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Hyperparameter Optimization (HPO)

• A hyperparameter value is used to control the learning process. It is set prior to the training. By 

contrast, the values of model parameters are derived via training.

• Manual tuning is a widely used strategy to optimize models where the hyperparameter values are 

selected based on a trial-and-error approach by an ML/DL expert. 

• Automated Hyperparameter Optimization (HPO) strategies systematically navigate search spaces to 

tune the training configurations. 

• However, HPO comes at a significant cost due to multi-dimensional search spaces and complex neural 

network architectures.

Courtesy: https://www.codegigs.app/parameter-and-hyperparameter-in-machine-learning/ 

Hyperparameters determine the quality 

of a solution to which the model under 

training converges. 

https://www.codegigs.app/parameter-and-hyperparameter-in-machine-learning/
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Existing Parallelization Strategies for HPO
• Current HPO parallelization techniques underutilize powerful GPUs such as the NVIDIA A100s and 

H100s, especially for optimizing light weight DNNs.

• Lightweight DNNs have become increasingly essential due to their ability to perform low-latency and 
power-efficient inference in resource-constrained environments.

• We conduct a GPU utilization evaluation on Transformers, Vision Transformers, and CNNs with model 
sizes ranging between 2.3M and 31M parameters.

GPU utilization of the NVIDIA A100 training 
on different vision and language models.

Nsight Systems profile of model training 
showing dataloading bottlenecks

We observe that utilization is low for all models, ranging between 22% to 50% on the A100 GPU. We also 
observe that many lightweight DL models are bottlenecked by dataloading.
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Problem Overview
• Given the underutilization of optimizing lightweight DL models, the main challenge lies in deciding the 

placement of HPO jobs on GPUs. We refer to this challenge as the GPU Assignment Problem (GAP).

• Multiple factors must be considered to efficiently solve GAP, including the memory and compute 

requirements for DNN training, GPU architecture, number of GPUs, available CPU cores, GPU memory, 

and GPU compute.

• Naïve job scheduling policies may result in poor performance due to oversubscription or 

underutilization of resources. 

An example of the GPU Assignment 

Problem (GAP) with two nodes, two 

GPUs per node, and an HPO 

workload of 16 DNN training jobs.

This solution is non-optimal. Can 

we do better?
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Problem Statements

1. How can we schedule training jobs of HPO workloads on modern heterogeneous 

GPU clusters to improve the GPU utilization and reduce the HPO makespan?

2. What are the hardware constraints for scheduling HPO workloads and how can we 

design scheduling policies that are aware of such constraints for job assignment?

3. How can we design an HPO workflow/framework that is adaptable to handle 

different scheduling policies, search spaces, DNN architectures including both vision 

and language models, and hardware architectures?

4. How can we analyze job requirements, monitor job status and hardware state, 

support efficient GPU space sharing, and provide resource elasticity and fault 

tolerance?

Note: In the context of this paper, makespan refers to the time taken to execute all HPO jobs in the search space until completion.
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Background: NVIDIA Multi-Process Service (MPS)

• NVIDIA Multi-Process Service (MPS) is a feature provided by the CUDA API designed to improve 

the performance of multi-process GPU applications by enabling concurrent operations via a 

client-server paradigm.

• The MPS infrastructure assigns each CUDA process to an individual client context, each 

operating within a dedicated and secure GPU address space

• MPS particularly effective when dealing with many small-scale tasks that can be executed 

simultaneously using space-sharing to partition resources logically

Example workflow of NVIDIA Multi-Process Service (MPS) with 4 clients
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High-level Architecture of the HyperSack

Key components of HyperSack:

1. Sampler: captures hardware and DNN training 

metrics prior to training to make a scheduling 

decision.

2. Grid: a multi-dimensional matrix that represents 

the search space. Individual jobs can be in pending, 

in-progress, complete, or failed status.

3. State: responsible for monitoring the status of jobs 

and utilization of hardware devices and ensuring 

resource elasticity and fault tolerance.

4. Policy: responsible for making scheduling decision, 

by generating and updating job queues given the 

status of the Grid and State components.

Layered Architecture of the proposed HyperSack framework.
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Workflow of HyperSack
Proposed policies HyperSack’s policies: 

a) First-fit (FF): schedule a job on the any GPU that satisfies the 

problem constraints.

b) First-fit decreasing (FFD): sorts jobs in decreasing order with 

respect to the expected completion time of the individual jobs

c) Worst-fit (WF): gives assignment priority to the GPUs with the 

most compute capacity available.

d) Worst-fit decreasing (WFD): sorts jobs in decreasing order 

ensuring maximum overlap between long and short-running jobs 

and workload balancing across all available GPUs

5. Orchestrator: The Orchestrator controls the main logic 

of the HyperSack framework and coordinates between 

all of its components. Sequence of steps:

1. Initialize MPS server per GPU

2. Generate job configurations from the search space.

3. Collect utilization metrics using the Sampler.

4. Generate a new job queue using the Policy component.

5. Schedule jobs in the job queue on their assigned GPUs.

6. Continuously check the state of the hardware devices.

7. Update the job queue using the scheduling policies 

8. Repeat step 5 until all jobs in the Grid are fully completed.

9. Save results and finalize the MPS server

Workflow of the Orchestrator component 
responsible for coordinating all components of 

the HyperSack framework.
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Hardware:

• Ascend system (specs per node)

– 2 AMD EPYC 7643 processors (64-cores per socket)

– NVIDIA 200G HDR InfiniBand interconnect

– 4 NVIDIA A100 graphics cards

• Lonestar6 system (specs per node)

– A100 partition: 

• 2 AMD EPYC 7763 processors (64-cores per socket)

• 3 NVIDIA A100 graphics cards

– H100 partition: 

• 3 NVIDIA A100 graphics cards

• 2 AMD EPYC 9454  processors (48-cores per socket)

– NVIDIA 100G HDR InfiniBand 

Software packages:

• CUDA 11.7, cuDNN 8.9.2, Python3.8.16, pyNVML 11.5, 
PyTorch 2.0.1, Transformers 4.30.2, and pandas 2.0.2

Experimental Setup
• Models:

– Language Transformers: Pythia-14M, Pythia-34M, and 

BERT-Tiny.

– Vision Transformers: ViT-Tiny, DeiT-Tiny

– CNNs: ResNet-18, ResNet-34, ShuffleNet, and MobileNet

• Datasets:

– Vision: CIFAR-10

– Language:  Stanford’s IMDB dataset

• Baseline: 

– The baseline for all evaluations is the standard HPO 

scheduling scheme of one training job per GPU.

• Experimental Search Spaces:
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Scheduling Policies Comparison

Evaluation of the proposed scheduling 
policies for vision (multiple models) on SP1.

Evaluation of the proposed scheduling policies 
for language (multiple models) on SP2.

Evaluation of the proposed scheduling 
policies for vision (one model) on SP3.

• The HS-WFD (worst-fit decreasing) policy delivers the best performance across all workloads.

• HS-WFD delivers the best performance due to:
1. It achieves maximum overlap between long and short-running jobs due to descending order.

2. It achieves workload balancing across all available GPUs due to selecting GPUs with maximum capacity available.

Baseline

The table shows the time needed for each algorithm to reach a 
scheduling decision and the maximum GPU occupancy achieved 

with different policies.

MIP solver from Google’s OR-Tools is used as the baseline, 
where the problem is formed as a linear programming problem.Best
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Scaling Efficiency

Evaluation of HyperSack with heterogenous 
hardware resource of A100 and H100 GPUs on SP4

Heterogenous HardwareHomogenous Hardware

Evaluation of the scaling efficiency of HyperSack on 
multiple nodes and GPUs on SP4

• Using HyperSack, the makespan is reduced from:
– 2.1 hours to 48.2 minutes on 4 GPUs 

– 1.1 hours to 24.5 minutes on 8 GPUs

– 35.1 minutes to 13.1 minutes on 16 GPUs

• We observe a consistent performance improvement 
over the baseline of around 2.7x.

• Using HyperSack, the makespan is reduced from:
– 1.7 hours to 25.8 minutes on 4 H100 GPUs

– 49.5 minutes to 12.5 minutes on 4 H100 + 6 A100 GPUs

– 2.5 minutesto 8.4 minutes on 4 H100 + 12 A100 GPUs.

• We observe performance improvement over the baseline 
of around 3.9-4x depending on the GPUs config.

SP4 consists of 384 training jobs on lightweight vision models.
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Conclusion and Future Work

• Existing HPO parallelization strategies for tuning lightweight DL models underutilize 

powerful GPU devices, such as the NVIDIA A100 and H100.

• Assigning multiple jobs to a GPU can improve resource utilization; still, naïve scheduling 

of HPO jobs may lead to poor performance.

• We refer to this challenge as the GPU Assignment Problem GAP. 

To address GAP, we propose HyperSack—a distributed HPO framework designed for 

dynamic and resource-aware scheduling on heterogeneous GPU-based HPC with 

resource elasticity and fault tolerance.

• For future work, we plan to extend HyperSack with more scheduling policies, HPO 

algorithms, and support for other GPU architectures from AMD and Intel.
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LaboratoryNetwork-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/

{alnaasan.1, ramesh.113, yao.877, shafi.16, subramoni.1}@osu.edu, panda@cse.ohio-state.edu

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

Follow us on

https://x.com/mvapich 

Full paper (HiPC 2024) 
available here:

https://ieeexplore.ieee.o
rg/document/10884158/ 

http://nowlab.cse.ohio-state.edu/
https://twitter.com/mvapich
https://ieeexplore.ieee.org/document/10884158/
https://ieeexplore.ieee.org/document/10884158/
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