
Design and Optimization of GPU-Aware MPI Allreduce
Using Direct Sendrecv Communication

Presented at MUG ’25

Department of Computer Science and Engineering

The Ohio State University

Chen-Chun Chen, Jinghan Yao, Hari Subramoni, and Dhabaleswar K. Panda

2Network Based Computing Laboratory

MUG ‘25

• Introduction

• Motivation

• Implementation and Optimization

• Evaluation Results

• Conclusion and Future Work

Outline

3Network Based Computing Laboratory

MUG ‘25

• Introduction

• Motivation

• Implementation and Optimization

• Evaluation Results

• Conclusion and Future Work

Outline

4Network Based Computing Laboratory

MUG ‘25

• Modern HPC and AI workloads rely heavily on MPI_Allreduce for aggregating data across

thousands of GPUs.

• HPC applications:

– Amber: a suite of biomolecular simulation programs, such as proteins, nucleic acids, and lipids.

• Utilizes Allreduce communication for medium message sizes (MB)

• AI Applications/Frameworks:

– Horovod with TensorFlow or PyTorch

– PyTorch

• Distributed Data Parallelism (DDP) framework for LLM/GPT-like models training

• Utilizes both reduction-based and data-movement-based communications for medium to large message

sizes (MB-GB)

Introduction

5Network Based Computing Laboratory

MUG ‘25

• Introduction

• Motivation

• Implementation and Optimization

• Evaluation Results

• Conclusion and Future Work

Outline

6Network Based Computing Laboratory

MUG ‘25

• Allreduce at scale remains challenging:

Ring algorithm is good at large messages,

but the throughput drops as message is

divided across more GPUs.

• Medium-sized messages (MB range) fall into a

performance gap.

• As the system scale increases, message sizes

tend to fall into the medium range

→ inefficiencies

• Existing MPI collectives fail to utilize network bandwidth efficiently in this regime.

• How can we design a GPU-aware Allreduce that delivers low latency and high bandwidth for

medium messages and large-scale deployments across diverse interconnects?

Motivation

0

5

10

15

20

25

1M 4M 16M 64M 256M 1G

A
lg

o
ri

th
m

 B
a

n
d

w
id

th
 (

G
B

/s
)

Message Size (Bytes)

RD - 16 GPUs
RD - 32 GPUs
RD - 64 GPUs
Ring - 16 GPUs
Ring - 32 GPUs
Ring - 64 GPUs

MPI Allreduce

7Network Based Computing Laboratory

MUG ‘25

• Introduction

• Motivation

• Implementation and Optimization

• Evaluation Results

• Conclusion and Future Work

Outline

8Network Based Computing Laboratory

MUG ‘25

• In modern MPI Allreduce implementations, the

Reduce-Scatter-Allgather (RSA) algorithm is commonly adopted

– Allreduce = Reduce-Scatter + Allgather

– Reduce-Scatter: a distributed combine phase

→ Communication + Computation

– Allgather: a collect phase → Communication

• Use Direct Sendrecv algorithm (inspired by

the Alltoall communication pattern) to to

redesign both the Reduce-Scatter and

Allgather phases

– Aims to saturate communication bandwidth

and improve scalability by concurrently

collecting messages from peer processes

Proposed Direct Sendrecv Algorithm

Ring Algorithm – The first step

Direct Algorithm

9Network Based Computing Laboratory

MUG ‘25

• Excessive concurrency may introduce overhead and eventually degrade performance.

• Throttling mechanisms:

– Group send and receive calls into smaller batches to reduce contention.

– Received data is staged in a tmp GPU buffer to enable the following computation step.

– Example on processes using a throttle factor of 4 (2 communication batches):

Direct Reduce-Scatter with Throttling Designs

Direct Algorithm with Throttling - Step 1 Direct Algorithm with Throttling - Step 2 Data Placement in RS Direct Algorithm

10Network Based Computing Laboratory

MUG ‘25

• In the Ring algorithms, element-wise communication and

computation overlapping is not applicable.

• No inter-iteration data dependencies in the Direct algorithm:

– Can be overlapped across batches.

– Overlapping:

• Change the blocking reduction calls to non-blocking.

• Enqueue reduction calls on the same GPU stream.

• A stream synchronization before Allgather phase.

