
HyperSack: Distributed Hyperparameter
Optimization for Deep Learning using Resource-

Aware Scheduling on Heterogeneous GPU Systems

Presented at MUG ’25

Nawras Alnaasan, Bharath Ramesh, Jinghan Yao, Aamir Shafi, Hari Subramoni,

and Dhabaleswar K (DK) Panda

Department of Computer Science and Engineering,

The Ohio State University, Columbus, Ohio, USA

MUG ’25 2Network Based Computing Laboratory

Presentation Outline

• Introduction and Motivation

• Problems and Challenges

• Proposed Design and Implementation

• Analysis and Performance Evaluation

• Conclusion

MUG ’25 3Network Based Computing Laboratory

Hyperparameter Optimization (HPO)

• A hyperparameter value is used to control the learning process. It is set prior to the training. By

contrast, the values of model parameters are derived via training.

• Manual tuning is a widely used strategy to optimize models where the hyperparameter values are

selected based on a trial-and-error approach by an ML/DL expert.

• Automated Hyperparameter Optimization (HPO) strategies systematically navigate search spaces to

tune the training configurations.

• However, HPO comes at a significant cost due to multi-dimensional search spaces and complex neural

network architectures.

Courtesy: https://www.codegigs.app/parameter-and-hyperparameter-in-machine-learning/

Hyperparameters determine the quality

of a solution to which the model under

training converges.

https://www.codegigs.app/parameter-and-hyperparameter-in-machine-learning/

MUG ’25 4Network Based Computing Laboratory

Existing Parallelization Strategies for HPO
• Current HPO parallelization techniques underutilize powerful GPUs such as the NVIDIA A100s and

H100s, especially for optimizing light weight DNNs.

• Lightweight DNNs have become increasingly essential due to their ability to perform low-latency and
power-efficient inference in resource-constrained environments.

• We conduct a GPU utilization evaluation on Transformers, Vision Transformers, and CNNs with model
sizes ranging between 2.3M and 31M parameters.

GPU utilization of the NVIDIA A100 training
on different vision and language models.

Nsight Systems profile of model training
showing dataloading bottlenecks

We observe that utilization is low for all models, ranging between 22% to 50% on the A100 GPU. We also
observe that many lightweight DL models are bottlenecked by dataloading.

MUG ’25 5Network Based Computing Laboratory

Presentation Outline

• Introduction and Motivation

• Problems and Challenges

• Proposed Design and Implementation

• Analysis and Performance Evaluation

• Conclusion

MUG ’25 6Network Based Computing Laboratory

Problem Overview
• Given the underutilization of optimizing lightweight DL models, the main challenge lies in deciding the

placement of HPO jobs on GPUs. We refer to this challenge as the GPU Assignment Problem (GAP).

• Multiple factors must be considered to efficiently solve GAP, including the memory and compute

requirements for DNN training, GPU architecture, number of GPUs, available CPU cores, GPU memory,

and GPU compute.

• Naïve job scheduling policies may result in poor performance due to oversubscription or

underutilization of resources.

An example of the GPU Assignment

Problem (GAP) with two nodes, two

GPUs per node, and an HPO

workload of 16 DNN training jobs.

This solution is non-optimal. Can

we do better?

MUG ’25 7Network Based Computing Laboratory

Problem Statements

1. How can we schedule training jobs of HPO workloads on modern heterogeneous

GPU clusters to improve the GPU utilization and reduce the HPO makespan?

2. What are the hardware constraints for scheduling HPO workloads and how can we

design scheduling policies that are aware of such constraints for job assignment?

3. How can we design an HPO workflow/framework that is adaptable to handle

different scheduling policies, search spaces, DNN architectures including both vision

and language models, and hardware architectures?

4. How can we analyze job requirements, monitor job status and hardware state,

support efficient GPU space sharing, and provide resource elasticity and fault

tolerance?

Note: In the context of this paper, makespan refers to the time taken to execute all HPO jobs in the search space until completion.

