MVAPICH es*HiBD

MPI, PGAS and Hybrid MPI1+PGAS Library H ig h-Performance
Big Data

)

Using BlueField-3 SmartNICs to Offload Vector
Operations in Krylov Subspace Methods

Kaushik Kandadi Suresh, Benjamin Michalowicz, Nick Contini,

Bharath Ramesh, Mustafa Abduljabbar, Aamir Shafi, Hari Subramoni,
Dhabaleswar K (DK) Panda

{kandadisuresh.1, michalowicz.2, contini.26, ramesh.113, shafi.16,
subramoni.l, panda.2}@osu.edu

Presented initially @ HiPC 2024

Department of Computer Science and Engineering
The Ohio State University

HIDL

High-Performance
Deep Learning

Outline

e Introduction

e Motivation

e Contributions

e Design

e Evaluation Results

e Conclusion and Future Work

MUG 2025

Overview of BlueField-3 DPU/Smart NIC

e InfiniBand network adapter with [}{ }
P, P, P, o B Memory
up to 400Gbps speed

Host Server (J

e System-on-chip containing 16
64-bit ARMvS8.2 A78 cores with

2.75 GHz each = E — \E;ED 11 {WH :
e 16 GB of memory for the ARM ComeorX ARM Cores 8

BlueField

PCle

ort

1

cores

MUG 2025

Offloading Computation to the SmartNIC
e SmartNICs:

— Have specialized hardware units for encryption, compression, etc

— Also have general purpose programmable cores. Eg: NVIDIA’s BlueField-3 (BF3) DPU

e SmartNIC cores are not as powerful as CPUs

— Unlike GPUs, can’t offload all the operations. Only beneficial to offload the Op2 in the figure below.

— Offloading involves data movement cost

| < N
cru Qo (em) (om) ()
SmartNIC /gy\
| \ ,

CPU oP1

A

e How to efficiently select and offload the following operations in Krylov Solvers ?
— Vector-Multiply-Add (VMA), Distributed DOT Product (DDOT), Matrix-Vector Multiplication

MUG 2025

Krylov Offload Framework

Application Frameworks

Krylov Subspace Methods

e Krylov Solvers

— Numerical methods to solve large sparse linear

systems of equations

— Widely used in HPC applications

— Eg: Pre-conditioned Conjugate Gradient (PCG)

Preconditioners

Operators/Solvers -- Offload to DPU

— MATVEC : Matrix-Vector multiplication Communication and other Runtime Libraries
— VMA: Vector Multiply Add (AXPY) - -

Proposed Offload Framework

e Commonly used operations:

— DDOT: Distributed Dot Product

MUG 2025

Outline

e Motivation

e Contributions

e Design

e Evaluation Results

e Conclusion and Future Work

MUG 2025

Motivation

Problems in past works on DPU offload:

1. Manually identification of tasks to be offloaded

2. Host-to-DPU data movement bottleneck not addressed

Different PCG algorithms have different types of data
dependencies

Manual identification is tedious and inefficient
e\ F

Next Iteration

Next Iteration

CEDICTRD)
o)) (o) o
SESRS

(1) Data flow graph for PIPEPCG Algorithm

e Offloading to DPU involves moving vectors to DPU memory

e Data movement overhead can consume at-least 30% of the total time

®m Matvec Time Data Exchange Time

100 —— —]

o0
o

o))
o

N
o

o

Percentage Time Spent in DPU
D
o

15% 30%

(o)
Amount of dzal%z?Sent to DPU

(2) Data movement cost for moving data to BF3 DPU for AMG Matrix-Vector Multiplication

MUG 2025

Outline

e Contributions
e Design
e Evaluation Results

e Conclusion and Future Work

MUG 2025

Contributions

e We propose a generalized splitting scheme that can be applied to offload any
PCG algorithm for generating a set of host and DPU operations to be offloaded

e We reduce the data transfer overhead by designing and implementing the
proposed onloading scheme.

e We show the impact of our designs on 1) AMG-PCG benchmark and 2) PETSc
KSPSolve benchmark

e Demonstrate the efficacy of the proposed designs on two testbeds
— Testbed-1 : Broadwell+BF3
— Testbed-2 : Sapphire Rapids (SPR) + BF3