• Launching multiple kernels still introduces overhead

– E.g.: additional load/store operations to the recv buffer

– Kernel fusion strategy:

• Combines reduction tasks into a single kernel

• Writes the final results directly to the recv buffer in

one step

Optimization of Overlapping and Kernel Fusion

Timeline illustration comparing the proposed naive Direct

design, Direct design with communication-computation

overlapping, and the optimized version with both overlapping

and kernel fusion.

11Network Based Computing Laboratory

MUG ‘25

• Introduction

• Motivation

• Implementation and Optimization

• Evaluation Results

• Conclusion and Future Work

Outline

12Network Based Computing Laboratory

MUG ‘25

Component Vista Cardinal Delta-AI

GPU
1 NVIDIA

GH200 GPUs
4 NVIDIA

H100 GPUs
4 NVIDIA

GH200 GPUs

Device Memory
per GPU

96 GB HBM3e 96 GB HBM2e 96 GB HBM3e

CPU
NVIDIA Grace

CPU
Intel Xeon

Platinum 8470
NVIDIA Grace

CPU

Memory 120 GB LPDDR5X 1 TB DDR5 480GB LPDDR5X

Sockets 1 2 4

Core per Sockets 72 52 72

Inter-connection
1 Infiniband

NDR400 HCAs
4 Infiniband

NDR400 HCAs
4 HPE Slingshot
200 Gbps NICs

Evaluation Platform

13Network Based Computing Laboratory

MUG ‘25

• We extend the proposed algorithm to the CPU side and integrate it into the CPU staging framework

• On 16 GPUs, our CPU-staged Direct algorithm outperforms the next-best method beyond 8 KB

– 34 µs vs 46 µs (RSA), 49 µs (RS), 98 µs (Ring) at 8KB

• On 32 GPUs, it is better beyond 16 KB

– 57 µs vs 67 µs (RSA) at 16KB

Proposed Designs in CPU Staging for Small Messages

0

50

100

150

200

250

300

350

1K 2K 4K 8K 16K 32K 64K 128K

La
te

n
cy

 (
μ

s)

Message Size (Bytes)

MPI RD Algorithm

MPI RSA Algorithm

MPI Ring Algorithm

Porposed MPI Direct Algorithm

16 Vista Nodes (16 GPUs)

0

50

100

150

200

250

300

350

400

1K 2K 4K 8K 16K 32K 64K 128K

La
te

n
cy

 (
μ

s)

Message Size (Bytes)

MPI RD Algorithm

MPI RSA Algorithm

MPI Ring Algorithm

Porposed MPI Direct Algorithm

32 Vista Nodes (32 GPUs)

14Network Based Computing Laboratory

MUG ‘25

• 9% lower latency than both NCCL and RSA,

38% and 64% improvements over Ring and

RD at 64 MB

• 40% lower latency than NCCL at 1 MB

Micro-Benchmark Evaluation

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1M 2M 4M 8M 16M 32M 64M

La
te

n
cy

 (
μ

s)

Message Size (Bytes)

NCCL

MPI RD Algorithm

MPI RSA Algorithm

MPI Ring Algorithm

Proposed Direct Designs

64 Vista Nodes (64 GPUs)

0

100

200

300

400

500

600

700

800

900

1000

64K 256K 1M 4M 16M
La

te
n

cy
 (

μ
s)

Message Size (Bytes)

NCCL

MPI RD Algorithm

MPI RSA Algorithm

MPI Ring Algorithm

Proposed Direct Designs

8 Cardinal Nodes (32 GPUs) 8 Delta-AI Nodes (32 GPUs)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

64K 256K 1M 4M 16M

La
te

n
cy

 (
μ

s)

Message Size (Bytes)

NCCL

MPI RD Algorithm

MPI RSA Algorithm

MPI Ring Algorithm

Proposed Direct Designs

64%

• 37% improvement over NCCL at 8 MB

• Outperforms MPI RSA by 18% and NCCL by

10% at 32MB

37%

18%

• 30% to 40% improvement over existing MPI

algorithms and 30% to 76% improvement

over NCCL below 4MB

• 23% reduction over NCCL at 32 MB

76%

23%

mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu

15Network Based Computing Laboratory

MUG ‘25

• NanoGPT is a quick yet self-contained training and fine-tuning implementation for medium-sized GPTs.

• 7% improvement over MPI(As-Is) on Vista and 2.5% improvement over NCCL on Cardinal.

