
Towards Dynamic Message Passing 
Protocols For Stencil-based 

Communication Patterns

08/20/2025

Network-based Computing Laboratory

Department of Computer Science and Engineering

The Ohio State University

Kaushik Kandadi Suresh, Bharath Ramesh, Goutham Kalikrishna Reddy Kuncham, 

Hari Subramoni, Dhabaleswar K. (DK) Panda

IEEE Cluster 2025



MUG’25 2Network Based Computing Laboratory 

• Introduction

• Motivation

– Motivation 1

– Motivation 2

• Designs

• Results

• Conclusion

Table of Contents



MUG’25 3Network Based Computing Laboratory 

• Halo-exchange communication patterns occur in many stencil-based HPC 

applications such as MiniAMR, MiniGhost, and MILC.

• In this pattern, each process often performs a mix of inter-node (between different 

compute nodes) and intra-node (within the same compute node) transfers.

• Depending on the input and processor grid size, the amount of time spent in inter-

node or intra-node communication could dominate the total communication time.

The challenge: Efficiently managing these diverse communication patterns is 

challenging, especially given the dynamic nature of real-world applications and the 

limitations of current MPI libraries

Our goal: To propose dynamic message passing protocols that significantly optimize 

communication time for these patterns

Introduction – Problem Space



MUG’25 4Network Based Computing Laboratory 

• Introduction

• Motivation

– Motivation 1

– Motivation 2

• Designs

• Results

• Conclusion

Table of Contents



MUG’25 5Network Based Computing Laboratory 

• Application parameters (e.g., problem grid dimensions, processor grid 

dimensions, number of variables) significantly affect message sizes

• For example, in MiniAMR, the average message size can vary drastically just by 

changing the number of variables for the same problem size

Motivation 1: Changing Message Patterns in Applications

Fixed grid size in miniAMR (32x32x32) Fixed num_vars in miniAMR (10)



MUG’25 6Network Based Computing Laboratory 

• Existing work-stealing solutions for intra-node communication often use a static, on-

demand chunking scheme

– This means a fixed number of chunks for every message size

– Susceptible to skews in the application. The same chunk size does not necessarily work 

everywhere

– Impractical to tune - Static tuning for each specific message size and CPU architecture

• Fixed protocols for a given message size

– Work stealing has additional overheads, so switching to a basic protocol might be better if work 

stealing is unnecessary

• Can we design protocols that adapt to application patterns and dynamically select chunk 

sizes/protocols at runtime? 

Motivation 1: Lack of Adaptivity in Intra-Node Communication



MUG’25 7Network Based Computing Laboratory 

• Current MPI libraries often fail to achieve optimal overlap between intra-node and inter-node transfers

• Rendezvous protocol, commonly used for large messages, requires a handshaking mechanism (Request-to-Send (RTS) and 

Clear-to-Send (CTS)) before data transfer

• The rendezvous protocol does not guarantee overlap

• It depends on the order in which control message arrives

• Can we design a protocol to improve the overlap potential without additional copy for stencil workloads?

Motivation 2: Problem with Rendezvous Protocol

R-0 R-1 R-2

INTRA 

READ

Node 0 Node 1
R-0 R-1 R-2

INTRA 

READ

Node 0 Node 1

(a) Missed Overlap Opportunity (b) Ideal Overlap



MUG’25 8Network Based Computing Laboratory 

• 7-point stencil communication benchmark

– Up-to 6 neighbors (2 per direction)

• Comparison of OpenMPI, MVAPICH-Plus on 4 Nodes, 

144 PPN

– Total – send/recv to/from all neighbors

– Inter-only – sends/recvs to/from inter-node 

neighbors only

– Intra-only – sends/recvs to/from intra-node 

neighbors only

• Ideal latency = max(inter-only, intra-only)

– inter-only >> intra-node 

– Ideal latency = inter-only

• Observation: total latency = 1.3X inter-only latency

Example: Lack of Overlap in Communication Runtimes

0

0.2

0.4

0.6

0.8

1

1.2

OMPI MVP OMPI MVP OMPI MVP

524288 1048576 2097152

N
o

rm
al

iz
e

d
 L

at
e

n
cy

Message Size (Bytes)

Total Intra-Only Inter-Only

7-Point Stencil Communication Benchmark

4 Nodes 144 PPN

mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu


MUG’25 9Network Based Computing Laboratory 

• Introduction

• Motivation

– Motivation 1

– Motivation 2

• Designs

• Results

• Conclusion

Table of Contents



MUG’25 10Network Based Computing Laboratory 

Queue designs
• Two queue types

• SPSC queues for metadata/control msgs

– Single producer, single consumer

– N^2 queues for N processes

– Use release store and acquire load + caching to 

improve performance

• SPMC queues for work-stealing

– Single producer, multiple consumer

– N queues for N processes

– The producer keeps writing to the queue. 

Consumers need to catch up.

• Bitmask to track the number of work-stealers 

available



MUG’25 11Network Based Computing Laboratory 

• Sender

– Enqueue ready to send (RTS) to receiver in SPSC queue

– Wait for CTS (if cooperative) or FIN (if GET/work stealing)

• Receiver

– Split the buffer into a small pre-defined chunk size (say, 1024 bytes) in the first iteration

– Subsequent iterations use set completion bits (popcount) to determine number of chunks

– If popcount is 1, use a GET protocol and send FIN. If it’s 2, use COOP -> send CTS and do memcpy. 

