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Motivation & Problem Definition (1/3)

" Large-scale data-intensive applications in HPC and Al require distributed processing in a
multi-node environment

e At this time, there is large and complex communication between nodes, and providing sufficient memory
capacity for these applications is one of the necessary conditions for improving performance.

" For example, LLM applications perform distributed training because the huge size of
models and training data [1]

* AllGather and ReduceScatter are used as the main collective communications

* Asthe data and model size increases, the collective communication message size increases [2]

 However, AllGather and ReduceScatter have problems with increased latency for large messages [3]
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Motivation & Problem Definition (2/3)

* As the message size increases, communication latency of traditional allgather also increases
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Motivation & Problem Definition (3/3)

= We believed that we could address this issue by using the CXL interconnect and the CXL shared memory pool device
in a single rack, which provide faster communication latency compared to traditional multi-node interconnects using
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Project Goals

* The goal of this study is to enhance the MPI Inter-Node collective communication
performance in a multi-node environment connected by CXL

= Two Specific Goals

* Goal 1. Utilizing the CXL shared memory pool for collective communication
= 15t phase: Sept. 2023 - Aug. 2024

* Goal 2. Utilizing the intelligent CXL switch for collective communication
- 2" phase: Sept. 2024 - Aug. 2025

— To achieve above goals, we proposed iMEX (intelligent Memory EXpander)
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Project Goals
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Roles of ETRI and OSU

Research Focus Research Item
Area
Improving collective communication performance by utilizing the beyond rack scale CXL
memory pool device
Beyond Rack-
OosuU Goal 1 Scale CXL
Memory Pool _ o ] o
Identify and develop promising demonstration applications to showcase the CXL-based
collective communication proposed in OSU’s research item 1
Single Rack-
Goal 1 Scale CXL Proposed Approach 1. CXL SHM-based AllGather
ETRI Memory Pool
Goal 2 Intelligent CXL Proposed Approach 2. In-CXL Switch ReduceScatter

Switch

ETRRI




Proposed Approach for Goal 1

= CXL SHM-based AllGather

- Design and implement AllGather utilizing the CXL shared memory pool as the collective communication buffer

— Measure Allgather latency with OMB for performance validation

Conventional. Network-based AllGather Proposed. CXL SHM-based AllGather
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Implementation for CXL SHM-based AllGather

= We developed five CXL memory APIs that are utilized for the CXL SHM-based allgather

* MPI ranks running on different computing nodes can utilize the CXL shared memory pool device as the
communication buffer for collective communication

cxl-node O cxl-node 1

QEMU

[ 129.254.180.235

4GB file |
/dev/mem0O

Host OS (Ubuntu 22.04)
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CXL Shared Memory Pool Device

cxl-node0 cxl-nodel

CXL Memory APIs

@ cxlmemorylnitialize ()

@ cxIlmalloc (size)

(3 cxlwrite (data, size, offset)
@ cxlread (data, size, offset)

QEMU Guest OS of Flight Simulator

k® cxlfree ()
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Implementation for CXL SHM-based AllGather

= We implemented the CXL SHM-based allgather in the allgather.c file of MVAPICH2 2.3.7

= We implemented the cxl_memory_manager.c in the coll directory and cxl_memory_manager.h in the include directory
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Experimental Setup for CXL SHM-based AllGather

= Software emulator
* Flight Simulator [5], which emulates the Multi-Node CXL Shared Memory Pool Device in QEMU

= Experimental Environment

e Host Machine
v' CPU : AMD EPYC 9754 128-Core Processor

v' Main memory : 792 GB

* Guest Machine
v' QEMU branch cxI-2024-03-05 [6]
v 0OS : fedora release 38 (kernel version : vmlinuz-6.3.7-200.fc38.x86_64)

= Benchmark Suite
* OSU Micro Benchmarks [7]

ETRRI
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Experimental Items for CXL SHM-based AllGather

Performance metrics to be measured

Metric (y-axis)

Variable (x-axis)

Fixed Parameters

1 | Performance with increasing number of nodes

2 | Performance with increasing PPN

3 | Performance with increasing message size

OMB
AllGather
latency

# of nodes (guest OS)
(e.g., 2,4,8,16)

PPN

message size

PPN
(e.g., 1,2, 4,6)

# of nodes

message size

message size
(e.g., 512KB-32MB)

# of nodes

1
2
1
2
1
2

PPN

% PPN (Process Per Node)
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Experimental Results for CXL SHM-based AllGather

®» Performance as the number of nodes increases

e The results showed that with 10 nodes, the maximum performance improvement was 16.92 times

* With 4 nodes, the minimum performance improvement observed was 6.65 times

OMB Allgather Latency (PPN: 4, M: 32MB)
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—Traditional CXL SHM-based Allgather
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Experimental Results for CXL SHM-based AllGather

= Performance as the PPN increases

* The results showed that with 6 PPN, the maximum performance improvement was 10.03 times

* With 1 PPN, the minimum performance improvement observed was 1.77 times
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Experimental Results for CXL SHM-based AllGather

" Performance as the message size increases

* For mid-sized messages, we achieved a maximum performance improvement of 4.99 times

* For large-sized messages, we achieved a maximum performance improvement of 6.65 times
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= Traditional Allgather

OMB Allgather Latency (N: 4, PPN: 4)
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= We aim to improve the performance of data-intensive applications in multi-node systems

Road Map

-

Host
Processor

PCle

Commercial FPGA board-based MEX
Up to 32GB expanded memory
Prototype version of accelerator
Support a single node

Expanded
Memory

Compute Node

Commercial FPGA
board-based MEX

Accelerator
(protype)

\X MEX (Memory EXpander)

~

Now, we are here

-

memory capacity

Host
Processor

Compute Node O

CXL

e Support multi-node system using CXL

e Accelerate MPI collective operation
using dedicated accelerator

e Use CXL Memory Pool for expanded

IMEX

Expanded
Memory

Host
Processor

Compute Node 1

/
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Accelerator

Intelligent
CXL-Switch
based on MEX

\X iIMEX (intelligent MEX)

~

/

-

e Improvement the scalability of iMEX

e Multiple iMEX devices will be connected
to a CXL Switch

e Support more complex topology

CXL
Switch

Compute Compute
Node O Node 1
Compute Compute
Node 2 Node 3

~
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Conclusion

= We expect to enhance the collective communication performance utilizing iMEX’s MPI
Computation Accelerator

= We expect to Improve the Memory Utilization for HPC systems utilizing CXL Memory
Pool as a MPI Communication buffer

= We expect to Improve the Al and HPC Application performance by reducing the
Communication Cost

= We plan to showcase the research progress of iMEX at SC24
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