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HPC Scheduling Overview

Traditional Scheduling Policies

High-Performance Computing (HPC) Systems: Runs 

diverse, large-scale scientific workloads.

Efficient Job Scheduling:  Critical to maximize 

utilization, reduce wait times, and ensure fairness.

Scheduling policies directly affect system throughput and 

user satisfaction.

Traditional: First-In-First-Out (FIFO), Shortest Job First 

(SJF), Priority-based, Backfilling.

In-production: SLURM, Cobalt, PBS Pro.

Modern/Future: ML-driven, Energy-aware, 

Heterogeneity-optimized.

Current In-production Schedulers

Future Work

Policy Advantages Disadvantages

FIFO

• Easiest to implement/understand 

• Predictable “first come, first served”

• Low scheduler overhead

• Head-of-line blocking (big job stalls 

the queue) 

• Poor average wait for short jobs

• Utilization can suffer under bursty 

arrivals

SJF 

• Minimizes average wait/turnaround 

(if runtimes known) 

• Great for interactive/short jobs

• Often boosts throughput

• Needs good runtime estimates; bad 

estimates hurt fairness

• Starvation risk for long jobs

• Users may game by under-

estimating wall time

Priority-based

• Aligns with organization goals 

(prod/debug/urgent) 

• Clear control knobs 

(queues/weights/limits) 

• Works with preemption/quotas

• Starvation of low-priority jobs 

• Priority inversion / fairness concerns 

• Requires ongoing tuning & 

governance

Backfilling

• Fills idle gaps → higher utilization

• Improves short-job latency without 

delaying reserved head job 

• Better overall throughput

• Depends on accurate wall time 

estimates

• More complex scheduler 

logic/overhead 

• Incentive to under-estimate; may 

reduce guarantees 

• Start-time predictability is harder to 

communicate

FIFO (First-In-First-Out): Runs jobs strictly in arrival order. 

SJF (Shortest Job First): Chooses the runnable job with the smallest estimated runtime to 

minimize average wait/turnaround. 

Priority-based: Orders jobs by admin/user-assigned priority (queues/QoS/weights), often with 

fair-share/aging and optional preemption.

Backfilling: Reserves a start for the head-of-queue job, then fills idle gaps with smaller jobs that 

won’t delay that reservation.

Each policy has distinct trade-offs—what improves utilization or responsiveness may hurt 

fairness or predictability—so there is no single “best” choice for all workloads. In practice, 

modern in-production schedulers (e.g., SLURM, PBS Pro, Cobalt) combine these 

mechanisms—priorities/fair-share with FIFO ordering, backfilling, and optional preemption—to 

balance cluster goals and user needs.

Modern supercomputers typically use SLURM, PBS Pro/OpenPBS, or Cobalt schedulers. 

These aren’t single policies but policy frameworks: admins tune priorities/fair-share/aging, 

enable backfilling, set QoS/partitions, and optionally use preemption and reservations. In 

practice, they combine FIFO ordering within priority classes with backfilling to raise utilization 

and cut short-job latency, while quotas/allocations and fair-share keep long-term fairness.

Despite widespread use of SLURM, 

PBS Pro, and Cobalt, large HPC 

systems still experience substantial 

queue wait times under real workloads.

Minimizing queue delay remains an 

active research priority.

ML-based/adaptive scheduling. Learn priorities from real traces and adapt online while 

honoring guardrails (fair-share, quotas, reservations). Start in “shadow mode,” optimize 

multiple signals (median/tail wait, bounded slowdown, utilization), and require basic 

explainability for operator trust.

Energy/carbon-aware policies. Incorporate power caps and grid carbon-intensity forecasts; 

shift flexible jobs to greener windows, throttle within QoS limits, and report per-job CO₂e. 

Balance carbon savings against fairness and deadlines.

Heterogeneity-optimized placement. Place jobs onto the right mix of CPU/GPU/accelerators 

with memory, NUMA, and network topology awareness; support gang/elastic jobs and 

moldable requests; reduce fragmentation across partitions.

Better runtime estimates & incentives. Train per-app/user models; calibrate and auto-

update after each run. Use soft/hard wall time with gentle penalties or auto-extensions to 

discourage under-estimation without punishing honest users.

Predictable starts & QoS. Provide ETA predictions with confidence bounds, leverage 

advance reservations, preemption, and elastic scaling to hit SLOs for priority workloads while 

maintaining long-term fairness.

Conclusion

Modern in-production schedulers (SLURM, PBS Pro, Cobalt) are policy frameworks, 

blending priority/fair-share with FIFO ordering, backfilling, and optional 

preemption/reservations. They work well across diverse workloads, yet long waits and 

heavy tails still appear at scale—often driven by estimation errors, heterogeneous 

resource constraints, and bursty demand.

The path forward is pragmatic and incremental: improve runtime estimates, make ETAs 

transparent, keep conservative backfilling with fair-share to protect equity, and pilot ML-

assisted decisions in shadow mode before enforcement. As systems grow more 

heterogeneous and energy becomes a first-class constraint, schedulers should co-

optimize performance, fairness, and carbon—treating the scheduler not as a single policy, 

but as a tunable, data-driven system that evolves with the workload.
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