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What is TACC? 

• We are the UT and UT System Research 

Computing Facility

• We are also the largest NSF-funded national 

computing center for open science

• As well as NIST, NASA, NIH, DARPA, DOD, etc.

• 200+ Dedicated staff

• Altogether, ~20k servers, >1M CPU cores, 1k GPUs

• About seven billion core hours over several million 

jobs per year – for 3,000 projects and ~40,000 users 

per year. 
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Federal Investments in TACC are over $1B in last 10 years; and over $1B slated for next 10 years.

While we are a national provider,  we have *by far* the most computing resources of any University 

in the country (and often the world), and will continue to through the 2020s. 



Who uses TACC? 

• At UT, about 70% of NSF grant recipients, and >50% of NIH grant recipients, are TACC Users. 

• (~$199M to UT Austin in 2024 *not* including awards directly to TACC). 

• Around the country, users doing unclassified research at more than 400 institutions use TACC on 

over 3,000 projects for year. 

• Including a number of startups; large industry use us more for tech pathfinding. 

• Since it’s inception in 2001, TACC has had well over 100k users – 90k of which are students. 

• >30k use the resources in any given year. 

• TACC users have 4 Nobel prizes, many Gordon Bell prizes, and countless “first of its kind” 

computational achievements. 

• Access to TACC is provided through: 

• NSF ACCESS and NSF Leadership Computing Programs. 

• NAIRR Pilot (National AI Research Resource). 

• UT-Austin and UT-System programs. 

• Direct investment from partner institutions (Texas A&M, Texas Tech, North Texas, etc.). 

• Direct contracts through other agencies (though NSF provides some courtesy time to NIH, DOE, NASA, etc.). 
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• I say this is every year, but I can’t overstate how important it is to have the MVAPICH 

team on board. 

• MVAPICH is part of the stack on every Intel, AMD, NVIDIA system we have, including all 

the CPU ones and all the GPU ones!

• Our strategy for every system is to have two compilers and two MPI stacks.

• Most vendors would prefer you have one!  

• Our next system will have MVAPICH and OpenMPI 

• Not only do we get a tuned stack for our systems, and early insight into potential 

network issues, we also get to keep the vendors honest and get an invaluable tool for 

debugging! 

• We’ve been working with the OSU team for 19 years, have them as funded partners 

through the lifetime of the Leadership Facility, and hope it goes on forever!  

MVAPICH at TACC



Stampede 3 in Context: 

TACC Compute hardware 
The big systems in 2025
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• Rough total peak power, 9.5MW

• Rough total average power, ~6MW

• Plus cooling power

• Horizon will add 13MW

AI Inference endpoint hosting available very soon

Smaller NSF Platforms: 

 Jetstream – Cloud

 Chameleon – CS Testbed

Other  Compute Platforms: 

 Cyclone - Kubernetes

Storage Platforms: 

    Ranch – Archive

    Corral – Published Collections

    Stockyard. -- Sitewide Work



Vision – The NSF Leadership Class Computing Facility

• A more capable follow-on to the current (aging) NSF 

leadership systems

• A more holistic, long term, and collaborative view of 

how we support “leadership applications”. 

• An NCAR-like leader and anchor for the NSF 

computational science and engineering community, 

existing in the context of other NSF and University 

investments in research computing. 

• A broader view of HPC, with associated systems and 

services: 

• Simulation, Analytics, AI, of course. 

• Instruments/Edge/IoT

• Interactive, Urgent, Automated, and Batch

• Data Lifecycle and Reproducibility

• Workforce Development for a diverse technology and 

science community of researchers

• Robust Public Outreach
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• Fully funded in FY2026 President’s budget – not entirely sure how that 

happened – as well as the Senate and House drafts, so we are 

optimistic we are moving forward as planned. 

• The Leadership Class Computing Facility (LCCF) is the first 

Cyberinfrastructure project funded through the NSF MREFC (Major 

Research and Facilities Construction Fund).  

• A ”sea change” in the way NSF invests in computing. 

• Allows partnerships on the same scale as the instruments. 

• E.g. currently involved in designing the data service for ngVLA in the mid-2030s. 

A Quick Note on the LCCF
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• Accelerated: 2,000 GPU nodes with a Grace socket and two Blackwell GPUs, 800Gb 
Infiniband (non-blocking). 

• CPU:  4,750 Vera-Vera nodes, with two 88-core Vera sockets, 400Gb Infiniband. 

