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Use of BlueField SmartNICs in Offloading One-Sided 
Communication Primitives

MOTIVATION

• Two-Sided Communication has been 
successfully offloaded to SmartNICs such as 
NVIDIA’s BlueField-2 and BlueField-3 (BF-2/3)

• One-Sided Communication (1SC) is inherently 
nonblocking, which can leverage SmartNICs 
to gain more overlap between 
communication and compute.

• 1SC is used across multiple programming 
libraries/implementations (MPI, 
PGAS/OpenSHMEM, etc.)

• We focus on MPI and OpenSHMEM
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RESEARCH CHALLENGES

SUMMARY OF CONTRIBUTIONS

HIGH-LEVEL CHANGES IN HPC LIBRARIES

• Design of a standard/library-agnostic 
framework for offloading 1SC

• Scalable design at both the benchmark and 
the application level (BSPMM kernel)

• Design of different synchronization types to 
account for, e.g., flushing of MPI windows or 
completing nonblocking 1SC in OpenSHMEM

• Demonstration of efficiency up to 512 
Processes with 4 BF-3 DPUs and AMD-Epyc 
CPUs (128-core)

• Demonstration of scalability up to 256 
Processes with 8 BF-2 DPUs and Intel 
Broadwell CPUs (32-core)

• Results: Up to 24x speedup compared to a 
blocking kernel (System 1) and up to 99x 
speedup compared to a non-blocking kernel 
(System 2)

• Designing a library-agnostic framework for 
offloading 1SC (Put and Get operations)

• Account for different approaches w/ MPI and 
OpenSHMEM and how the execute 1SC

• Use of low-level, advanced network 
primitives for efficient, scalable designs on 
both BF-2 and BF-3 DPUs

• Emphasis on network and use of memory 
subsystem and less on advanced systems

DESIGNS AND OMB BENCHMARK  PERFORMANCE (VIA BF-2)

DESIGN: EMPHASIS ON “GET” AND “QUIET/FLUSH”, API “INTEGRATION”

Intra-Node OSU OpenSHMEM Benchmarks Inter-Node OpenSHMEM Benchmarks

BLOCK SPARSE MM KERNEL: BF-2 AND BF-3 PERFORMANCE (“BABY” VARIANT OF NWCHEM)

Inter-Node Get Latency and Overlap 
(OSHMEM Heap)

• Overhead largely comes from effort to offload small messages. Larger msgs 
take advantage of overlap (goal of offloading, not as much for improved 
transfer time) – DPU-aware designs more sensitive to cache compared to 
pure-host, leads to spike at 128KB on BF-2

• Intra-node comparison: Designs still go over the network, and while shared 
memory is fast, minimal overlap occurs after 64KB messages – host-based 
progression will get impacted in more dense execution.

Performance on System 1 (Comm and Compute Offload)
Communication Offload

Performance on System 2 (Comm Offload)
1-node, 128-PPN Results (Nonblocking Kernel) 2-node, 128-PPN Results (Nonblocking Kernel)

Design for synchronization – MPI_Win_flush_all/shmem_quietDesign for Nonblocking “Get” – 
MPI_Get and shmem_get_nbi

Blocking and Non-blocking variants via OpenSHMEM

References

API Integration into MPI and OpenSHMEM Libraries

• Step 1: Host1 issues non-
blocking get, sends metadata 
to the DPU, increments 
counter (per-process, per-
window)

• Step 2: DPU utilizes GVMI 
firmware in BF-2/3 to 
perform RDMA operations

• Step 3: “Return Data” (in 
Flush/synchronization)

• Step 4: Per-process, per-window counter is 
used on host side, DPU-proxy counter is used 
on worker-side to issue fetch-add operations

• Step 5: Each proxy process “returns” to their 
matched host process

• Proxy_exchange in 
shmem_malloc() 
there to “show” 
DPUs are aware of 
the usage of space in 
the symmetric heap.
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• “Get-Compute-Update” Pattern
• Mesh: X, Y parameters, but Y has another “dimension” inside (X rows, X 

blocks per row, Y cells per block) → Calculate buffer as X*X*Y * 
(sizeof(double))

• Blocking variant:
• while (work_unit!=max_unit_count) { 

 blocking_get(); dgemm(); update();
}

• Nonblocking variant:
• blocking_get(cur_bufs);

while(work_unit!=max_unit_count) {
 nb_get(next_bufs);
 dgemm(cur_bufs);
 sync(next_bufs);
 update();
 cur_bufs = next_bufs;
}

• Experimental Systems:
• System 1: Intel Skylake (20 cores x 2 sockets) w/ BF-

2s and HDR100 IB
• System 2: AMD EPYC (64 cores x 2 sockets) w/ BF-3s 

and HDR200 IB
• Libraries

• MVAPICH2-2.3.7 and OSHMPI Framework
• Offshoot of MVAPICH with 1SC designs and OSHMPI 

Framework
• OSHMPI – Standard-Compliant Framework to have 

OpenSHMEM be emulated by MPI primitives 
• Symmetric Heap → One MPI Window
• shmem_put → MPI_Put + immediate 

MPI_Win_flush_all()
• Etc.

Experimental Setup
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• Get-Compute-Update lends itself nicely to 
“naïve” compute offload (utilizing BF-2 
cores)

• Dense communication → lack of progress 
resources available on host = perfect use 
for DPUs (Smaller scale and PPN results in 
some benefits, but not as much)

• Up to 91% improvement with BF-2’s for 
both compute and communication offload
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4-node, 128-PPN Results (Nonblocking Kernel)

99X improvement at 16x16 mesh, 77% 
improvement at 44x44 mesh

99X improvement at 16x16 mesh, 82.5% 
improvement at 44x44 mesh

87.7% improvement at 32x32 mesh, 42.2% improvement 
at 60x60 mesh (16x16 mesh could not be run at larger 

scales, hence lack of log-scale y-axis)
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Additions to MPI_Init/shmem_init for Proposed Designs

Process Spawn 
Extended to DPU 
(Host and Proxy)

Network-Level 
Exchanges (Lkey, 

Rkey, GVMI Mkey, 
Memory Regions)

Extending 
Window/Symmetric 

Heap Creation to 
Proxy Processes

Exchange of 
Address Handles 

Extended to DPU for 
Visibility
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