Enhancmg the MPI CoIIectlve Communication Performance
utlllzmg |MEX (mtelllgent Memory EXpander)

ETRI
“Supercomputing System Research Section

August 21, 2024

Hooyoung Ahn



Contents

* Motivation & Problem Definition
" Project Goals

" Roles of ETRI and OSU

= Qur Approach

= Road Map

= Conclusion

ETRRI



Motivation & Problem Definition (1/3)

" Large-scale data-intensive applications in HPC and Al require distributed processing in a
multi-node environment

e At this time, there is large and complex communication between nodes, and providing sufficient memory
capacity for these applications is one of the necessary conditions for improving performance.

" For example, LLM applications perform distributed training because the huge size of
models and training data [1]

* AllGather and ReduceScatter are used as the main collective communications

* Asthe data and model size increases, the collective communication message size increases [2]

 However, AllGather and ReduceScatter have problems with increased latency for large messages [3]

Network
AllGather ReduceScatter
P C 60 T 600 T
g g o ResNeXt101-32x8d: /| o ResNeXt101-32x8d:
1 x data movement } ¢ 50 + >1.9M 500 © —
1.59 =40 —— ResNetl152: —400 ResNetl52:
(1/DP) x data movement } & § Tt 31 Tt 3 t 3 o e —_— £ 14.4M = 14.4M
OGO RGO BB® S c® g=5.0 s - E’;"" T VGG16: ‘E’?"“ 7 VGG16:
n=- L] -
Model States . o, E; 25| | 20 ¢ ReaNG0 200 ResNets0r
P = ) o wn = F
Layer O - T 510 i 6.1M 510“ 6.1M
ParametersPO Og::ar:elzer o L ol L B a2 ke o Res@-so Transformer BERT ) 0 : ' ' ' ' ! 0 ‘: T T T T
— Ay FOPD ESET | [BrR RER - o . %{i{- S N S \/@?’ @3&\ (5& S D @1‘ @;“
0 i Message Size Distribution for various networks [2] Message size (Bytes) Message size (Bytes)
[ Layer 1 ] Ry EYEy | ESEY DX
(a) Allgather latency (16 GPUs) (b) Reduce-Scatter latency
A snapshot of ZeRO-Infinity training [1] Message sizes of Allgather and Reduce-Scatter in

PyTorch FSDP Training on 16 GPUs [3]



Latency (us)

Motivation & Problem Definition (2/3)

* As the message size increases, communication latency of traditional allgather also increases

OMB Allgather Latency (N: 4, PPN: 8 M: 2-16K bytes) OMB Allgather Latency (N: 4, PPN: 8 M: 32K-32M bytes)
50000 35005000
45000
30005000
40000
35000 25005000
30000 =
= 20005000
25000 )
o
50000 & 15005000
15000 10005000
o **‘/
5005000
5000
4.7
g =0 o o o e e o= 5000 ° . —
2 4 8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M aM 8M 16M 32M

Message Size (Bytes) Message Size (Bytes)

Experimental Results on ETRI's QEMU-based 4 Computing Nodes

ETRRI



Motivation & Problem Definition (3/3)

= We believed that we could address this issue by using the CXL interconnect and the CXL shared memory pool device
in a single rack, which provide faster communication latency compared to traditional multi-node interconnects using

Max
caat | i
KB

Ethernet or InfiniBand.

e

Reg 0.2ns

Cache 40ns

DDR

KB

L1 - dereference pointer

In CPU

L2 - dereference pointer
high perf memcpy

-------------------------------‘

CPU independent = L3 - dereference pointer
but local high perf memcpy, swap I

L4 - memcpy, swap

/

.

(Miain] 80-140ns | 32-51.2 GB/s (DDRS) Up to 4TB
DDR .
e 170-250ns | 32-51.2 GB/s (DDRS) Up to 8TB
f ~ "= 5o
I @ U 170-250ns | 32-51.2 GB/s (DDRS) 2-4TB
I © pan 300-400ns | 32-51.2 GB/s (DDRS) 64TB
i {CXL Switched) . ,
Far Memory 2-dus 100 GB/s (800g ethernet)  infinite
SsD 50-100us
Node Node

mem CPU ][ CPU mem
N

170-250 ns

I CXL I I CXL I
MEM MEM

300-400 ns

| cXLSwitch |

[ CXL ] [ CXL ]
MEM MEM

attached
LS - memcpy, swap

[4]

