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• Halo-exchange communication patterns occur in many stencil-based HPC 

applications such as MiniAMR, MiniGhost, and MILC.

• In this pattern, each process often performs a mix of inter-node (between different 

compute nodes) and intra-node (within the same compute node) transfers.

• Depending on the input and processor grid size, the amount of time spent in inter-

node or intra-node communication could dominate the total communication time.

The challenge: Efficiently managing these diverse communication patterns is 

challenging, especially given the dynamic nature of real-world applications and the 

limitations of current MPI libraries

Our goal: To propose dynamic message passing protocols that significantly optimize 

communication time for these patterns

Introduction – Problem Space
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• Application parameters (e.g., problem grid dimensions, processor grid 

dimensions, number of variables) significantly affect message sizes

• For example, in MiniAMR, the average message size can vary drastically just by 

changing the number of variables for the same problem size

Motivation 1: Changing Message Patterns in Applications

Fixed grid size in miniAMR (32x32x32) Fixed num_vars in miniAMR (10)
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• Existing work-stealing solutions for intra-node communication often use a static, on-

demand chunking scheme

– This means a fixed number of chunks for every message size

– Susceptible to skews in the application. The same chunk size does not necessarily work 

everywhere

– Impractical to tune - Static tuning for each specific message size and CPU architecture

• Fixed protocols for a given message size

– Work stealing has additional overheads, so switching to a basic protocol might be better if work 

stealing is unnecessary

• Can we design protocols that adapt to application patterns and dynamically select chunk 

sizes/protocols at runtime? 

Motivation 1: Lack of Adaptivity in Intra-Node Communication
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• Current MPI libraries often fail to achieve optimal overlap between intra-node and inter-node transfers

• Rendezvous protocol, commonly used for large messages, requires a handshaking mechanism (Request-to-Send (RTS) and 

Clear-to-Send (CTS)) before data transfer

• The rendezvous protocol does not guarantee overlap

• It depends on the order in which control message arrives

• Can we design a protocol to improve the overlap potential without additional copy for stencil workloads?

Motivation 2: Problem with Rendezvous Protocol
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• 7-point stencil communication benchmark

– Up-to 6 neighbors (2 per direction)

• Comparison of OpenMPI, MVAPICH-Plus on 4 Nodes, 

144 PPN

– Total – send/recv to/from all neighbors

– Inter-only – sends/recvs to/from inter-node 

neighbors only

– Intra-only – sends/recvs to/from intra-node 

neighbors only

• Ideal latency = max(inter-only, intra-only)

– inter-only >> intra-node 

– Ideal latency = inter-only

• Observation: total latency = 1.3X inter-only latency

Example: Lack of Overlap in Communication Runtimes
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Queue designs
• Two queue types

• SPSC queues for metadata/control msgs

– Single producer, single consumer

– N^2 queues for N processes

– Use release store and acquire load + caching to 

improve performance

• SPMC queues for work-stealing

– Single producer, multiple consumer

– N queues for N processes

– The producer keeps writing to the queue. 

Consumers need to catch up.

• Bitmask to track the number of work-stealers 

available
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• Sender

– Enqueue ready to send (RTS) to receiver in SPSC queue

– Wait for CTS (if cooperative) or FIN (if GET/work stealing)

• Receiver

– Split the buffer into a small pre-defined chunk size (say, 1024 bytes) in the first iteration

– Subsequent iterations use set completion bits (popcount) to determine number of chunks

– If popcount is 1, use a GET protocol and send FIN. If it’s 2, use COOP -> send CTS and do memcpy. 

Otherwise, use the generic work-stealing protocol.

• Progress

– Poll self SPMC queue and dequeue task first and then poll remote SPMC queue if nothing

– Handle work stealing memory copy (if any), and perform an atomic fetch or on bitset

– On request completion (during test/wait), use popcount to update number of stealers for a given peer, 

and then send a FIN message.

Dynamic stealing protocol (Receiver-initiated)
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• Key Idea: Instead of the application providing the receive buffer, the 

communication library itself manages the receive buffers.

• We observed that all stencil-based applications use auxiliary buffers for 

communication

• We propose simple extensions to the MPI standard to allow the library to 

manage buffers.

• We propose to modify the MPI_Irecv semantics to allow a NULL value for the 

receive buffer, indicating that the library will provide the receive buffer when a 

NULL value is given to MPI_Irecv.

Designing the Overlap Protocol
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• Protocol managed receive buffer

• Exposed via MPIX_Get_recv_buf method 

• Release the buffer for re-use using MPIX_Release_recv_buf

• Why this works:

– Stencil based applications use auxiliary buffers for communication

Proposed Modifications to MPI Standard
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Results with miniAMR

• Up to 37% improvements for a fixed process count of 128 (and varying grid sizes)

• Up to 19.4% for a fixed grid size of 32x32x32 (and varying process counts)
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• Proposed scheme’s overlap increases from 67% to 94% as the scale increases for 2MB transfer

• Proposed scheme’s overall latency performs from 32% better for 256KB, 38% better for 2MB on 4 Nodes 

• For 2MB, the proposed scheme’s overall latency is 38% better on 4 Nodes, 50% better on 16 Nodes

3D Stencil Overlap Benchmark
4 Nodes, 144 PPN 16 Nodes, 144 PPN
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• We identified significant shortcomings in existing MPI Rendezvous and work-

stealing protocols for stencil-based communication patterns.

• We developed a dynamic intra-node protocol that adapts to application 

patterns by intelligently switching protocols and tuning chunk sizes at runtime

• These dynamic protocols lead to substantial performance gains and better 

overlap in HPC applications utilizing stencil communication, making them more 

efficient and scalable

Conclusion
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