MUG ’25 8Network Based Computing Laboratory

Presentation Outline

• Introduction and Motivation

• Problems and Challenges

• Proposed Design and Implementation

• Analysis and Performance Evaluation

• Conclusion

MUG ’25 9Network Based Computing Laboratory

Background: NVIDIA Multi-Process Service (MPS)

• NVIDIA Multi-Process Service (MPS) is a feature provided by the CUDA API designed to improve

the performance of multi-process GPU applications by enabling concurrent operations via a

client-server paradigm.

• The MPS infrastructure assigns each CUDA process to an individual client context, each

operating within a dedicated and secure GPU address space

• MPS particularly effective when dealing with many small-scale tasks that can be executed

simultaneously using space-sharing to partition resources logically

Example workflow of NVIDIA Multi-Process Service (MPS) with 4 clients

MUG ’25 10Network Based Computing Laboratory

High-level Architecture of the HyperSack

Key components of HyperSack:

1. Sampler: captures hardware and DNN training

metrics prior to training to make a scheduling

decision.

2. Grid: a multi-dimensional matrix that represents

the search space. Individual jobs can be in pending,

in-progress, complete, or failed status.

3. State: responsible for monitoring the status of jobs

and utilization of hardware devices and ensuring

resource elasticity and fault tolerance.

4. Policy: responsible for making scheduling decision,

by generating and updating job queues given the

status of the Grid and State components.

Layered Architecture of the proposed HyperSack framework.

MUG ’25 11Network Based Computing Laboratory

Workflow of HyperSack
Proposed policies HyperSack’s policies:

a) First-fit (FF): schedule a job on the any GPU that satisfies the

problem constraints.

b) First-fit decreasing (FFD): sorts jobs in decreasing order with

respect to the expected completion time of the individual jobs

c) Worst-fit (WF): gives assignment priority to the GPUs with the

most compute capacity available.

d) Worst-fit decreasing (WFD): sorts jobs in decreasing order

ensuring maximum overlap between long and short-running jobs

and workload balancing across all available GPUs

5. Orchestrator: The Orchestrator controls the main logic

of the HyperSack framework and coordinates between

all of its components. Sequence of steps:

1. Initialize MPS server per GPU

2. Generate job configurations from the search space.

3. Collect utilization metrics using the Sampler.

4. Generate a new job queue using the Policy component.

5. Schedule jobs in the job queue on their assigned GPUs.

6. Continuously check the state of the hardware devices.

7. Update the job queue using the scheduling policies

8. Repeat step 5 until all jobs in the Grid are fully completed.

9. Save results and finalize the MPS server

Workflow of the Orchestrator component
responsible for coordinating all components of

the HyperSack framework.

MUG ’25 12Network Based Computing Laboratory

Presentation Outline

• Introduction and Motivation

• Problems and Challenges

• Proposed Design and Implementation

• Analysis and Performance Evaluation

• Conclusion

MUG ’25 13Network Based Computing Laboratory

Hardware:

• Ascend system (specs per node)

– 2 AMD EPYC 7643 processors (64-cores per socket)

– NVIDIA 200G HDR InfiniBand interconnect

– 4 NVIDIA A100 graphics cards

• Lonestar6 system (specs per node)

– A100 partition:

• 2 AMD EPYC 7763 processors (64-cores per socket)

• 3 NVIDIA A100 graphics cards

– H100 partition:

• 3 NVIDIA A100 graphics cards

• 2 AMD EPYC 9454 processors (48-cores per socket)

– NVIDIA 100G HDR InfiniBand

Software packages:

• CUDA 11.7, cuDNN 8.9.2, Python3.8.16, pyNVML 11.5,
PyTorch 2.0.1, Transformers 4.30.2, and pandas 2.0.2

Experimental Setup
• Models:

– Language Transformers: Pythia-14M, Pythia-34M, and

BERT-Tiny.

– Vision Transformers: ViT-Tiny, DeiT-Tiny

– CNNs: ResNet-18, ResNet-34, ShuffleNet, and MobileNet

• Datasets:

– Vision: CIFAR-10

– Language: Stanford’s IMDB dataset

• Baseline:

– The baseline for all evaluations is the standard HPO

scheduling scheme of one training job per GPU.

