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Overview of BlueField-3 DPU/Smart NIC

e InfiniBand network adapter with [ }{ }
P, P, P, o B Memory
up to 400Gbps speed

Host Server ( J

e System-on-chip containing 16
64-bit ARMvS8.2 A78 cores with

2.75 GHz each = E — \E;ED 11 {WH :
e 16 GB of memory for the ARM ComeorX ARM Cores 8

BlueField

PCle

ort

1

cores

MUG 2025



Offloading Computation to the SmartNIC
e SmartNICs:

— Have specialized hardware units for encryption, compression, etc

— Also have general purpose programmable cores. Eg: NVIDIA’s BlueField-3 (BF3) DPU

e SmartNIC cores are not as powerful as CPUs

— Unlike GPUs, can’t offload all the operations. Only beneficial to offload the Op2 in the figure below.

— Offloading involves data movement cost
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e How to efficiently select and offload the following operations in Krylov Solvers ?
— Vector-Multiply-Add (VMA), Distributed DOT Product (DDOT), Matrix-Vector Multiplication
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Krylov Offload Framework

Application Frameworks

Krylov Subspace Methods

e Krylov Solvers

— Numerical methods to solve large sparse linear

systems of equations

— Widely used in HPC applications

— Eg: Pre-conditioned Conjugate Gradient (PCG)

Preconditioners

Operators/Solvers -- Offload to DPU

— MATVEC : Matrix-Vector multiplication Communication and other Runtime Libraries
— VMA: Vector Multiply Add (AXPY) - -

Proposed Offload Framework

e Commonly used operations:

— DDOT: Distributed Dot Product
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Motivation

Problems in past works on DPU offload:

1. Manually identification of tasks to be offloaded

2. Host-to-DPU data movement bottleneck not addressed

Different PCG algorithms have different types of data
dependencies

Manual identification is tedious and inefficient
e\ F

Next Iteration

Next Iteration
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(1) Data flow graph for PIPEPCG Algorithm

e Offloading to DPU involves moving vectors to DPU memory

e Data movement overhead can consume at-least 30% of the total time
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(2) Data movement cost for moving data to BF3 DPU for AMG Matrix-Vector Multiplication
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Contributions

e We propose a generalized splitting scheme that can be applied to offload any
PCG algorithm for generating a set of host and DPU operations to be offloaded

e We reduce the data transfer overhead by designing and implementing the
proposed onloading scheme.

e We show the impact of our designs on 1) AMG-PCG benchmark and 2) PETSc
KSPSolve benchmark

e Demonstrate the efficacy of the proposed designs on two testbeds
— Testbed-1 : Broadwell+BF3
— Testbed-2 : Sapphire Rapids (SPR) + BF3
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Design Framework
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DDOT1 Intra-Op DDOT1
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e Splitting Scheme

— Program that outputs the order of operations to be performed on host and DPU
e Multi-Op Offload

— Offload a set of VMA/DDOT operations to the DPU

e |ntra-Op Offload
— Offload Matvec operation to the DPU
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Designing the Splitting Scheme

Series of
o ConStru Ct Data‘FIOW graph Precond VMA/DDOT/ Series of
o Other VMA/DDOT/
perations Other

Operations
e Assign relative weights to each node  Seres ot .
Other VMA/DDOT/
Operations Opg:gﬁcr; ,

e Find Dominant path between PC and

Matvec nodes Function splitPCGAlgo (opList):

1

. . . 2 opGraph < buildOpGraph (opList)

— Path with maximum weight s | pcOp « findPCop (opList)
4 mvOp < findMVECop (opList)

— Scheduled on the host 5 pcmvPaths < findAllSimplePaths (pcOp, mvOp)
6 hostSplit.add(f indDominantPaths (pcmvPaths) )
7 dpuSplit.add(f indOtherNodes (opGraph, hostSplit) )
8

(sHostSplt, sDpuSplit) < topoSort (opGraph,

e Print the topologically sorted order of hostSplit, dpuSplit)
9 (sHostSplt, sDpuSplit) <—
dominant and non-dominant operations | addDataExchOps (opGraph, sHostSplit, sDpuSplit)
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Onloading Scheme

e Default Offloading scheme

— All host processes offload
to DPU workers

Host

e Proposed Onloading scheme

— Leader host processes offload
more work to DPU workers

— Non-Leader host processes onload
work to leader host processes

s
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Host
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Experimental Setup

