCW Process cooling water during manufatruing A Vary across locations and process node From manufacturer L (6] . .
WPA Water for power generation during manufatruing A Vary across locations and process node From manufacturer L (6] e Stl m atl n g Wate r_
WPC Water footprint per capacity of DRAM, HDD, SSD A 0.8 (DRAM), 0.033 (HDD), 0.022(SSD) From manufacturer L/GB [53, 54, 59|
Capacity Capacity of DRAM, HDD, SSD O Vary across hardware From manufacturer GB (16, 22, 36, 38)
E Energy consumption O Vary across applications/hardware From hardware profiling kWh [60, 63, 70]
Wet bulb temperature Site-related wet bulb temperature (@] Vary across HPC locations From weather report & (46) An a I yze Cu rre nt
s WUE Water usage effectiveness A =0.05 From wet bulb temperature L/kWh [24)
: PUE Power Usage Effectiveness 9 le,‘f{\;icles }:rzjni:fai(g; ')4’ From HPC report None [15, 37, 63, 66 H P C Sy Ste m S ]
-;.5" mix% Percentage energy mix usage o 0-100 From power grid % [44)]
EWFenergy energy water factor of energy sources A 1-17 From environment report L/kWh (42, 43, 51)
EWF energy water factor of HPC system A Vary across locations From mix% and E“’chrgy L/kWh (44]
WSpdirect Direct water scarcity index O 0.1-100 From WSI report None (9, 29, 39]
WS e Indirect water scarcity index O 0.1-100 From WSI report and power plant locations  None [9, 29, 39]

Name Location Processor (CPU/GPU) Start Year
: Bologna, Italy IBM Power9 AC922
Marcond L16] CINECA NVIDIA V100 SXM2 <
Kobe, Japan Fujitsu A64FX 48C
Frgaku [ 20] Riken CCS No GPU e
. Lemont, IL, US AMD EPYC 7532
Folaxls: [36] Argone National Lab NVIDIA A100 PCle el
Frontier [38] Oak Ridge, TN, US AMD EPYC 7A53 2021
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/Observation 1. The HPC systems\
which have a large storage capacity
backed by traditional hard disk drives,
have a significant embodied water
footprint coming from hard drives.
while more expensive, are
favorable in terms of embodied water

\footprint compared to hard drives. /

sustainability metrics (carbon and water).

Insight: Achieving practical environmental sustainability of an HPC system is extremely
challenging for facility designers — different HPC components rank differently on different
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/Observation 2. Both the geographic\
location of the hardware manufacturer
and the HPC center play a critical role
iIn the system’s overall water footprint.
fabrication  facilities in
water-scarce regions can lead to high
embodied water footprints, even if

\operational water use remains low. /
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\_conditions, and water scarcity of the local region.

Insight: Careful consideration of manufacturing sites is critical for HPC systems, in addition to
operational site selection for HPC systems. Even for operational site selection, we highlight the
need for modeling and accounting for water intensity of energy generation, year-round weather
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Ins:ght The water consumed to generate electricity (besides water needed to cool the HPC\
system) must be taken into account toward overall water-optimized HPC system operations.

Insight: HPC facilities and city operators should dynamically determine what fraction of total
water goes where (“water capping"”) when water is a constrained resource -- toward the cooling
\Of the datacenter, or toward energy generation.
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