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• Modern HPC and AI workloads rely heavily on MPI_Allreduce for aggregating data across 

thousands of GPUs.

• HPC applications:

– Amber: a suite of biomolecular simulation programs, such as proteins, nucleic acids, and lipids. 

• Utilizes Allreduce communication for medium message sizes (MB)

• AI Applications/Frameworks:

– Horovod with TensorFlow or PyTorch

– PyTorch

• Distributed Data Parallelism (DDP) framework for LLM/GPT-like models training

• Utilizes both reduction-based and data-movement-based communications for medium to large message 

sizes (MB-GB)

Introduction
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• Allreduce at scale remains challenging: 

Ring algorithm is good at large messages, 

but the throughput drops as message is 

divided across more GPUs.

• Medium-sized messages (MB range) fall into a 

performance gap.

• As the system scale increases, message sizes 

tend to fall into the medium range 

→ inefficiencies

• Existing MPI collectives fail to utilize network bandwidth efficiently in this regime.

• How can we design a GPU-aware Allreduce that delivers low latency and high bandwidth for 

medium messages and large-scale deployments across diverse interconnects?

Motivation
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• In modern MPI Allreduce implementations, the 

Reduce-Scatter-Allgather (RSA) algorithm is commonly adopted

– Allreduce = Reduce-Scatter + Allgather

– Reduce-Scatter: a distributed combine phase 

→ Communication + Computation

– Allgather: a collect phase → Communication

• Use Direct Sendrecv algorithm (inspired by 

the Alltoall communication pattern) to to 

redesign both the Reduce-Scatter and 

Allgather phases

– Aims to saturate communication bandwidth 

and improve scalability by concurrently 

collecting messages from peer processes

Proposed Direct Sendrecv Algorithm

Ring Algorithm – The first step

Direct Algorithm
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• Excessive concurrency may introduce overhead and eventually degrade performance.

• Throttling mechanisms:

– Group send and receive calls into smaller batches to reduce contention.

– Received data is staged in a tmp GPU buffer to enable the following computation step.

– Example on processes using a throttle factor of 4 (2 communication batches):

Direct Reduce-Scatter with Throttling Designs

Direct Algorithm with Throttling - Step 1 Direct Algorithm with Throttling - Step 2 Data Placement in RS Direct Algorithm
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• In the Ring algorithms, element-wise communication and 

computation overlapping is not applicable.

• No inter-iteration data dependencies in the Direct algorithm:

– Can be overlapped across batches.

– Overlapping:

• Change the blocking reduction calls to non-blocking.

• Enqueue reduction calls on the same GPU stream.

• A stream synchronization before Allgather phase.

• Launching multiple kernels still introduces overhead

– E.g.: additional load/store operations to the recv buffer

– Kernel fusion strategy:

• Combines reduction tasks into a single kernel

• Writes the final results directly to the recv buffer in 

one step

Optimization of Overlapping and Kernel Fusion

Timeline illustration comparing the proposed naive Direct 

design, Direct design with communication-computation 

overlapping, and the optimized version with both overlapping 

and kernel fusion.
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Component Vista Cardinal Delta-AI

GPU
1 NVIDIA

GH200 GPUs
4 NVIDIA

H100 GPUs
4 NVIDIA

GH200 GPUs

Device Memory
per GPU

96 GB HBM3e 96 GB HBM2e 96 GB HBM3e

CPU
NVIDIA Grace

CPU
Intel Xeon

Platinum 8470
NVIDIA Grace

CPU

Memory 120 GB LPDDR5X 1 TB DDR5 480GB LPDDR5X

Sockets 1 2 4

Core per Sockets 72 52 72

Inter-connection
1 Infiniband

NDR400 HCAs
4 Infiniband

NDR400 HCAs
4 HPE Slingshot
200 Gbps NICs

Evaluation Platform
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• We extend the proposed algorithm to the CPU side and integrate it into the CPU staging framework

• On 16 GPUs, our CPU-staged Direct algorithm outperforms the next-best method beyond 8 KB

– 34 µs vs 46 µs (RSA), 49 µs (RS), 98 µs (Ring) at 8KB

• On 32 GPUs, it is better beyond 16 KB

– 57 µs vs 67 µs (RSA) at 16KB

Proposed Designs in CPU Staging for Small Messages
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• 9% lower latency than both NCCL and RSA, 

38% and 64% improvements over Ring and 

RD at 64 MB

• 40% lower latency than NCCL at 1 MB

Micro-Benchmark Evaluation
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64%

• 37% improvement over NCCL at 8 MB

• Outperforms MPI RSA by 18% and NCCL by 

10% at 32MB

37%

18%

• 30% to 40% improvement over existing MPI 

algorithms and 30% to 76% improvement 

over NCCL below 4MB

• 23% reduction over NCCL at 32 MB

76%

23%
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• NanoGPT is a quick yet self-contained training and fine-tuning implementation for medium-sized GPTs.

• 7% improvement over MPI(As-Is) on Vista and 2.5% improvement over NCCL on Cardinal.

Application-level Evaluation: nanoGPT

0

50

100

150

200

250

300

12x12x768 24x24x768

Tr
ai

n
in

g 
ti

m
e 

p
er

 i
te

ra
ti

o
n

 (
m

s)

Workload

NCCL 2.21.5
MPI RD
MPI RSA
MPI Ring
Proposed Direct
MPI (As-Is)
MPI (w/ Proposed)

0

500

1000

1500

48x48x768 96x48x768

Tr
a

in
in

g 
ti

m
e

 p
e

r 
it

e
ra

ti
o

n
 (

m
s)

Workload

NCCL 2.21.5
MPI RD
MPI RSA
MPI Ring
Proposed Direct
MPI (As-Is)
MPI (w/ Proposed)

↓7%

↓2.5%

Vista – 64 nodes (64 GPUs) Cardinal – 8 nodes (32 GPUs)

mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu


16Network Based Computing Laboratory

MUG ‘25

• Widely used biomolecular dynamics package, heavy use of Allreduce for forces, energies, etc.

• 27%, 20%, 8%, and 9% performance gain over MPI(As-Is) across the four workloads (on Vista).

Application-level Evaluation: Amber
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• Allreduce operation at scale remains challenging, and existing MPI collectives fail to utilize 

network bandwidth efficiently in this regime. 

• Proposed a Direct Sendrecv Allreduce with throttling to address the medium-message gap.

• Optimizations: overlapping communication & computation, kernel fusion, and CPU staging.

• Achieved up to 40% lower latency vs NCCL and MPI baselines at medium sizes.

• Application-level benefits: 7% faster nanoGPT training, 27% faster Amber simulations.

• Demonstrated scalability across diverse GPU systems and interconnects.

• Available since MVAPICH-Plus 4.1rc (https://mvapich.cse.ohio-state.edu)

• Future plan: extend these designs to other collectives (Allgather, Reduce-Scatter, etc.)

Conclusion and Future Work

https://mvapich.cse.ohio-state.edu/
https://mvapich.cse.ohio-state.edu/
https://mvapich.cse.ohio-state.edu/
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The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/

The High-Performance Big Data Project
http://hibd.cse.ohio-state.edu/
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