MUG 2025

Outline

e |mplementation
e Evaluation Results

e Conclusion and Future Work

MUG 2025

Design Framework

MATVEC MATVEC-HOST
DDOT1 Intra-Op DDOT1
..... HOST Offload
cheme
opors | o> | mn (Multi-Op
Input »| SplitPCG Offload
—_—
Ui AL algorithm Scheme
DDOT2 DPU
""" \ MATVEC-DPU
VMA1 VMAL
DDOT2 DDOT2

e Splitting Scheme

— Program that outputs the order of operations to be performed on host and DPU
e Multi-Op Offload

— Offload a set of VMA/DDOT operations to the DPU

e |ntra-Op Offload
— Offload Matvec operation to the DPU

MUG 2025

Designing the Splitting Scheme

Series of
o ConStru Ct Data‘FIOW graph Precond VMA/DDOT/ Series of
o Other VMA/DDOT/
perations Other

Operations
e Assign relative weights to each node Seres ot .
Other VMA/DDOT/
Operations Opg:gﬁcr; ,

e Find Dominant path between PC and

Matvec nodes Function splitPCGAlgo (opList):

1

. . . 2 opGraph < buildOpGraph (opList)

— Path with maximum weight s | pcOp « findPCop (opList)
4 mvOp < findMVECop (opList)

— Scheduled on the host 5 pcmvPaths < findAllSimplePaths (pcOp, mvOp)
6 hostSplit.add(f indDominantPaths (pcmvPaths))
7 dpuSplit.add(f indOtherNodes (opGraph, hostSplit))
8

(sHostSplt, sDpuSplit) < topoSort (opGraph,

e Print the topologically sorted order of hostSplit, dpuSplit)
9 (sHostSplt, sDpuSplit) <—
dominant and non-dominant operations | addDataExchOps (opGraph, sHostSplit, sDpuSplit)

MUG 2025

Onloading Scheme

e Default Offloading scheme

— All host processes offload
to DPU workers

Host

e Proposed Onloading scheme

— Leader host processes offload
more work to DPU workers

— Non-Leader host processes onload
work to leader host processes

s

L1 L2 L3 L4

LXK

Host

MUG 2025

Outline

e Evaluation Results

e Conclusion and Future Work

MUG 2025

Experimental Setup

CPU 2x 20-cores Intel Xeon Gold 6138 2R e e).(eon Plfatlnum 8468
(Sapphire Rapids)
Memory 256 GB DDR4 DIMMs 256 GB DDR5 DIMMs
NIC NVIDIA ConnectX-6 HDR100 NVIDIA ConnectX-6 HDR100
SmartNIC NVIDIA BF3 SmartNIC NVIDIA BF3 SmartNIC
Node Count 16 1

MUG 2025

Impact of the Onloading Scheme for Multi-Op Offload
PIPECG MultiOp Offload with PETSc benchmark

Upto 38% improvement compared to the default offload scheme
— Only 48 processes offload to the DPU in the proposed-scheme

— This leads to Reduced Communication Overhead -> improved performance

Default Offload

E ‘ _ [Proposed Onload
E

= -

3 .

288 256 224 192

Problem Size
1 Node, 96 PPN, 16 DPN, Testbed-2

MUG 2025

Impact of the Onloading Scheme for Intra-Op Offload
e |ntra-Op Offload for Matvec Operation in AMG-PCG
e Maximum benefits at 15% offload

e Atleast 2X improvement in data-transfer time
m DPU-Compute @ Data Transfer

8
7
EG
o 2
Ea
|,—
473 3
o 2
1
0
Default Proposed Default Proposed Default Proposed
Offload Onloading Offload Onloading Offloading Onloading
DPU-15%-0Offload DPU-25%-0Offload DPU-30%-Offload

2 Nodes, 32 PPN, 16 DPN on Testbed-1

MUG 2025

PIPECG Offload Results

* PETSc Benchmark: Solves 3D Laplacian with 27-point finite difference stencil with PIPECG solver.
* Improvements up-to 24% and 10% on Testbeds 1 and 2 respectively

