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Overview of BlueField-3 DPU/Smart NIC

• InfiniBand network adapter with 

up to 400Gbps speed

• System-on-chip containing 16 

64-bit ARMv8.2 A78 cores with 

2.75 GHz each

• 16 GB of memory for the ARM 

cores
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• SmartNICs : 

– Have specialized hardware units for encryption, compression, etc

– Also have general purpose programmable cores. Eg: NVIDIA’s BlueField-3 (BF3) DPU  

• SmartNIC cores are not as powerful as CPUs 

– Unlike GPUs, can’t offload all the operations. Only beneficial to offload the Op2 in the figure below.

– Offloading involves data movement cost

Offloading Computation to the SmartNIC

OP1 OP3 OP4

OP2SmartNIC

CPU

OP1 OP3 OP4OP2CPU

• How to efficiently select and offload the following operations in Krylov Solvers ?

– Vector-Multiply-Add (VMA), Distributed DOT Product (DDOT), Matrix-Vector Multiplication
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Krylov Offload Framework

• Krylov Solvers

– Numerical methods to solve large sparse linear 

systems of equations

– Widely used in HPC applications

– Eg: Pre-conditioned Conjugate Gradient (PCG)

• Commonly used operations:

– DDOT: Distributed Dot Product

– MATVEC : Matrix-Vector multiplication 

– VMA: Vector Multiply Add (AXPY)

Proposed Offload Framework
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• Different PCG algorithms have different types of data 

dependencies

• Manual identification is tedious and inefficient

Motivation
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• Offloading to DPU involves moving vectors to DPU memory

• Data movement overhead can consume at-least 30% of the total time

Problems in past works on DPU offload:

1. Manually identification of tasks to be offloaded

2. Host-to-DPU data movement bottleneck not addressed

(1) Data flow graph for PIPEPCG Algorithm (2) Data movement cost for moving data to BF3 DPU for  AMG Matrix-Vector Multiplication 
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Contributions

• We propose a generalized splitting scheme that can be applied to offload any 

PCG algorithm for generating a set of host and DPU operations to be offloaded

• We reduce the data transfer overhead by designing and implementing the 

proposed onloading scheme.

• We show the impact of our designs on 1) AMG-PCG benchmark and 2) PETSc 

KSPSolve benchmark

• Demonstrate the efficacy of the proposed designs on two testbeds

– Testbed-1 : Broadwell+BF3

– Testbed-2 : Sapphire Rapids (SPR) + BF3
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• Splitting Scheme

– Program that outputs the order of operations to be performed on host and DPU

• Multi-Op Offload

– Offload a set of VMA/DDOT operations to the DPU

• Intra-Op Offload

– Offload Matvec operation to the DPU

Design Framework
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• Construct Data-Flow graph

• Assign relative weights to each node

• Find Dominant path between PC and 

Matvec nodes 

– Path with maximum weight 

– Scheduled on the host

• Print the topologically sorted order of 

dominant and non-dominant operations

Designing the Splitting Scheme
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• Default Offloading scheme

– All host processes offload 

to DPU workers

Onloading Scheme
• Proposed Onloading scheme

– Leader host processes offload 

more work to DPU workers

– Non-Leader host processes onload 

work to leader host processes



14Network Based Computing Laboratory MUG 2025

• Introduction

• Motivation

• Contributions

• Design

• Evaluation Results

• Conclusion and Future Work

Outline



15Network Based Computing Laboratory MUG 2025

Experimental Setup

Testbed-1 Testbed-2

CPU 2x 20-cores Intel Xeon Gold 6138
2x 48-core Intel Xeon Platinum 8468 

(Sapphire Rapids)

Memory 256 GB DDR4 DIMMs 256 GB DDR5 DIMMs

NIC NVIDIA ConnectX-6 HDR100 NVIDIA ConnectX-6 HDR100 

SmartNIC NVIDIA BF3 SmartNIC NVIDIA BF3 SmartNIC

Node Count 16 1
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• PIPECG MultiOp Offload with PETSc benchmark

• Upto 38% improvement compared to the default offload scheme

– Only 48 processes offload to the DPU in the proposed-scheme

– This leads to Reduced Communication Overhead -> improved performance

Impact of the Onloading Scheme for Multi-Op Offload

1 Node, 96 PPN, 16 DPN, Testbed-2
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• Intra-Op Offload for Matvec Operation in AMG-PCG 

• Maximum benefits at 15% offload

• At least 2X improvement in data-transfer time

Impact of the Onloading Scheme for Intra-Op Offload

2 Nodes, 32 PPN, 16 DPN on Testbed-1
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PIPECG Offload Results
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• PETSc Benchmark: Solves 3D Laplacian with 27-point finite difference stencil with PIPECG solver.

• Improvements up-to 24% and 10% on Testbeds 1 and 2 respectively

• Reduced improvement on Testbed-2 since the host-CPU is faster

• Benefits are primarily due to :

• 1) overlap of selected VMA,DDOT operations with other operations and 2) Onloading scheme
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• AMG benchmark runs PCG solver with Algebraic Multi-Grid Preconditioner

• Improvements up-to 22% and 10% on Testbeds 1 and 2 respectively

– Matvec operation dominates the total time 

– Onloading Intra-Op scheme contributed to the improvements

AMG-PCG Offload Results
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• Conclusions:

– We identified three key operations to offload: DDOT, VMA, and Matrix-Vector multiplications

– We designed multi-Op and intra-Op schemes to offload these operations to the DPU.

– In the multi-Op offloading strategy we proposed a generalized splitting scheme to segregate a set of VMA 

and DDOT operations.

– We proposed the  onloading scheme to reduce the communication time for intra-op and multi-op 

offloading strategies.

– We showed up-to 24% and 21% improvements on PETSc PIPECG and AMG-PCG benchmarks respectively for 

256 processes.

– Furthermore, we also showed up-to 10% improvement in a cluster with Sapphire-Rapids CPU and BF3 .

• Future Work:

– Extend our optimization to other algorithms such as FFTs, QR algorithms for finding Eigenvalues

– Evaluate our designs with other modern CPUs+BF3 combinations such as AMD Genoa + BF3, Grace+BF3.

Conclusion and Future Work
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Thank You!
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LaboratoryNetwork-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/

The High-Performance Big Data Project
http://hibd.cse.ohio-state.edu/

Follow us on

https://twitter.com/mvapich 
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