Use of BlueField SmartNICs in Offloading One-Sided
Communication Primitives

Benjamin Michalowicz!, Kaushik Kandadi Suresh?, Hari Subramoni,
Dhabaleswar K. Panda?, Steve Poole? THE OHIO STATE

MVAPICH IThe Ohio State University, 2Los Alamos National Laboratory UNIVERSITY
{michalowicz.2, kandadisuresh.1, subramoni.l, panda.2}@osu.edu, swpoole@Ilanl.gov

MOTIVATION DESIGNS AND OMB BENCHMARK PERFORMANCE (VIA BF-2)

* Two-Sided Communication has been

successfully offloaded to SmartNICs such as Design for Nonblocking ”Get”.— Design for synchronization — MPI Win flush all/shmem quiet
NVIDIA’s BlueField-2 and BlueField-3 (BF-2/3) MPI_Get and shmem_get_nbi e o2 o | [e] _Step 2. Per-pr;cess ser-window counter is
* One-Sided Communication (1SC) is inherently todet ode? . - used on host side, DPU-proxy counter is used
Y N T < “ , on worker-side to issue fetch-add operations
non _ 5/ 5 oSt - — — « Step 5: Each proxy process “returns” to their
to gain more overlap between . ~/ | /|~ matched host process
communication and compute. S — , ,
DPU @) GDU API Integration into MPI and OpenSHMEM Libraries
* 1SCis used across multiple programming ey o win init (ein, win buffem; it iate_symm_heap () * Proxy_exchange in
libraries/implementations (MPI Step 1: Host1 issues non- | browy-exchange i (windon, win_puefer) g rmmeEmeRmmme shmem_malloc()
) . . (} return window; ; Shmem_malloz(sue){ | there to “show”
PGAS/OpenSHMEM, etc.) blocking get, sends metadata 7 MPLRUE (addzl, countl, datatypel, cargstirank, | Darrier(); /s All procs allocate / DPUs are aware of
to the DPU, increments o mndow(o S | , [T S the usage of space in
* We focus on MPland OpenSHMEM counter (per-process, per- || 1 gt - meer i s Limen 56 put b (1455 ssse, ot 1es aer, . the symmetric heap.
window) :l | return Offload_put (addrl, addr2, target, bytes);) Sisgz,zigguisrfe:iz{eof(TYPE);
* Step 2: DPU utilizes GVMI RS O e en R e s
firmware in BF-2/3 to :4 y/lngggéé T is Shmeiéiif‘gﬁ‘iiézﬁ xsrc, const TYPE *dst, int

= 1 + 3
addr2 buf_of (window) 9 5P 16 bytes = countxsizeof (TYPE);

RESEARCH CHALLENGES , ‘S’fg;";mge[’tt"r’i ‘[’)F;f;’it(‘;”s LTGRO e, mtemy | Offiosagetant v, taret, byves)

. . e o OE Load_tlush (UL ;
Flush/synchronization))))
*Designing a library-agnostic framework for Intra-Node OSU OpenSHMEM Benchmarks Inter-Node OpenSHMEM Benchmarks
' I Inter-Node Get Lat d Overl
OfﬂOad I ng 1SC (PUt d nd Get O OerathnS) Intra-Node Get Latency and Overlap (Static Intra-Node Get Latency and Overlap B (eOS(:IMgh;n;\e/aapr; =k
. Global Memory) (OSHMEM Heap) . .
@ ACCOU nt fO I d |ffe e nt d p p Ffroacnes W/ M PI d nd 200 Intra-node nonblocking get latency (static Intra-node nonblocking get latency (heap) Inter-node nonblocking get latency (heap) Inter-node nonblocking get % Overlap
OpenSHI\/lEIVI and how the execute 1SC 7 150 *izz B MV2-2.3.7/0SHMPI [18 Offload ?izz @MV2-23.7/05HMPI | |
E 100 émo E Lo TOffload
* Use of low-level, advanced network 5 50 £ =
. . . o = 2l &l sl g 50 E
pr|m|t|ves for eff|C|ent’ Scalable deS|gnS on 16384 32768 65536 131072 262144 524288 1048576 . sl
Intra-node Nonblocking get % overlap (static 16384 32768 65536 131072 262144 524288 1048576
bOth BF‘Z and BF'3 DPUS globgalg) ’ Intra-node nonblocking get % overlap (heap) . M Si
80 B MV2-2.3.7/0SHMPI @ Offload 100 Message size essage Size
* Emphasis on network and use of memory - 80 Overhead largely comes from effort to offload small messages. Larger msgs
b d | d d t % 40 o 60 take advantage of overlap (goal of offloading, not as much for improved
subsystem and less on advanced systems 3 % 40 transfer time) — DPU-aware designs more sensitive to cache compared to
® \‘E 20 pure-host, leads to spike at 128KB on BF-2
Y et wres 65536 131079 2eaiad Samnas 10a8STc S0 i 30768 65536 131072 263144 524288 1048576 * Intra-node comparison: Designs still go over the network, and while shared
Message Size Message Size memory is fast, minimal overlap occurs after 64KB messages — host-based
progression will get impacted in more dense execution.
HIGH-LEVEL CHANGES IN HPC LIBRARIES , , , , ,
Blocking and Non-blocking variants via OpenSHMEM Experimental Setup
 “Get-Compute-Update” Pattern e Experimental Systems:
Additions to MPI_Init/shmem_init for Proposed Designs * Mesh: X, Y parameters, but Y has another “dimension” inside (X rows, X e System 1: Intel Skylake (20 cores x 2 sockets) w/ BF-
e N\ e Network-Level DY blpcks per row, Y cells per block) = Calculate buffer as X*X*Y * 25 and HDR100 IB
Process Spawn . ésllzeli).f(doub.le)l. e System 2: AMD EPYC (64 cores x 2 sockets) w/ BF-3s
Extended to DPU B exchanges (Lkey’ T Varl°anvx./hile (work_unit!=max_unit_count) { and HDR200 1B
Rkey, GVMI Mkey, — T | | e Libraries
(HOSt and Proxy) . blocking_get(); dgemm(); update(); . 4 y
_ Y, Memory Regions) Y,) MVAPICH2-2.3.7 and OSHMPI Framewor
+ Nonblocking variant: e Offshoot of MVAPICH with 1SC desighs and OSHMPI
* blocking _get(cur_bufs); Framework
while(work_unit!=max_unit_count) { e OSHMPI - Standard-Compliant Framework to have
~ : ™\ ~ N\ nb_get(next_bufs); OpenSHMEM be emulated by MPI primitives
. Extending . Exchange of dgemm(cur_bufs); * Symmetric Heap = One MPI Window
Window/Symmetric | Address Handles sync(next_bufs); * shmem_put = MPI_Put + immediate
Heap Creation to Extended to DPU for update(); MPI_Win_flush_all()
T cur_bufs = next_bufs; e Etc
_ Proxy Processes) _ Visibility) \ :
Communication Offload Compute Offload (Blocking Kernel) “naive” compute offload (utilizing BF-2
8 nodes, 32 Pl_)N BSPMM Kern.el Results 8-node, 32 PPN Pure-Host vs Naive Compute Offload cO res)
S U M MARY O F CO N T RI B UTI O N S 2 400 B Blocking B Nonblocking B Offload @ 300 @ 32-Host 0 32-MPMD . .
5 1o E * Dense communication = lack of progress
2 300 ézzz resources available on host = perfect use
. = 1o, for DPUs (Smaller scale and PPN results in
* Design of a standard/library-agnostic g 150 % 100 some benefits, but not as much)
framework for Ofﬂoading 1SC 5 1(533 g 50 Up to 91% improvement with BF-2’s for
0 0 both compute and communication offload
* Scalable design at both the benchmark and 16116 Vioeh sie 4040 T meshse Y