Otherwise, use the generic work-stealing protocol.

• Progress

– Poll self SPMC queue and dequeue task first and then poll remote SPMC queue if nothing

– Handle work stealing memory copy (if any), and perform an atomic fetch or on bitset

– On request completion (during test/wait), use popcount to update number of stealers for a given peer, 

and then send a FIN message.

Dynamic stealing protocol (Receiver-initiated)



MUG’25 12Network Based Computing Laboratory 

• Key Idea: Instead of the application providing the receive buffer, the 

communication library itself manages the receive buffers.

• We observed that all stencil-based applications use auxiliary buffers for 

communication

• We propose simple extensions to the MPI standard to allow the library to 

manage buffers.

• We propose to modify the MPI_Irecv semantics to allow a NULL value for the 

receive buffer, indicating that the library will provide the receive buffer when a 

NULL value is given to MPI_Irecv.

Designing the Overlap Protocol



MUG’25 13Network Based Computing Laboratory 

• Protocol managed receive buffer

• Exposed via MPIX_Get_recv_buf method 

• Release the buffer for re-use using MPIX_Release_recv_buf

• Why this works:

– Stencil based applications use auxiliary buffers for communication

Proposed Modifications to MPI Standard



MUG’25 17Network Based Computing Laboratory 

• Introduction

• Motivation

– Motivation 1

– Motivation 2

• Designs

• Results

• Conclusion

Table of Contents



MUG’25 18Network Based Computing Laboratory 

Results with miniAMR

• Up to 37% improvements for a fixed process count of 128 (and varying grid sizes)

• Up to 19.4% for a fixed grid size of 32x32x32 (and varying process counts)



MUG’25 19Network Based Computing Laboratory 

• Proposed scheme’s overlap increases from 67% to 94% as the scale increases for 2MB transfer

• Proposed scheme’s overall latency performs from 32% better for 256KB, 38% better for 2MB on 4 Nodes 

• For 2MB, the proposed scheme’s overall latency is 38% better on 4 Nodes, 50% better on 16 Nodes

3D Stencil Overlap Benchmark
4 Nodes, 144 PPN 16 Nodes, 144 PPN

0
10
20
30
40
50
60
70
80
90

100
P

ro
p

o
se

d
-C

R

O
M

P
I

M
V

P

P
ro

p
o

se
d

-C
R

O
M

P
I

M
V

P

P
ro

p
o

se
d

-C
R

O
M

P
I

M
V

P

P
ro

p
o

se
d

-C
R

O
M

P
I

M
V

P

262144 524288 1048576 2097152

N
o

rm
al

iz
e

d
 V

al
u

e
s

Message Size (Bytes)

Overall Overlap %

0
10
20
30
40
50
60
70
80
90

100

P
ro

p
o

se
d

-C
R

O
M

P
I

M
V

P

P
ro

p
o

se
d

-C
R

O
M

P
I

M
V

P

P
ro

p
o

se
d

-C
R

O
M

P
I

M
V

P

P
ro

p
o

se
d

-C
R

O
M

P
I

M
V

P

262144 524288 1048576 2097152

N
o

rm
al

iz
e

d
 V

al
u

e
s

Message Size (Bytes)

Overall Overlap %



MUG’25 20Network Based Computing Laboratory 

• Introduction

• Motivation

– Motivation 1

– Motivation 2

• Designs

• Results

• Conclusion

Table of Contents



MUG’25 21Network Based Computing Laboratory 

• We identified significant shortcomings in existing MPI Rendezvous and work-

stealing protocols for stencil-based communication patterns.

• We developed a dynamic intra-node protocol that adapts to application 

patterns by intelligently switching protocols and tuning chunk sizes at runtime

• These dynamic protocols lead to substantial performance gains and better 

overlap in HPC applications utilizing stencil communication, making them more 

efficient and scalable

Conclusion



MUG’25 22Network Based Computing Laboratory 

THANK YOU!

N
et
w
or

k
Bas
ed Com

pu
tin
g

Laboratory
Network-Based Computing Laboratory

http://nowlab.cse.ohio-state.edu/

The High-Performance MPI/PGAS
 Project

http://mvapich.cse.ohio-state.edu/

The High-Performance Big Data 
Project

http://hibd.cse.ohio-state.edu/

The High-Performance Deep Learning 
Project

http://hidl.cse.ohio-state.edu/

http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/

	Slide 1: Towards Dynamic Message Passing Protocols For Stencil-based Communication Patterns
	Slide 2: Table of Contents
	Slide 3: Introduction – Problem Space
	Slide 4: Table of Contents
	Slide 5: Motivation 1: Changing Message Patterns in Applications
	Slide 6: Motivation 1: Lack of Adaptivity in Intra-Node Communication
	Slide 7: Motivation 2: Problem with Rendezvous Protocol
	Slide 8: Example: Lack of Overlap in Communication Runtimes
	Slide 9: Table of Contents
	Slide 10: Queue designs
	Slide 11: Dynamic stealing protocol (Receiver-initiated)
	Slide 12: Designing the Overlap Protocol
	Slide 13: Proposed Modifications to MPI Standard
	Slide 17: Table of Contents
	Slide 18: Results with miniAMR
	Slide 19: 3D Stencil Overlap Benchmark
	Slide 20: Table of Contents
	Slide 21: Conclusion
	Slide 22