2-4 us (800g ethernet)
< 1 us (InfiniBand)

4 V) e )
NIC

NIC

Node 1

AN

Node O )

@ DDR (CXL)

(o) DDR (CXL Switched)

(© Network-attached far memory

Because the memory access latency for CXL-attached far
memory across nodes can be the same as the latency for
CXL-switched memory within a single node, which is
about three times faster than the latency of the

InfiniBand interconnect.
CXL Shared Memory Pool Device

CXL CXL
MEM EM
Inter-Node 300-400 ns
CXL Switch
4 N p .
mem CPU CPU mem
— —

H

I CXL Swm CXL Switch I

CXL CXL [ CXL ] [ CXL ]
IMEMI MEM MEM ) (MEM
\\§ J \\§ J
Node O Node 1

(Proposed Architecture) CXL-attached far memopry



Project Goals

* The goal of this study is to enhance the MPI Inter-Node collective communication
performance in a multi-node environment connected by CXL

= Two Specific Goals

* Goal 1. Utilizing the CXL shared memory pool for collective communication
= 15t phase: Sept. 2023 - Aug. 2024

* Goal 2. Utilizing the intelligent CXL switch for collective communication
- 2" phase: Sept. 2024 - Aug. 2025

— To achieve above goals, we proposed iMEX (intelligent Memory EXpander)

ETRRI



Project Goals

D Main memory (512GB) @ Computing Node — : Data Movement

- CXL memory (512GB) Memory Pool 1 : # of Processes

= Key Concept of iIMEX
|

Data-Intensive Applications of Al and HPC fields

¢ Appro.3. MVAPICH2 optimized for IMEX

v All-Reduce v
(AS-IS) Conventional Collective Commmunication (TO-BE) Proposed Collective Communication
Network Switch Prob. 2 Intelligent CXL Switch (iMEX)
i
Total D@— MPI Computation —@j
3TB Accelerator
ca i@
D@— (o Memory Pool A —@j
Manager .
. # of Communication <12 « # of Communication : n
. Communication Later.i .24 us (100 GB) Communication | « Communication Latency : 300-400 ns
Y.t (CXL Switched DDR)
» MPI Computation on CPU Computation » MPI Computation on Dedicated Accelerator
« # of Computation :n P « # of Computation: 1
=T low Memory Utilization| < High .




Roles of ETRI and OSU

Research Focus Research Item
Area
Improving collective communication performance by utilizing the beyond rack scale CXL
memory pool device
Beyond Rack-
OosuU Goal 1 Scale CXL
Memory Pool _ o ] o
Identify and develop promising demonstration applications to showcase the CXL-based
collective communication proposed in OSU’s research item 1
Single Rack-
Goal 1 Scale CXL Proposed Approach 1. CXL SHM-based AllGather
ETRI Memory Pool
Goal 2 Intelligent CXL Proposed Approach 2. In-CXL Switch ReduceScatter

Switch

ETRRI




Proposed Approach for Goal 1

= CXL SHM-based AllGather

- Design and implement AllGather utilizing the CXL shared memory pool as the collective communication buffer

— Measure Allgather latency with OMB for performance validation

Conventional. Network-based AllGather Proposed. CXL SHM-based AllGather

D]

O
@90 O @ &

CXL [ ]

SHMEM

[AlB[c[D]  [A[B[C[D]  |A[B]|CID] A[B[C[D| [AlB[c[Dp]  [AlB[C[D]  [A]B[C|D| A[B[C[D|

Expect performance improvement by
 reducing the number of communications
« achieving performance gains with CXL




Implementation for CXL SHM-based AllGather

= We developed five CXL memory APIs that are utilized for the CXL SHM-based allgather

* MPI ranks running on different computing nodes can utilize the CXL shared memory pool device as the
communication buffer for collective communication

cxl-node O cxl-node 1

QEMU

[ 129.254.180.235

4GB file |
/dev/mem0O

Host OS (Ubuntu 22.04)

ETRRI

CXL Shared Memory Pool Device

cxl-node0 cxl-nodel

CXL Memory APIs

@ cxlmemorylnitialize ()

@ cxIlmalloc (size)

