

Performance Evaluation and Optimization of MVAPICH-Plus on SDSC Cosmos: Early Experience

Goutham Kalikrishna Reddy Kuncham, Siyuan Zhang

08/18/2025

Network-based Computing Laboratory

Department of Computer Science and Engineering

The Ohio State University

Table of Contents

- Introduction
- MI300A APU Architecture
- Performance Evaluation Numbers
- Conclusion

HPC's Road of Heterogeneous Processor

- **TSUBAME 1.2** (2008) 1st GPGPU-powered Cluster
 - AMD Opteron Barcelona + NVIDIA Tesla T10
- **Titan** (2012) #1 in TOP 500 GPGPU-powered Cluster
 - AMD Opteron 6274 + NVIDIA Tesla K20X
- **Alps** (2024) 1st Grace-Hopper-powered Cluster
 - Grace 72 ARMv9 + Hopper H100 GPU (GH200)
- El Capitan (2025) #1 in TOP 500
 - o AMD MI300A
- Green 500
 - 4/10 Top 10 are using GH200 (#1, #2, #4, #8 @2025 June)
 - 2/10 Top 10 are using MI300A (#3, #9 @ 2025 June)

CPU + GPU

Grace-Hopper

&

MI300A

Challenges: The "Two-Island" Problem

Separate Memory Pools

○ CPU and GPU separate physical memory (DRAM \leftrightarrow HBM/GDDR).

The "Data Ferry": Expensive & Explicit Copies

- Data must be manually copied (memcpy) between host and device to be used.
- This "ferry" trip consumes significant time (latency) and energy, reducing overall efficiency.

• The "Bigger Bridge" Fallacy

- o Faster interconnects (NVLink, Infinity Fabric) create a wider bridge, but don't solve the core issue.
- The two memory islands still exist; copies and synchronization are still required.

The Burden on Software

- Developers and middleware must explicitly manage data location and traffic.
- This results in higher code complexity, longer development time, difficult performance trade-offs.

[1]

Table of Contents

- Introduction
- MI300A APU Architecture
- Performance Evaluation Numbers
- Conclusion

AMD MI300A APU (Accelerated Processing Unit)

- First data-center APU MI300A integrating CPU and GPU cores within a single package
- MI300A combines x86 CPU cores, CDNA3 GPU compute units
- Shared coherent pool of high-bandwidth HBM3 memory
- Eliminates explicit host-device data transfers
- Allows CPU and GPU to access the same physical memory seamlessly
- Changes communication costs and middleware strategies

[1]

MI300A Chiplet-Based Architecture Components

- 3 Core Complex Dies (CCDs), each with 8 highperformance Zen 4 CPU cores (24 total)
- 6 Accelerator Complex Dies (XCDs) delivering massive GPU compute (228 CDNA3 compute units)
- 4 I/O Dies (IODs) functioning as cached active interposers

MI300A Chiplet-Based Architecture Components

- 256 MB Infinity Cache
- Peak theoretical bandwidth from the Infinity Cache is 17.2 TB/s
- 8 x 16GB HBM3 memory across 4 IODs (Total of 128GB)
- 5.3 TB/s peak theoretical
 HBM bandwidth

SDSC COSMOS

- 42 nodes, each with 4 APUs total of 168 APUs
- Nodes are interconnected by a fully connected network based on AMD's Infinity fabric and xGMI technology
- Interconnect delivers up to 768 GB/s aggregate and 256 GB/s peer-to-peer bi-directional bandwidth between APUs
- Every node is provisioned with four HPE Cray Slingshot-11 interconnects, offering an aggregate bidirectional bandwidth of 200 GB/s (equivalent to 25GB/s per link in each direction).

Orange line is Inter APU connection 64 GB/s/dir

Table of Contents

- Introduction
- MI300A APU Architecture
- Performance Evaluation Numbers
- Conclusion

MVAPICH-Plus Performance on MI300A PT2PT Intra Node - CPU

Latency

Bandwidth

MVAPICH-Plus Performance on MI300A PT2PT Inter Node - CPU

Latency

MVAPICH-Plus Performance on MI300A PT2PT Intra Node - GPU

Latency

Bandwidth

MVAPICH-Plus Performance on MI300A PT2PT Inter Node - GPU

Latency

Bandwidth

MVAPICH-Plus Performance on MI300A Collective 1 Node 192 PPN - CPU

Allgather

Allreduce

allreduce 1 node 192 ppn large

MVAPICH-Plus Performance on MI300A Collective 1 Node 192 PPN - CPU

Alltoall

MVAPICH-Plus Performance on MI300A Collective 16 Node 64 PPN – CPU

Allgather

Allreduce

MVAPICH-Plus Performance on MI300A Collective 16 Node 64 PPN - CPU

Alltoall

MVAPICH-Plus Performance on MI300A Collective 1 Node 4 PPN - GPU

Allgather

Allreduce

MVAPICH-Plus Performance on MI300A Collective 1 Node 4 PPN - GPU

Alltoall

Reduce

MVAPICH-Plus Performance on MI300A Collective 8 Node 4 PPN - GPU

Allgather

Allreduce

MVAPICH-Plus Performance on MI300A Collective 8 Node 4 PPN – GPU

Alltoall

Reduce

MVAPICH-Plus Performance on MI300A Collective 32 Node 4 PPN – GPU

Allgather

Allreduce

MVAPICH-Plus Performance on MI300A Collective 32 Node 4 PPN - GPU

Alltoall

Reduce

Conclusion

- MI300A integrates CPU and GPU chiplets on a single package for true heterogeneous computing.
- Unified coherent HBM3 memory pool eliminates costly data transfers and simplifies programming
- Advanced chiplet design and Infinity Fabric interconnect provide high bandwidth and low latency

THANK YOU!

Questions?

Email: kuncham.2@osu.edu