* Reduced improvement on Testbed-2 since the host-CPU is faster

* Benefits are primarily due to :

* 1) overlap of selected VMA,DDOT operations with other operations and 2) Onloading scheme

25
3 PETSc-PIPECG PETSc-PIPECG
_— - - 20
@ 1 PETSC-PIPECG-DPU = @ PETSc-PIPECG-DPU
)
£° 2 15
— 4 =
g 1>J 10
o 3 <
n \
2 wn 5 %
0) 0 \
288 256 2'24 192 64 128 256
Problem Size Number of Processes
1-Node 96 PPN, Testbed-2 (SPR+BF3) 32 PPN, Strong Scaling, Testbed-1 (Broadwell+BF3)

MUG 2025

AMG-PCG Offload Results

e AMG benchmark runs PCG solver with Algebraic Multi-Grid Preconditioner

e |Improvements up-to 22% and 10% on Testbeds 1 and 2 respectively
— Matvec operation dominates the total time

— Onloading Intra-Op scheme contributed to the improvements

AMG-PCG 1 AMG-PCG-DPUy, AMG-PCG ® AMG-PCG-DPU
5 - 22%

= 2 =
v 1.5 o7
£ £3
= 1 =
W L2
= >
o 0.5 @)

32X32X32 64X32X32 64X64X32 64X64X64 0

: 64 128 256
Problem Size Number of Processes
1- Node 96 PPN, Testbed-2 (SPR+BF3) 32 PPN, Strong Scaling, Testbed-1 (Broadwell+BF3)

MUG 2025

Outline

e Conclusion and Future Work

MUG 2025

Conclusion and Future Work

e Conclusions:

We identified three key operations to offload: DDOT, VMA, and Matrix-Vector multiplications
We designed multi-Op and intra-Op schemes to offload these operations to the DPU.

In the multi-Op offloading strategy we proposed a generalized splitting scheme to segregate a set of VMA
and DDOT operations.

We proposed the onloading scheme to reduce the communication time for intra-op and multi-op
offloading strategies.

We showed up-to 24% and 21% improvements on PETSc PIPECG and AMG-PCG benchmarks respectively for
256 processes.

Furthermore, we also showed up-to 10% improvement in a cluster with Sapphire-Rapids CPU and BF3.

e Future Work:

Extend our optimization to other algorithms such as FFTs, QR algorithms for finding Eigenvalues

Evaluate our designs with other modern CPUs+BF3 combinations such as AMD Genoa + BF3, Grace+BF3.

MUG 2025

Thank You!

Laboratory
, Follow us on Network-Based Computing Laboratory
https://twitter.com/mvapich http://nowlab.cse.ohio-state.ed u/
B~ MVAPICH ece HiBD HIDL
= ®e
$ MPI, PGAS and Hybrid MPI+PGAS Library High—F’erformaﬂce ngh_Performance
Big Data Deep Learning
The High-Performance MPI/PGAS Project The High-Performance Big Data Project The High-Performance Deep Learning Project
http://mvapich.cse.ohio-state.edu/ http://hibd.cse.ohio-state.edu/ http://hidl.cse.ohio-state.edu/

MUG 2025

http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
http://nowlab.cse.ohio-state.edu/
https://twitter.com/mvapich

	Slide 1
	Slide 2: Outline
	Slide 3: Overview of BlueField-3 DPU/Smart NIC
	Slide 4: Offloading Computation to the SmartNIC
	Slide 5: Krylov Offload Framework
	Slide 6: Outline
	Slide 7: Motivation
	Slide 8: Outline
	Slide 9: Contributions
	Slide 10: Outline
	Slide 11: Design Framework
	Slide 12: Designing the Splitting Scheme
	Slide 13: Onloading Scheme
	Slide 14: Outline
	Slide 15: Experimental Setup
	Slide 16: Impact of the Onloading Scheme for Multi-Op Offload
	Slide 17: Impact of the Onloading Scheme for Intra-Op Offload
	Slide 18: PIPECG Offload Results
	Slide 19: AMG-PCG Offload Results
	Slide 20: Outline
	Slide 21: Conclusion and Future Work
	Slide 22: Thank You!