the application level (BSPMM kernel)

Performance on System 2 (Comm Offload)
* Design of different synch ronization types to 1-node, 128-PPN Results (Nonblocking Kernel) 2-node, 128-PPN Results (Nonblocking Kernel) 4-node, 128-PPN Results (Nonblocking Kernel)

account for, e.g., flushing of MPIl windows or

4-Node, 128 PPN Results (AMD + BF3)

1-Node, 128 PPN Results (AMD + BF3) 2-Node, 128 PPN Results (AMD + BF3)
. . . "
com pletl ng nonblOCkI ng 1SC In OpenSH M EM 262144 B Pure-Host-Nonblocking E Offload 262144 B Pure-Host-Nonblocking Offload ;% 250
. c o 65536 65536 =
* Demonstration of efficiency up to 512 . _ £ 200
— 16384 % 16384
° (&
Processes with 4 BF-3 DPUs and AMD-Epyc %, 4096 5, 4096 7 150
2 1024 2 1024 @
CPUs (128-core) T g 5 . 2 100
. I E 64 E 64 ngc
* Demonstration of scalability up to 256 E i E 50
= &
Processes with 8 BF-2 DPUs and Intel 4 4)
1
1
Broadwell CPUs (32-core) 16x16 32x32 4040 adxad 16x16 3232 40X40 48x48 Sz Al sz,):i?ze POX6 60X
_ Mesh size 99X improvement ab’:elsg;ilzg mesh 82 5% 87.7% improvement at 32x32 mesh, 42.2% improvement
® Resu Its: U to 24X S eed uo combpa red to 3 99X improvement at 16x16 mesh, 77% , 1 05270 at 60x60 mesh (16x16 mesh could not be run at larger
blocki kp | (S f 1)p g P to 99 improvement at 44x44 mesh improvement at 44x44 mesh scales, hence lack of log-scale y-axis)
OCKINg Kerne ystem dNa up to X
I R?fesgp%l[/l]gesl R.Zamb d S. Bhattach https://github.com/rzambre/b Acknowledgements
- . ernel, h. Zampre an . attacharya, S: Ithub.com/rzampre/ospmm . q
S pee d u p CO m pa rEd to a n O n b I OC kl n g ke rn el 2. NVIDIA, “NVIDIA BlueField Networking PIatfoyrm” ht?cps:/g/www.nvidia.com/en-us/networking/products/data-processing-unit/ L.~ HPCA-Al Advisory Council
3. B. Michalowicz, K. K. Suresh, H. Subramoni, M. Abduljabbar, D. K. Panda and S. Poole, "Effective and Efficient Offloading Designs for One-Sided Communication to 2. LANL SOW #19537, NSF Grants #231927 and #2007991
(SySte m 2) SmartNICs," 2024 IEEE 31st International Conference on High Performance Computing, Data, and Analytics (HiPC), Bangalore, India, 2024, pp. 23-33, doi:

10.1109/HiPC62374.2024.00012.

https://github.com/rzambre/bspmm
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/
https://www.nvidia.com/en-us/networking/products/data-processing-unit/

	Slide 1: Use of BlueField SmartNICs in Offloading One-Sided Communication Primitives