Application-level Evaluation: nanoGPT

0

50

100

150

200

250

300

12x12x768 24x24x768

Tr
ai

n
in

g
ti

m
e

p
er

 i
te

ra
ti

o
n

 (
m

s)

Workload

NCCL 2.21.5
MPI RD
MPI RSA
MPI Ring
Proposed Direct
MPI (As-Is)
MPI (w/ Proposed)

0

500

1000

1500

48x48x768 96x48x768

Tr
a

in
in

g
ti

m
e

 p
e

r
it

e
ra

ti
o

n
 (

m
s)

Workload

NCCL 2.21.5
MPI RD
MPI RSA
MPI Ring
Proposed Direct
MPI (As-Is)
MPI (w/ Proposed)

↓7%

↓2.5%

Vista – 64 nodes (64 GPUs) Cardinal – 8 nodes (32 GPUs)

mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu

16Network Based Computing Laboratory

MUG ‘25

• Widely used biomolecular dynamics package, heavy use of Allreduce for forces, energies, etc.

• 27%, 20%, 8%, and 9% performance gain over MPI(As-Is) across the four workloads (on Vista).

Application-level Evaluation: Amber

0

50

100

150

JAC FactorIX Cellulose STMV

Th
ro

ug
hp

ut
 (

ns
/d

ay
)

(%
 o

f
M

P
I (

A
s-

Is
))

Workload

MPI RD MPI RSA
MPI Ring Proposed Direct
MPI (As-Is) MPI (w/ Proposed)

Vista – 32 nodes (32 GPUs)

0

20

40

60

80

100

120

140

160

JAC FactorIX Cellulose STMV

Th
ro

ug
hp

ut
 (

ns
/d

ay
)

(%
 o

f
M

P
I (

A
s-

Is
))

Workload

MPI RD MPI RSA
MPI Ring Proposed Direct
MPI (As-Is) MPI (w/ Proposed)

1141
729

320 132
1191 648 259 105

↑27%
↑20% ↑8% ↑9%

↑11% ↑7% ↑3%

Cardinal – 8 nodes (32 GPUs)

↑4%

mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu

17Network Based Computing Laboratory

MUG ‘25

• Introduction

• Motivation

• Implementation and Optimization

• Evaluation Results

• Conclusion and Future Work

Outline

18Network Based Computing Laboratory

MUG ‘25

• Allreduce operation at scale remains challenging, and existing MPI collectives fail to utilize

network bandwidth efficiently in this regime.

• Proposed a Direct Sendrecv Allreduce with throttling to address the medium-message gap.

• Optimizations: overlapping communication & computation, kernel fusion, and CPU staging.

• Achieved up to 40% lower latency vs NCCL and MPI baselines at medium sizes.

• Application-level benefits: 7% faster nanoGPT training, 27% faster Amber simulations.

• Demonstrated scalability across diverse GPU systems and interconnects.

• Available since MVAPICH-Plus 4.1rc (https://mvapich.cse.ohio-state.edu)

• Future plan: extend these designs to other collectives (Allgather, Reduce-Scatter, etc.)

Conclusion and Future Work

https://mvapich.cse.ohio-state.edu/
https://mvapich.cse.ohio-state.edu/
https://mvapich.cse.ohio-state.edu/

19Network Based Computing Laboratory

MUG ‘25

Thank You!

N
et
w
or

k B
ased Computi n

g

LaboratoryNetwork-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

panda@cse.ohio-state.edu

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/

The High-Performance Big Data Project
http://hibd.cse.ohio-state.edu/

http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu

	Slide 1: Design and Optimization of GPU-Aware MPI Allreduce Using Direct Sendrecv Communication
	Slide 2: Outline
	Slide 3: Outline
	Slide 4: Introduction
	Slide 5: Outline
	Slide 6: Motivation
	Slide 7: Outline
	Slide 8: Proposed Direct Sendrecv Algorithm
	Slide 9: Direct Reduce-Scatter with Throttling Designs
	Slide 10: Optimization of Overlapping and Kernel Fusion
	Slide 11: Outline
	Slide 12: Evaluation Platform
	Slide 13: Proposed Designs in CPU Staging for Small Messages
	Slide 14: Micro-Benchmark Evaluation
	Slide 15: Application-level Evaluation: nanoGPT
	Slide 16: Application-level Evaluation: Amber
	Slide 17: Outline
	Slide 18: Conclusion and Future Work
	Slide 19: Thank You!

