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• Two-level Allreduce:
• 1st-level: intra-node Reduce-Scatter and Allgatherv kernel.
• 2nd-level: inter-node leader-based Allreduce.

• Multi-leader Designs:
• Processes with the same local rank form a leader group to perform 

the second-level Allreduce.
• Optimization:
• Persistent GPU buffer: 
• The tmp buffer for the local reduction step.

• Early-triggered pipelined Allreduce algorithm:
• Overlapping of the intra-node and inter-node phases.
• Allowing inter-node communication step to occur earlier.

• The high demand for MPI Allreduce runtimes lies in 
providing high-speed computation and high-throughput 
communication in intra- and inter-node environments.

• The bandwidth gap between inter-node and intra-node 
communications creates bottlenecks in HPC systems. 
GPU-based compression can be leveraged to maximize 
effective bandwidth utilization.

• While compression-aware collectives work well on 
NVIDIA systems, the HPC landscape with AMD GPUs and 
HPE Slingshot demands further optimization studies.

Research Challenges

Research Motivation Overview of the Designs Multi-leader Two-level Designs for Allreduce

Compression Designs for Alltoall

Conclusion

• Implementation of multi-leader two-level Allreduce 
designs uses a kernel-based approach, optimized 
with persistent GPU buffers and an early-triggered 
pipelined method for AMD GPU systems.

• Implementation of efficient non-blocking 
compression-aware collectives (Alltoall and 
Allgather). The design supports asynchronous 
communication and ZFP lossy encoding and 
decoding.

• Benchmark results (16 Nodes):
• Allreduce: 2.08x over RCCL
• Alltoall: 3.58x over RCCL 
• Allgather: 2.40x over RCCL

• GPU-aware MPI
No need to stage to CPU buffers. We directly pass in GPU 
buffers for point-to-point operations

• Non-Blocking Communication
Pairs are communicated using non-blocking 
MPI_Isend/Irecv.

• Computation-intensive collectives using 
kernel-based approach:
• Optimized HIP kernels for AMD GPUs.
• Multi-leader two-level designs for inter-

node Allreduce runtime.
• A persistent GPU buffer to optimize the 

reduction operations in the second-level.
• Early-triggered pipelined Allreduce 

algorithm to overlap intra-node and inter-
node phases.

• Heavy data-movement collectives using 
compression:
• Optimized HIP-aware lossy ZFP support.
• Bandwidth-aware compression design.
• Efficient computation-communication 

overlap.
• Multiple Collectives support (Allgather, 

Alltoall). 
• Available in MVAPICH-Plus 4.1

Experimental Setup - Frontier (OLCF)

Component Configuration
GPU 4 AMD MI250X (8 GPU(GCD)s)

Device Memory 
per GPU 64 GB HBM2e

CPU AMD EPYC 7A53
Memory 512 GB DDR4 
Sockets 1

Core per Sockets 64
Inter-connection 4 HPE Slingshot 200 Gbps NICs

Libraries

MVAPICH-Plus 4.1
ROCm 6.3.1

Cray MPICH 8.1.31
RCCL 2.21.5 + OFIAllreduce - 8 Node (64 GPUs) 

• What strategies and techniques are needed to design and 
implement a high-performance GPU-aware MPI Allreduce 
inter-node operation?

• How can we design compression-aware collectives that 
deliver net performance gains despite compression 
overhead while maintaining communication efficiency?

• Selective Compression
Uncompressed data transfer 
for intra-node pairs while 
compressed for inter-node 
pairs.

• Ring-based Alltoall
Receive source iterates 
clockwise, send destination 
iterates counter-clockwise. 
Prevents deadlock.

• Optimized ZFP on ROCm 6
90GB/s decode and encode throughput. Less overhead
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Benchmark-level Performance Evaluations - Allgather

Allreduce - 16 Node (128 GPUs) 

Alltoall - 8 Node (64 GPUs) Alltoall - 16 Node (128 GPUs) 

Allgather - 8 Node (64 GPUs) Allgather - 16 Node (128 GPUs) 

Compression Designs for Allgather

• Allgather Online Compression
Different from Alltoall, we compress data once at the 
beginning and uses ring exchange to transfer compressed 
data. We decompress the message upon receiving

• Selective Compression only across node boundaries (WIP)
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