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Goal: Improve energy efficiency of machine learning on edge devices using 
Spiking Neural Networks (SNNs).

Why SNNs: Brain-inspired networks that process information via discrete 
spikes, enabling significant power savings over traditional deep neural 
networks.

Approach:

 Train an Artificial Neural Network (ANN) with standard or customized 
activation functions.

 Convert the trained ANN into an SNN for event-driven, low-power 
computation.

Benefit: Combines the high accuracy and training efficiency of ANNs with 
the energy efficiency of SNNs.

Impact: Supports real-time, low-power AI applications in areas such as IoT 
devices, embedded systems, smartphones, and autonomous systems.

Results

Conclusion

Introduction

SNNs for Efficiency: Spiking Neural Networks offer low-latency, energy-
efficient inference, especially when deployed on neuromorphic hardware.

Key Difference: Unlike Artificial Neural Networks that use continuous activation 
functions, SNNs transmit information via discrete spikes.

Biological Plausibility: This spiking mechanism provides a computational model 
closer to how the brain processes information.

Figure 1. Membrane potential dynamics during spiking activity [1].

Main Challenges:

 Training SNNs is difficult due to the non-differentiable nature of spike events.

 Mapping continuous ANN activations to discrete spike events remains a key 
technical hurdle.

Abstract

• Both investigated approaches confirm that SNNs can achieve comparable 
accuracy to ANNs while offering potential for improved energy efficiency.

• Indirect ANN-to-SNN conversion on MNIST retained performance with minimal 
accuracy drop after conversion.

• Spike-compatible training on CIFAR-10 achieved high accuracy SNN inference 
with a small number of simulation time steps, enabling low-latency operation.

• Ongoing evaluations aim to further validate spike-compatible training for 
large-scale datasets and architectures, targeting latency and energy savings 
for deployment in resource-constrained environments.

• Future work will explore tuning conversion parameters, optimizing spike-
compatible activations, and testing on real neuromorphic hardware.
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Methodology

Approach 1 – Indirect ANN-to-SNN Conversion
 Train an Artificial Neural Network (ANN) using conventional methods.
 Convert the trained ANN to an SNN using the Sinabs library [2].
 Leverage ANN training efficiency and SNN energy efficiency.
 Target: Maintain ANN accuracy while enabling low-energy, spike-based 

computation.
Approach 2 – Spike-Compatible Training (Inspired by [3])
 Train ANN architectures (VGG-8, VGG-16, ResNet-18, ResNet-20) from 

scratch with custom spike-compatible activation.
 Activation output quantized to match Integrate-and-Fire neuron behavior.
 Convert to equivalent SNN without re-training, transferring activation 

parameters.
 Goal: Achieve low-latency, high-accuracy SNN inference with few time steps.

Figure 2. Learning Methods in Spiking Neural Networks .

Figure 3. Custom CNN accuracy on MNIST dataset for ANN vs. indirectly converted SNN.

Figure 4. VGG-16 accuracy for regular ANN and spike-compatible ANN 
on CIFAR-10 dataset.

Figure 5. VGG-16 accuracy for the converted SNN on CIFAR-10 dataset.

Figure 6. Accuracy (left) and energy consumption (right) vs. timesteps for VGG-16 on CIFAR-100 dataset.
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