• Primary compute capability will be : 

• ~300 PF double precision (10x Frontera) (15-20x for most apps). 

• ~10 EF ”TF32” precision.

• ~20 EF   bfloat16 precision.

• Shared filesystem with VAST, Infiniband connected, roughly 400 usable PB, 100% 
Solid State.  (8/16TB/s W/R).

• The system will be housed in a co-location facility, built to spec, with 15MW in the initial 
buildout, 20MW available. 

Horizon (The First LCCF System) 
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• 2,000 port non-blocking Fat Tree for GPUs at 800Gbps.

• 4,750 port non-blocking Fat Tree for CPUs at 400Gbps. 

• We don’t see the need for full non-blocking *between* those, as jobs spanning 

those partitions should be rare (if ever, should history hold). 

• The “Core”, network (3rd level of tree) bridges in those two networks, with an 

additional ~800 ports at 400Gbps for storage nodes. 

• Design target of 20TB/s to the storage, and between the fabrics. 

• Storage also has a back end IB network… between the filesystem compute 

servers and the actual Flash arrays, more than 1k additional nodes. 

• Total roughly 9k endpoints, 15k+ cables. 

A Little more on the Network 
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TACC Horizon - Three Level Design

L2 to L3 BW from Islands

VV=18*6*100 = 10.8 TB/s L3-1 L3-2 L3-3

GB=18*6*100 = 10.8 TB/s QM3400 QM3400 QM3400

Storage = 8*24*100 = 19.2 TB/s

L2-1 L2-18 1x XDR Uplinks
QM3400 QM3400 QM3400 QM3400 QM3200 QM3200

18x L2s 18x L2s S-L1-1                         8x S-L1s S-L1-8 2x XDR Uplinks
L2-19 L2-36

4x XDR Uplinks
 Storage Front-End

728 x NDR200 8x XDR Uplinks
UL: 24x 800G = 19.2 Tb/s (per leaf)

QM3200 QM3200 QM3400 QM3400 DL: 91x 200G = 18.2 Tb/s (per leaf)
66x L1s              28x L1s All 36 OSFP ports per switch populated.

L1-1 L1-66 L1-67 L1-94 in order to keep ASIC 1 and 2 blanaced

VV Nodes GB Nodes
4750x XDR400 2000x XDR (800G) Socket Direct
Non-Blocking Non-Blocking

UL: 36x 800G = 28.8 Tb/s (per leaf) UL: 72x 800G = 57.6 Tb/s (per leaf)
DL: 72 x 400G = 28.8 Tb/s (per leaf) DL: 72x 800G = 57.6 Tb/s (per leaf)

NOTES:
Compute Switches : 66x QM3400s; 66x QM3200s
Storage Switches : 1x QM3400s; 8x QM3200s
VV and GB Single Rack SU with 1 leaf per rack
Storage is 28 racks. Storage L1s will be one every 3.5 racks
GB Nodes will require Socket Direct due to PCIe gen 5
Open Ports (XDR Logical Ports) 
    - All Compute L1 = 0; Storage L1 : 0
    -VV L2 = 2 per L2; GB L2 = 26 per L2
    -L3 = 8 per L3
Storage Back End Networking designed and provided by VAST
Storage front-end are QSFP112 NDR200
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• AUCC – Diverse pathways to Data Science and 

Computing

• Leverage five HBCUs, that are co-investing in data science as a 

focus area.

• NCSA  - Understand how to exploit new chips for AI for our 

application mix

• And in particular how to improve I/O to them, often an accelerator 

afterthought. 

• PSC – Data Intensive Computing 

• Data Mirror for published archives, a focus on protected data and 

FAIR access.

• SDSC – Testbeds focused on a subset of Science Cases: 

• ML Inference in scientific workflow

• Exabyte size instrument data workflows

• Democratization of access (via PATH/OSG).  

Distributed Centers



our “Bridge” between Frontera and Horizon

Vista (Gigabyte/NVIDIA) 

ARM CPUs (not x86!) 

More AI-focused

600 “Grace-Hopper” Nodes

260 “Grace-Grace” Nodes

VAST Filesystem

NextGen Infiniband. 

Entered production summer 2024

8/19/2025 12





The AI disruption

• AI *might* replace *some* of our HPC simulation workload, but how much is 

debatable (and it’s almost definitely not all). 

• AI *probably* will be a significant disruptor in the overall science workflow. 

