
1. BSPMM Kernel, R. Zambre and S. Bhattacharya, https://github.com/rzambre/bspmm
2. NVIDIA, “NVIDIA BlueField Networking Platform” https://www.nvidia.com/en-us/networking/products/data-processing-unit/
3. B. Michalowicz, K. K. Suresh, H. Subramoni, M. Abduljabbar, D. K. Panda and S. Poole, "Effective and Efficient Offloading Designs for One-Sided Communication to

SmartNICs," 2024 IEEE 31st International Conference on High Performance Computing, Data, and Analytics (HiPC), Bangalore, India, 2024, pp. 23-33, doi:
10.1109/HiPC62374.2024.00012.

Use of BlueField SmartNICs in Offloading One-Sided
Communication Primitives

MOTIVATION

• Two-Sided Communication has been
successfully offloaded to SmartNICs such as
NVIDIA’s BlueField-2 and BlueField-3 (BF-2/3)

• One-Sided Communication (1SC) is inherently
nonblocking, which can leverage SmartNICs
to gain more overlap between
communication and compute.

• 1SC is used across multiple programming
libraries/implementations (MPI,
PGAS/OpenSHMEM, etc.)

• We focus on MPI and OpenSHMEM

Benjamin Michalowicz1, Kaushik Kandadi Suresh1, Hari Subramoni1,
Dhabaleswar K. Panda1, Steve Poole2

1The Ohio State University, 2Los Alamos National Laboratory
{michalowicz.2, kandadisuresh.1, subramoni.1, panda.2}@osu.edu, swpoole@lanl.gov

RESEARCH CHALLENGES

SUMMARY OF CONTRIBUTIONS

HIGH-LEVEL CHANGES IN HPC LIBRARIES

• Design of a standard/library-agnostic
framework for offloading 1SC

• Scalable design at both the benchmark and
the application level (BSPMM kernel)

• Design of different synchronization types to
account for, e.g., flushing of MPI windows or
completing nonblocking 1SC in OpenSHMEM

• Demonstration of efficiency up to 512
Processes with 4 BF-3 DPUs and AMD-Epyc
CPUs (128-core)

• Demonstration of scalability up to 256
Processes with 8 BF-2 DPUs and Intel
Broadwell CPUs (32-core)

• Results: Up to 24x speedup compared to a
blocking kernel (System 1) and up to 99x
speedup compared to a non-blocking kernel
(System 2)

• Designing a library-agnostic framework for
offloading 1SC (Put and Get operations)

• Account for different approaches w/ MPI and
OpenSHMEM and how the execute 1SC

• Use of low-level, advanced network
primitives for efficient, scalable designs on
both BF-2 and BF-3 DPUs

• Emphasis on network and use of memory
subsystem and less on advanced systems

DESIGNS AND OMB BENCHMARK PERFORMANCE (VIA BF-2)

DESIGN: EMPHASIS ON “GET” AND “QUIET/FLUSH”, API “INTEGRATION”

Intra-Node OSU OpenSHMEM Benchmarks Inter-Node OpenSHMEM Benchmarks

BLOCK SPARSE MM KERNEL: BF-2 AND BF-3 PERFORMANCE (“BABY” VARIANT OF NWCHEM)

Inter-Node Get Latency and Overlap
(OSHMEM Heap)

• Overhead largely comes from effort to offload small messages. Larger msgs
take advantage of overlap (goal of offloading, not as much for improved
transfer time) – DPU-aware designs more sensitive to cache compared to
pure-host, leads to spike at 128KB on BF-2

• Intra-node comparison: Designs still go over the network, and while shared
memory is fast, minimal overlap occurs after 64KB messages – host-based
progression will get impacted in more dense execution.

Performance on System 1 (Comm and Compute Offload)
Communication Offload

Performance on System 2 (Comm Offload)
1-node, 128-PPN Results (Nonblocking Kernel) 2-node, 128-PPN Results (Nonblocking Kernel)

Design for synchronization – MPI_Win_flush_all/shmem_quietDesign for Nonblocking “Get” –
MPI_Get and shmem_get_nbi

Blocking and Non-blocking variants via OpenSHMEM

References

API Integration into MPI and OpenSHMEM Libraries

• Step 1: Host1 issues non-
blocking get, sends metadata
to the DPU, increments
counter (per-process, per-
window)

• Step 2: DPU utilizes GVMI
firmware in BF-2/3 to
perform RDMA operations

• Step 3: “Return Data” (in
Flush/synchronization)

• Step 4: Per-process, per-window counter is
used on host side, DPU-proxy counter is used
on worker-side to issue fetch-add operations

• Step 5: Each proxy process “returns” to their
matched host process

• Proxy_exchange in
shmem_malloc()
there to “show”
DPUs are aware of
the usage of space in
the symmetric heap.

