Research Motivation Overview of the Designs IPC Designs for Large Messages

Desigh and Implementation of a GPU-Aware MPI Collective Library for Intel GPUs

Chen-Chun Chen, Goutham Kalikrishna Reddy Kuncham, Hari Subramoni and Dhabaleswar K. (DK) Panda

The Ohio State University

{chen.10252, kuncham.2}@osu.edu, {subramon, panda}@cse.ohio-state.edu

* Accelerators/GPUs and the inter-connections are pivotal * Data-movement operations: previous work primarily * As-is: rely on launching multiple point-to-point calls.
in contemporary HPC ecosystems. utilized simple point-to-point send/recv operations for * To-do: aggregate multiple memory copy commands into
* Despite entering the GPU market later, Intel is actively collective communication, which introduced additional a single operation.
involved in the design and development of various GPU overhead. * Avoid redundant launches and synchronizations.
products and their associated ecosystems. * Reduction operations: previous work simply utilized CPU * Consider the entire data pattern as a holistic picture.
® Gpu_aware IVIPI Iibraries have performed WeII With Staging approaCheS to Oﬁload the device data to CPU Ranko Rank1 Rankn
NVIDIA and AMD systems, and the same is expected for buffers and performed CPU-based reduction. GPU CPU | CPU GPU | CPU GPU.
] Buffer Buffer : - Buffer Buffer: : Buffer Buffer:
Intel GPUs. * In this work: f —
* We adopt a hybrid approach to deal with different _\ Exchange IPC
. . . * Data-movement operations: we focus on large ~ Socket
* How can we design a library for intra-node o . .
. . . : message communication and utilize IPC techniques. j
communication across multiple GPUs, leveraging the high : _ 5
. ol * Reduction operations: we focus on large message R
speed and bandwidth of Intel X links? oo , > P2 0 NS
. . . communication and computation by utilizing IPC and s a8
* How can we design a library for inter-node , ER- - ZE Memcopy
L . kernel-based techniques. ;o AT
communication across multiple nodes? _ , , _ < =
. L * For the inter-nide Allreduce operation, we implement 7 WD
* How can we design a collective library for both data- , _ _ G- 2=
. : a two-level algorithm to fully exploit the benefits of =
movement- and reduction-based operations? - J

our kernel designs.

Inter-node Allreduce Implementations

Multi-leader 2-level Allreduce:

Single-leader 2-level Allreduce: e NodeO _ S NOGE T o
o 1st|evel: intra-node reduction, s e e * Each local rank group handles Rank 0 Rank 1 Rank 2 Rank 3
.. . | (Local Rank0) ~ (LocalRank1) | i (Local Rank0) . (Local Rank1)
performed by the kernel. Rank1 ~ RankO Rank2 Rank3 an equal portion of the data r———————— —————————————
* Store the data on local rank 0, —F————2 — to distribute the workload | 57, el i B ORE
the local leader rank, rather evenly. T N
than on each GPU. * The reduction kernel storethe i T wpop . TSI L hoe TS,
* 2"d-|evel: inter-node reduction . | | mwanodeker-| - temporary results on each GPU. "o focalRank0) | T pn LocalRankh) -
* With the data residing in the - | = pamemy | ® Each group performs a similar | 5 et T,
leader ranks of each node, only 1 ven femoey inter-node leader Allreduce 18 12116 18 12116
one process per node ~ among the involved processes lahals TaTohe e hals P
participates in this operation. | 48 r2f1e ‘ i * Perform a local Allgather(v)]] B] e S
* CPU-based leader Allreduce o s bt el communication to dispatch the T e Lol)
with CPU staging techniques. final reduction data. Local Rank O Local Rank 1 Allgather(v)

Benchmark-level Performance Evaluations - Data-movement Collectives

250 5000 . 400 45
—e-Intel MP12021.11 —e-Intel MP12021.11 S —e-Intel MP12021.11 S ——Intel MP12021.11
4500 < 350 g 40
200 -e~-MPICH 4.2.0 4000 -e~-MPICH 4.2.0 ? -e-MPICH 4.2.0 @ --MPICH 4.2.0
-e-Proposed Designs 3500 -e-Proposed Designs § 300 =e=Proposed Designs § =®-Proposed Designs
_ _ — 30
£ 150 £ 3000 g 20 £
oy S 2500 3 200 %)
C C C C
£ 100 £ 2000 = g 20
S S & 150 g .
1500 0
50 1000 10
500 50 5
° 0 0 eoe—eo—eo—o—® 0 e—eo —@<o——o—9 —o—o—0—9
1 4 16 64 256 1K 4K 8K 32K 128K 512K 2M 8M 32M 8K 32K 128K 512K oM 8M 32M 8K 32K 128K 512K 2M 8M 32M

Message Size (Bytes) Message Size (Bytes) Message Size (Bytes) Message Size (Bytes)

Alltoall - Small Messages - 1 Node (4 GPUs)

* Lowest latency 4 us, compared to 8 us
using Intel MPIl and 15 ps using MPICH.