• AI has *DEFINITELY* disrupted the scientific computing marketplace. 
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So what Issues Do we Face Moving Forward 

with Horizon and other AI-driven system? 

• Nodes are fatter (including in *cost*). 

• We have lots more network paths – in both kind and quantity. 

• We have a lot more networking software “options”. 

• Unified Memory is a simpler programming model… but optimization will be 

harder (especially to get fast messages). 



We have bigger, more expensive nodes. 

• Rough math on “per node” pricing (all in, including storage and network): 

• Ranger, 2006:  $7,600 (~4k Quad Socket Nodes) -- ~2k per CPU socket 

• Stampede, 2012: $5,000 (6400 dual Socket) -- ~2k per CPU socket

• Stampede2, 2017: $5,000 (6k mixed dual and single socket) -- ~$3.5k/socket 

• Frontera, 2019:  $7,300 (~8k dual socket nodes) -- ~$3.5k/socket

• Typical NVL-72 rack today:  $205,000 (18 dual socket, quad, GPU) ~$100k, per CPU 

socket. 

• So, on a per node basis, we’ve gone up ~30x in node price (for a much more 

capable node) in ~5 years. 

• Implications? 



17

• In case you haven’t noticed, government funding for higher ed and open science in general 

is not increasing. 

• Whether you get an NVL-4 or NVL-72 solution, your basic “hardware” node is two boards, 

each with a Grace and two Blackwells (and getting denser in Rubin). 

• We’re going to treat that as 2 nodes to mitigate this some. 

• The nodes have much more capacity… but if you want to optimize performance on a multi-

node application, your basic allocation unit is a node.  

• Yes, you can put a bunch of VMs on, or use kernel limits, or containers, or any number of things… but 

you still are sharing *something* : Network interface, memory bandwidth, GPU-CPU bandwidth, etc. 

• Optimize MPI performance on a node with 8 containers if you only see your container, and you have *no 

idea* what the other 7 are doing to the network.  

• Do we limit each one to 1/8th the bandwidth through QoS mechanisms we don’t really have? 

• What if other containers are using more power, and your slows down? 

• A lot of “512 node” machines are about to become 32 node machines… and we aren’t ready 

for that (scheduling, QoS, power management, etc.).  Wait times will go up.  

Implications of raising node costs



OK, let’s say you can afford some nodes… 

let’s talk about the network. 
• A nameless, “typical” NVL-72 node via NVIDIA today. 

• Count those interfaces per node: 

• 11 external interfaces per node!

• 4 different speeds and latencies...before you think about 

topology.  

• NVLink, Infiniband, ethernet, plus DPU-based IB. 

• Let’s not forget the CPU-CPU and CPU-GPU connectivity. 

• Think about setting up libraries for “optimal” routing of 

messages in this environment. 

• Odds users build their Python app containers to pick 

the correct network?

• Hint: when there were two choices, they were already near 

zero. 
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• For many things, unified memory is a wonderful thing. 

• But for performance, actually knowing where your data is is key to 

reducing copies, getting transfer rates, etc. 

• In the node on the previous slide, we have one address space: 

• But two physically separate LPDDR memories 

• Four physically separate HBM memories. 

If you got the network right, be sure things 

come from the right memory.



Consider all the options. 

• Oversimplifying somewhat, but “old” GPU nodes: 

• Data is in CPU or GPU memory (one CPU is probably directly connected to PCI NIC, one is not). 

• You can send a message from the CPU memory, or “GPU direct” to copy over PCI directly to NIC. 

• Now: 

• Your data can be of any of the six memory locations on the node. 

• You can message over NVLINK or IB (let’s just stick to messages). 

• Which is better for a small message/barrier, sending over NVLINK from CPU memory, or sending over , IB from 

CPU memory? 

• Or staging from CPU to GPU memory then using NVLINK? 

• Or staging from GPU to CPU memory then using IB? 

• Oh, wait, you have different node lists for each of those networks, so you should optimize differently in-rack or out-of-rack 

– but in-rack for NVLINK may not mean the same TOR for IB switching. 

• Which IB link?  What if it’s on the other GB board? 

• There are lots of options. 

• But the software will magically figure this out right?  And with unified memory it doesn’t matter. 