CPU 2x 20-cores Intel Xeon Gold 6138 2R e e ).(eon Plfatlnum 8468
(Sapphire Rapids)
Memory 256 GB DDR4 DIMMs 256 GB DDR5 DIMMs
NIC NVIDIA ConnectX-6 HDR100 NVIDIA ConnectX-6 HDR100
SmartNIC NVIDIA BF3 SmartNIC NVIDIA BF3 SmartNIC
Node Count 16 1
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Impact of the Onloading Scheme for Multi-Op Offload
PIPECG MultiOp Offload with PETSc benchmark

Upto 38% improvement compared to the default offload scheme
— Only 48 processes offload to the DPU in the proposed-scheme

— This leads to Reduced Communication Overhead -> improved performance

Default Offload

E ‘ _ [ Proposed Onload
E

= -

3 .

288 256 224 192

Problem Size
1 Node, 96 PPN, 16 DPN, Testbed-2
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Impact of the Onloading Scheme for Intra-Op Offload
e |ntra-Op Offload for Matvec Operation in AMG-PCG
e Maximum benefits at 15% offload

e Atleast 2X improvement in data-transfer time
m DPU-Compute @ Data Transfer
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473 3
o 2
1
0
Default Proposed Default Proposed Default Proposed
Offload Onloading Offload Onloading  Offloading  Onloading
DPU-15%-0Offload DPU-25%-0Offload DPU-30%-Offload

2 Nodes, 32 PPN, 16 DPN on Testbed-1
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PIPECG Offload Results

* PETSc Benchmark: Solves 3D Laplacian with 27-point finite difference stencil with PIPECG solver.
* Improvements up-to 24% and 10% on Testbeds 1 and 2 respectively

* Reduced improvement on Testbed-2 since the host-CPU is faster

* Benefits are primarily due to :

* 1) overlap of selected VMA,DDOT operations with other operations and 2) Onloading scheme

25
3 PETSc-PIPECG PETSc-PIPECG
_— - - 20
@ 1 PETSC-PIPECG-DPU = @ PETSc-PIPECG-DPU
)
£° 2 15
— 4 =
g 1>J 10
o 3 <
n \
2 wn 5 %
0) 0 \
288 256 2'24 192 64 128 256
Problem Size Number of Processes
1-Node 96 PPN, Testbed-2 (SPR+BF3) 32 PPN, Strong Scaling, Testbed-1 (Broadwell+BF3)
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AMG-PCG Offload Results

e AMG benchmark runs PCG solver with Algebraic Multi-Grid Preconditioner

e |Improvements up-to 22% and 10% on Testbeds 1 and 2 respectively
— Matvec operation dominates the total time

— Onloading Intra-Op scheme contributed to the improvements

AMG-PCG 1 AMG-PCG-DPUy, AMG-PCG ® AMG-PCG-DPU
5 - 22%

= 2 =
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W L2
= >
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32X32X32 64X32X32 64X64X32 64X64X64 0

: 64 128 256
Problem Size Number of Processes
1- Node 96 PPN, Testbed-2 (SPR+BF3) 32 PPN, Strong Scaling, Testbed-1 (Broadwell+BF3)
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Conclusion and Future Work

e Conclusions:

We identified three key operations to offload: DDOT, VMA, and Matrix-Vector multiplications
We designed multi-Op and intra-Op schemes to offload these operations to the DPU.

In the multi-Op offloading strategy we proposed a generalized splitting scheme to segregate a set of VMA
and DDOT operations.

We proposed the onloading scheme to reduce the communication time for intra-op and multi-op
offloading strategies.

We showed up-to 24% and 21% improvements on PETSc PIPECG and AMG-PCG benchmarks respectively for
256 processes.

Furthermore, we also showed up-to 10% improvement in a cluster with Sapphire-Rapids CPU and BF3.

e Future Work:

Extend our optimization to other algorithms such as FFTs, QR algorithms for finding Eigenvalues

Evaluate our designs with other modern CPUs+BF3 combinations such as AMD Genoa + BF3, Grace+BF3.
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