0

50

100

150

200

16384 32768 65536 131072 262144 524288 1048576

R
u

n
ti

m
e

 (
u

s)

Intra-node nonblocking get latency (static
global)

0

20

40

60

80

16384 32768 65536 131072 262144 524288 1048576

%
 o

ve
rl

ap

Message Size

Intra-node Nonblocking get % overlap (static
global)

MV2-2.3.7/OSHMPI Offload

0

50

100

150

200

16384 32768 65536 131072 262144 524288 1048576

R
u

n
ti

m
e

 (
u

s)

Intra-node nonblocking get latency (heap)

MV2-2.3.7/OSHMPI Offload

0

20

40

60

80

100

16384 32768 65536 131072 262144 524288 1048576

%
 o

ve
rl

ap

Message Size

Intra-node nonblocking get % overlap (heap)

MV2-2.3.7/OSHMPI Offload

Intra-Node Get Latency and Overlap (Static
Global Memory)

Intra-Node Get Latency and Overlap
(OSHMEM Heap)

0

50

100

150

200

R
u

n
ti

m
e

 (
u

s)

Message size

Inter-node nonblocking get latency (heap)

MV2-2.3.7/OSHMPI

Offload

0
20
40
60
80

100

%
 o

ve
rl

ap

Message Size

Inter-node nonblocking get % Overlap
(heap)

• “Get-Compute-Update” Pattern
• Mesh: X, Y parameters, but Y has another “dimension” inside (X rows, X

blocks per row, Y cells per block) → Calculate buffer as X*X*Y *
(sizeof(double))

• Blocking variant:
• while (work_unit!=max_unit_count) {

 blocking_get(); dgemm(); update();
}

• Nonblocking variant:
• blocking_get(cur_bufs);

while(work_unit!=max_unit_count) {
 nb_get(next_bufs);
 dgemm(cur_bufs);
 sync(next_bufs);
 update();
 cur_bufs = next_bufs;
}

• Experimental Systems:
• System 1: Intel Skylake (20 cores x 2 sockets) w/ BF-

2s and HDR100 IB
• System 2: AMD EPYC (64 cores x 2 sockets) w/ BF-3s

and HDR200 IB
• Libraries

• MVAPICH2-2.3.7 and OSHMPI Framework
• Offshoot of MVAPICH with 1SC designs and OSHMPI

Framework
• OSHMPI – Standard-Compliant Framework to have

OpenSHMEM be emulated by MPI primitives
• Symmetric Heap → One MPI Window
• shmem_put → MPI_Put + immediate

MPI_Win_flush_all()
• Etc.

Experimental Setup

0

50

100

150

200

250

300

350

400

16x16 32x32 40x40

R
u

n
ti

m
e

 (
u

s)
Th

o
u

sa
n

d
s

Mesh size

8 nodes, 32 PPN BSPMM Kernel Results
Blocking Nonblocking Offload

Compute Offload (Blocking Kernel)

0

50

100

150

200

250

300

8x8 16x16 32x32 40x40 44x44

Ru
nt

im
e

(u
s)

Th
ou

sa
nd

s

Mesh size

8-node, 32 PPN Pure-Host vs Naive Compute Offload
32-Host 32-MPMD

• Get-Compute-Update lends itself nicely to
“naïve” compute offload (utilizing BF-2
cores)

• Dense communication → lack of progress
resources available on host = perfect use
for DPUs (Smaller scale and PPN results in
some benefits, but not as much)

• Up to 91% improvement with BF-2’s for
both compute and communication offload

1

4

16

64

256

1024

4096

16384

65536

262144

16x16 32x32 40x40 44x44

Ru
nt

im
e

(u
s)

 (l
og

2 s
ca

le
)

Mesh size

1-Node, 128 PPN Results (AMD + BF3)

Pure-Host-Nonblocking Offload

1

4

16

64

256

1024

4096

16384

65536

262144

16x16 32x32 40x40 48x48

Ru
nt

im
e

(u
s)

 (l
og

2 s
ca

le
)

Mesh size

2-Node, 128 PPN Results (AMD + BF3)

Pure-Host-Nonblocking Offload

4-node, 128-PPN Results (Nonblocking Kernel)

99X improvement at 16x16 mesh, 77%
improvement at 44x44 mesh

99X improvement at 16x16 mesh, 82.5%
improvement at 44x44 mesh

87.7% improvement at 32x32 mesh, 42.2% improvement
at 60x60 mesh (16x16 mesh could not be run at larger

scales, hence lack of log-scale y-axis)

0

50

100

150

200

250

32x32 40x40 48x48 56x56 60x60

Ru
nt

im
e

(u
s)

Th
ou

sa
nd

s

Mesh size

4-Node, 128 PPN Results (AMD + BF3)
Pure-Host-Nonblocking Offload

1. HPCA-AI Advisory Council
2. LANL SOW #19537, NSF Grants #231927 and #2007991

Acknowledgements

Additions to MPI_Init/shmem_init for Proposed Designs

Process Spawn
Extended to DPU
(Host and Proxy)

Network-Level
Exchanges (Lkey,

Rkey, GVMI Mkey,
Memory Regions)

Extending
Window/Symmetric

Heap Creation to
Proxy Processes

Exchange of
Address Handles

Extended to DPU for
Visibility

https://github.com/rzambre/bspmm
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/

	Slide 1: Use of BlueField SmartNICs in Offloading One-Sided Communication Primitives