Let’s take an example from a “simpler” 

Grace-Hopper configuration. 
Consider these three loops, doing a Python Matrix Multiply: 

m, n, k = 65536, 32768, 8192

A = np.random.rand(m, n)

B = np.random.rand(n, k)

C = np.random.rand(m, k)

start = time.time()

D = cp.matmul(cp.asarray(A), 

cp.asarray(B) )

elapsed = time.time() - start

print(f"MatMul:  Time: {elapsed:.2f}s")

m, n, k = 65536, 32768, 8192

A = np.random.rand(m, n)

B = np.random.rand(n, k)

C = np.random.rand(m, k)

start = time.time()

D = cp.matmul(cp.asarray(A), 

cp.asarray(B) )

elapsed = time.time() - start

print(f"MatMul:  Time: {elapsed:.2f}s")

m, n, k = 65536, 32768, 8192

A = cp.random.rand(m, n)

B = cp.random.rand(n, k)

C = cp.random.rand(m, k)

start = time.time()

D = cp.matmul(cp.asarray(A), 

cp.asarray(B) )

elapsed = time.time() - start

print(f"MatMul:  Time: {elapsed:.2f}s")

Time: 2 seconds Time: 1.3 seconds Time: 1 second

*The left and middle loops are exactly the same, but I turned on Python Managed Memory Support

Unified Memory is a good thing… but it doesn’t necessarily make system software easier!
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• We’ve found a lot of ways to do a broadcast or an allReduce. 

• We have MPI (and its various flavors).

• Shmem (and its various flavors)

• And now  NCCL – the NVIDIA Collective Communication Library 

• Low level optimization across PCI and NVLINK. 

• And, of course, all of these things need support for C, C++, Fortran, and 

Python, and probably more. 

• And let’s not even start on the disaster that is Python package management. . . 

And Let’s not Forget different 

Communication Layers. 
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• I/O patterns look very different than they used to. 

• It’s a Python-driven world… exclusively in AI, but it seems to be spreading fast as the tool of 

choice. 

• Supporting Inference as a persistent service (or not!). 

• And then there is the big stuff: 

• Power

• No 64 bit performance improvements moving forward, from pretty much anyone. 

• The Role of AI in scientific computation

• The continued existence of open science investment, and Academia. 

• Research computing slowly strangled by the AI behemoth. 

• AI-generated Code, and how to do V&V in the new world of automated code. 

• And you know, if we manage that (or even if we don’t), we’re going to have to talk about 

chiplets, and quantum…

And hey, those are just the network path 

challenges. . . 
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• Because they still need to happen, though there is more evidence now. 

• We desperately need robust research activities in two areas: 

• AI Hardware for Science:   

• ”Beowulf for AI” -- Exploit the chips being made for AI to do general scientific computing. 

• We won’t survive if we don’t 

• AI Full Stack Efficiency: 

• There are ways to scale up computation other than “throw billions of dollars at it”, and our 

community, where we didn’t have billions of dollars to throw, is pretty good at it. 

• We need to save the world from bankruptcy, rather financial or carbon. 

• I recently read an analysis that the average residential power bill in Ohio is $15/month higher 

because of new datacenter demand. 

Let me Quickly Re-iterate the two big 

themes I Mentioned Last Year
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• Because we have done it before, and programmers in our community 

are generally pretty clever. 

• Without hacking in the molecular dynamics space in academia, it’s possible GPUs 

would be doing (*gasp*) Graphics Processing. 

• If we let people know that INT8 operations are order 2k faster than 64 bit operations, 

don’t you think they will figure something out? 

• See the Ozaki Scheme among other for emulation methods for FP64. 

• See a bunch of the Gordon Bell papers in the last few years for schemes exploiting 

mixed precision. 

AI Hardware for Science: 

Why do I think this is Possible? 
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• It’s mostly what DeepSeek did!   

• Nothing earth-shattering algorithmically, just pushing lots of techniques in both 

traditional optimization, and AI optimization (e.g. MoE) to the extremes. 

• The huge focus on “biggest and first” has obviously left efficiency in the 

dust. 

• When $ become scarcer (or export controls cut off top chips), 

optimization will have time to catch up – at all levels of the stack. 

AI Stack Efficiency: 

Why do I think this can be done? 
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• Vista is in production (Grace, Grace-Hopper nodes). 

• Stampede3 has SXM H100 with x86, and Lonestar6 has H100 PCI if you need to do 

comparisons!

• We will add an NVL-72 Blackwell queue hopefully before SC25. 

• Horizon-GPU Early User should start by March or so. 

• We know you will do cool things with them!

Come explore the new Systems! 
Turns out there will be some interesting optimization work to do!



Thanks!
dan@tacc.utexas.edu
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