Alltoall - Large Messages - 1 Node (4 GPUs)

* Aachieve a latency of 3258 pus at 32 MB,
21x faster compared to Intel MPI.

Alltoallv - Large Messages - 1 Node (4 GPUs)

e Similar trend to our Alltoall performance,
but 100x faster compared to Intel MPI.

Bcast - Large Messgaes - 1 Node (4 GPUs)

e 53x faster and 71x faster compared to
Intel MPIl and MPICH.

Benchmark-level Performance Evaluations - Reduction Collectives

0 490 ,, 600
2 -®-|ntel MP12021.12 S ——Intel MP12021.12
s 400 o
% 350 ——Proposed (Single-leader 21lvl) % 500 -e-Proposed (Single-leader 21vl)
= =o~-Proposed (Multi-leader 21vl) = =o-Proposed (Multi-leader 2lvl)
— 300 400
7] n
= 250 =
9 S 300
o 200 o)
© ©
— 150 — 200
100
100
50
0 —o @ 0
™ AM 16M 64M 256M 1G ™ 4M 16M 64M 256M 1G

Message Size (Bytes)

Allreduce - 1 Node (8 GPUs)

Message Size (Bytes)

Allreduce - 4 Node (32 GPUs)

* 13% improvement with the

proposed single-leader 2-level design.
* 42% improvement with the

proposed multi-leader 2-level design.

* On 1 node, 92% improvement (11x faster)
at 1 GB message size.

Application-level Performance Evaluations - Deep Learning Applications

7000 7000

M Intel MP12021.12 M [Intel MP12021.12

%\ 6000 M Proposed (Single-leader 2lvl) /\f 6000 MW Proposed (Single-leader 2lvl)
S W Proposed (Multi-leader 21vl) 3 B Proposed (Multi-leader 21vl)
o 5000 L 5000
e e
5 4000 5 4000
o o
=, w
=) 3000 =) 3000
° °
L L
= 2000 = 2000

1000 1000

0 0
32 64 128 32 64 128
Batch Size Batch Size

TensorFlow + Horovod - 4 Node (16 GPUs) PyTorch + Horovod - 4 Node (16 GPUs)

* 28% of performance improvement at batch
size of 32

* 22% of performance improvement at batch
size of 32

Application-level Performance Evaluations - heFFTe

140 140
M Intel MP12021.11 H Intel MP12021.11
g 120 B MPICH 4.2.0 %’) 120 B MPICH 4.2.0
S W Proposed Designs) m Proposed Designs
g 100 g 100
2 80 2 80
) W
= 60 3 60
o o
- e
— 40 = 40
20 20
0 0

256x512x512 512x512x512

Problem Size

256x512x512 512x512x512 512x512x1024

Problem Size

512x512x1024

heFFTe with Alltoall - 1 Node (4 GPUs)

» 128 GFlops/s in the 512x512x1024 case,
surpassing MPICH’s 98 GFlops/s by 1.3x.

heFFTe with Alltoallv - 1 Node (4 GPUs)

« 20~33 times compared to MPICH.
* 5times compared to Intel MPI.

Conclusion

* Utilized IPC-based techniques to enhance data-movement collective performance, and
combined kernel-based and IPC-based approaches to optimize both intra- and inter-node
performance for reduction collectives.

* Benchmark results:

* 100x improvement in Alltoallv operations for large messages compared to MPICH.
* 42% improvement in Allreduce (1 GB, 16 GPUs) over Intel MPI.
* Application-level impact:
* Up to 33x improvement for heFFTe
* 28% for PyTorch with Horovod.
* Available in MVAPICH-Plus 4.0 (https://mvapich.cse.ohio-state.edu) MVAPICH
References
1. C.Chen, G. Kuncham, P. Kousha, H. Subramoni, D. Panda: “Design and Implementation of an IPC-based

Collective MPI Library for Intel GPUs”, PEARC24

2. C.Chen, G. Kuncham, H. Subramoni, D. Panda: “Design and Implementation of Kernel-based MPI
Reduction Operations for Intel GPUs”, HIPC24

Acknowledgements

NSF grants #1818253, #1854828, #2007991, #2018627, #2311830, #2312927, and XRAC grant #NCR-130002

THE OHIO STATE
UNIVERSITY

	Slide 1

