
• As-is: rely on launching multiple point-to-point calls.
• To-do: aggregate multiple memory copy commands into 

a single operation.
• Avoid redundant launches and synchronizations.
• Consider the entire data pattern as a holistic picture.

• Single-leader 2-level Allreduce:
• 1st-level: intra-node reduction, 

performed by the kernel.
• Store the data on local rank 0, 

the local leader rank, rather 
than on each GPU.

• 2nd-level: inter-node reduction
• With the data residing in the 

leader ranks of each node, only 
one process per node 
participates in this operation.

• CPU-based leader Allreduce 
with CPU staging techniques.
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Benchmark-level Performance Evaluations - Reduction Collectives

• Accelerators/GPUs and the inter-connections are pivotal 
in contemporary HPC ecosystems.

• Despite entering the GPU market later, Intel is actively 
involved in the design and development of various GPU 
products and their associated ecosystems.

• GPU-aware MPI libraries have performed well with 
NVIDIA and AMD systems, and the same is expected for 
Intel GPUs.

• How can we design a library for intra-node 
communication across multiple GPUs, leveraging the high 
speed and bandwidth of Intel Xe links?

• How can we design a library for inter-node 
communication across multiple nodes?

• How can we design a collective library for both data-
movement- and reduction-based operations? 

Research Challenges

• Data-movement operations: previous work primarily 
utilized simple point-to-point send/recv operations for 
collective communication, which introduced additional 
overhead.

• Reduction operations: previous work simply utilized CPU 
staging approaches to offload the device data to CPU 
buffers and performed CPU-based reduction.

• In this work:
• We adopt a hybrid approach to deal with different 

message size ranges.
• Data-movement operations: we focus on large 

message communication and utilize IPC techniques.
• Reduction operations: we focus on large message 

communication and computation by utilizing IPC and 
kernel-based techniques.

• For the inter-nide Allreduce operation, we implement 
a two-level algorithm to fully exploit the benefits of 
our kernel designs.

Research Motivation Overview of the Designs IPC Designs for Large Messages
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Inter-node Allreduce Implementations

• Multi-leader 2-level Allreduce: 
• Each local rank group handles 

an equal portion of the data 
to distribute the workload 
evenly.

• The reduction kernel store the 
temporary results on each GPU.

• Each group performs a similar 
inter-node leader Allreduce 
among the involved processes

• Perform a local Allgather(v) 
communication to dispatch the 
final reduction data.

Application-level Performance Evaluations - Deep Learning Applications

Conclusion

• Utilized IPC-based techniques to enhance data-movement collective performance, and 
combined kernel-based and IPC-based approaches to optimize both intra- and inter-node 
performance for reduction collectives.

• Benchmark results:
• 100x improvement in Alltoallv operations for large messages compared to MPICH.
• 42% improvement in Allreduce (1 GB, 16 GPUs) over Intel MPI.

• Application-level impact:
• Up to 33x improvement for heFFTe
• 28% for PyTorch with Horovod.

• Available in MVAPICH-Plus 4.0 (https://mvapich.cse.ohio-state.edu)0
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• 22% of performance improvement at batch 
size of 32

• 28% of performance improvement at batch 
size of 32

Benchmark-level Performance Evaluations - Data-movement Collectives
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Alltoall - Small Messages - 1 Node (4 GPUs) Alltoall - Large Messages - 1 Node (4 GPUs) 
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Alltoallv - Large Messages - 1 Node (4 GPUs) Bcast - Large Messgaes - 1 Node (4 GPUs) 

• Lowest latency 4 μs, compared to 8 μs 
using Intel MPI and 15 μs using MPICH.

• Aachieve a latency of 3258 μs at 32 MB, 
21x faster compared to Intel MPI.

• Similar trend to our Alltoall performance, 
but 100x faster compared to Intel MPI.

• 53x faster and 71x faster compared to 
Intel MPI and MPICH.
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• On 1 node, 92% improvement (11x faster) 
at 1 GB message size.
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• 13% improvement with the 
proposed single-leader 2-level design.

• 42% improvement with the 
proposed multi-leader 2-level design.

Application-level Performance Evaluations - heFFTe 

heFFTe with Alltoallv - 1 Node (4 GPUs) 

• 20~33 times compared to MPICH.
• 5 times compared to Intel MPI.
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heFFTe with Alltoall - 1 Node (4 GPUs) 

• 128 GFlops/s in the 512x512x1024 case, 
surpassing MPICH’s 98 GFlops/s by 1.3x.
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