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* Accelerators/GPUs and the inter-connections are pivotal * Data-movement operations: previous work primarily * As-is: rely on launching multiple point-to-point calls.
in contemporary HPC ecosystems. utilized simple point-to-point send/recv operations for * To-do: aggregate multiple memory copy commands into
* Despite entering the GPU market later, Intel is actively collective communication, which introduced additional a single operation.
involved in the design and development of various GPU overhead. * Avoid redundant launches and synchronizations.
products and their associated ecosystems. * Reduction operations: previous work simply utilized CPU * Consider the entire data pattern as a holistic picture.
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Inter-node Allreduce Implementations
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Benchmark-level Performance Evaluations - Data-movement Collectives
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Alltoall - Small Messages - 1 Node (4 GPUs)

* Lowest latency 4 us, compared to 8 us
using Intel MPIl and 15 ps using MPICH.

Alltoall - Large Messages - 1 Node (4 GPUs)

* Aachieve a latency of 3258 pus at 32 MB,
21x faster compared to Intel MPI.

Alltoallv - Large Messages - 1 Node (4 GPUs)

e Similar trend to our Alltoall performance,
but 100x faster compared to Intel MPI.

Bcast - Large Messgaes - 1 Node (4 GPUs)

e 53x faster and 71x faster compared to
Intel MPIl and MPICH.

Benchmark-level Performance Evaluations - Reduction Collectives
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Allreduce - 1 Node (8 GPUs)
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Allreduce - 4 Node (32 GPUs)

* 13% improvement with the

proposed single-leader 2-level design.
* 42% improvement with the

proposed multi-leader 2-level design.

* On 1 node, 92% improvement (11x faster)
at 1 GB message size.

Application-level Performance Evaluations - Deep Learning Applications
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TensorFlow + Horovod - 4 Node (16 GPUs) PyTorch + Horovod - 4 Node (16 GPUs)

* 28% of performance improvement at batch
size of 32

* 22% of performance improvement at batch
size of 32

Application-level Performance Evaluations - heFFTe
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heFFTe with Alltoall - 1 Node (4 GPUs)

» 128 GFlops/s in the 512x512x1024 case,
surpassing MPICH’s 98 GFlops/s by 1.3x.

heFFTe with Alltoallv - 1 Node (4 GPUs)

« 20~33 times compared to MPICH.
* 5times compared to Intel MPI.

Conclusion

* Utilized IPC-based techniques to enhance data-movement collective performance, and
combined kernel-based and IPC-based approaches to optimize both intra- and inter-node
performance for reduction collectives.

* Benchmark results:

* 100x improvement in Alltoallv operations for large messages compared to MPICH.
* 42% improvement in Allreduce (1 GB, 16 GPUs) over Intel MPI.
* Application-level impact:
* Up to 33x improvement for heFFTe
* 28% for PyTorch with Horovod.
* Available in MVAPICH-Plus 4.0 (https://mvapich.cse.ohio-state.edu) MVAPICH
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