• Experimental Search Spaces:

MUG ’25 14Network Based Computing Laboratory

Scheduling Policies Comparison

Evaluation of the proposed scheduling
policies for vision (multiple models) on SP1.

Evaluation of the proposed scheduling policies
for language (multiple models) on SP2.

Evaluation of the proposed scheduling
policies for vision (one model) on SP3.

• The HS-WFD (worst-fit decreasing) policy delivers the best performance across all workloads.

• HS-WFD delivers the best performance due to:
1. It achieves maximum overlap between long and short-running jobs due to descending order.

2. It achieves workload balancing across all available GPUs due to selecting GPUs with maximum capacity available.

Baseline

The table shows the time needed for each algorithm to reach a
scheduling decision and the maximum GPU occupancy achieved

with different policies.

MIP solver from Google’s OR-Tools is used as the baseline,
where the problem is formed as a linear programming problem.Best

MUG ’25 15Network Based Computing Laboratory

Scaling Efficiency

Evaluation of HyperSack with heterogenous
hardware resource of A100 and H100 GPUs on SP4

Heterogenous HardwareHomogenous Hardware

Evaluation of the scaling efficiency of HyperSack on
multiple nodes and GPUs on SP4

• Using HyperSack, the makespan is reduced from:
– 2.1 hours to 48.2 minutes on 4 GPUs

– 1.1 hours to 24.5 minutes on 8 GPUs

– 35.1 minutes to 13.1 minutes on 16 GPUs

• We observe a consistent performance improvement
over the baseline of around 2.7x.

• Using HyperSack, the makespan is reduced from:
– 1.7 hours to 25.8 minutes on 4 H100 GPUs

– 49.5 minutes to 12.5 minutes on 4 H100 + 6 A100 GPUs

– 2.5 minutesto 8.4 minutes on 4 H100 + 12 A100 GPUs.

• We observe performance improvement over the baseline
of around 3.9-4x depending on the GPUs config.

SP4 consists of 384 training jobs on lightweight vision models.

MUG ’25 16Network Based Computing Laboratory

Conclusion and Future Work

• Existing HPO parallelization strategies for tuning lightweight DL models underutilize

powerful GPU devices, such as the NVIDIA A100 and H100.

• Assigning multiple jobs to a GPU can improve resource utilization; still, naïve scheduling

of HPO jobs may lead to poor performance.

• We refer to this challenge as the GPU Assignment Problem GAP.

To address GAP, we propose HyperSack—a distributed HPO framework designed for

dynamic and resource-aware scheduling on heterogeneous GPU-based HPC with

resource elasticity and fault tolerance.

• For future work, we plan to extend HyperSack with more scheduling policies, HPO

algorithms, and support for other GPU architectures from AMD and Intel.

MUG ’25 17Network Based Computing Laboratory

Thank You!

N
et
w
or

k B
ased Computi n

g

LaboratoryNetwork-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/

{alnaasan.1, ramesh.113, yao.877, shafi.16, subramoni.1}@osu.edu, panda@cse.ohio-state.edu

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

Follow us on

https://x.com/mvapich

Full paper (HiPC 2024)
available here:

https://ieeexplore.ieee.o
rg/document/10884158/

http://nowlab.cse.ohio-state.edu/
https://twitter.com/mvapich
https://ieeexplore.ieee.org/document/10884158/
https://ieeexplore.ieee.org/document/10884158/

	Slide 1: HyperSack: Distributed Hyperparameter Optimization for Deep Learning using Resource-Aware Scheduling on Heterogeneous GPU Systems
	Slide 2
	Slide 3: Hyperparameter Optimization (HPO)
	Slide 4: Existing Parallelization Strategies for HPO
	Slide 5
	Slide 6: Problem Overview
	Slide 7: Problem Statements
	Slide 8
	Slide 9: Background: NVIDIA Multi-Process Service (MPS)
	Slide 10: High-level Architecture of the HyperSack
	Slide 11: Workflow of HyperSack
	Slide 12
	Slide 13: Experimental Setup
	Slide 14: Scheduling Policies Comparison
	Slide 15: Scaling Efficiency
	Slide 16: Conclusion and Future Work
	Slide 17: Thank You!