(3 cxlwrite (data, size, offset)
@ cxlread (data, size, offset)

QEMU Guest OS of Flight Simulator

k® cxlfree ()

10



Implementation for CXL SHM-based AllGather

= We implemented the CXL SHM-based allgather in the allgather.c file of MVAPICH2 2.3.7

= We implemented the cxl_memory_manager.c in the coll directory and cxl_memory_manager.h in the include directory

MPI Initialization

Channel Initialization : ch3:sock

Collective Communication

MPI Finalizatoin

src/mpifinitfinit.c/ src/mpifinit/ ||| sre/mpid/ch3/channels/sock/src/
User ‘ PMPI_Init() initthread.c ch3_init.c [ sre/mpifcoll/allgather.c ‘ [fsrcfmpifcolllhelper_fns.h | I src/util/procmap/local_proc.c ‘ I src/mpifcomm/comm_rank.c ‘ I src/mpifinit/finalize
: : : T T " T T T T
! mpirun -n 3 .fTeStFIIGather} | ! : src/mpi/coll/cxl_memory_manager.c
MPIR_Init_thread _ | : i : i
! ! | MPIDI_CH3_Init 1 e . o
| | o % 4. Perform Collective Communication
! 2. MPI 3. Channel P2P-based Communication  / [nI:IGather] : I !
1. AllGather e e e ue MPIR_allgather_impl : 5. MPI
. Initialize Initialize i q q
ExeCUtlon | (TCP/IP) :MPIR_Allgather_intra : Flnallze
| 1 |
E ; helper_fns / [local copy, sendrecv, w;ait-] |
! MPIR_Local !
! - ocalcoRy «—Intra-Node IPC : Local Mem Copy
: Copying 4 bytes from Ox?ﬁc?bdﬁ?c?s to 0x584371530b50 E
i ] | |
cxlWrite ] ' '
7 D <+—Inter-Node IPC : CXL Shared Memory W/R
cxIRead 1 i i
| PMPI_Comm_rafpk
CXL SHM-based Allgather ] ! T B
} 1 |
1 MPIC_Sendrecy
i T <«—Inter-Node IPC : TCP-IP Send/ Recv
1 1 |
; MPIC_Wait ] i
i - :
T 1 |
! 1 | PMPI_Final
| .I : <«
| Done | 1 |
T~ N T
| i i j i K
User ‘ sre/mpifinitfinit.c/ src/mpifinit/ ||| sre/mpid/ch3/channels/sock/src/ ‘ src/mpifcollfallgather.c ‘ ‘ Jsrc/mpifcollfhelper_fns.h ! src/utilfprocmap/local_proc.c ‘ ‘ src/mpifcomm/comm_rank.c ‘ ‘ src/mpifinit/finalize ‘
PMPI_Init(} initthread.c ch3_init.c )
src/mpi/coll/cxl_memory_manager.c

e



Experimental Setup for CXL SHM-based AllGather

= Software emulator
* Flight Simulator [5], which emulates the Multi-Node CXL Shared Memory Pool Device in QEMU

= Experimental Environment

e Host Machine
v' CPU : AMD EPYC 9754 128-Core Processor

v' Main memory : 792 GB

* Guest Machine
v' QEMU branch cxI-2024-03-05 [6]
v 0OS : fedora release 38 (kernel version : vmlinuz-6.3.7-200.fc38.x86_64)

= Benchmark Suite
* OSU Micro Benchmarks [7]

ETRRI

12



Experimental Items for CXL SHM-based AllGather

Performance metrics to be measured

Metric (y-axis)

Variable (x-axis)

Fixed Parameters

1 | Performance with increasing number of nodes

2 | Performance with increasing PPN

3 | Performance with increasing message size

OMB
AllGather
latency

# of nodes (guest OS)
(e.g., 2,4,8,16)

PPN

message size

PPN
(e.g., 1,2, 4,6)

# of nodes

message size

message size
(e.g., 512KB-32MB)

# of nodes

1
2
1
2
1
2

PPN

% PPN (Process Per Node)

ETRRI

13




Experimental Results for CXL SHM-based AllGather

®» Performance as the number of nodes increases

e The results showed that with 10 nodes, the maximum performance improvement was 16.92 times

* With 4 nodes, the minimum performance improvement observed was 6.65 times

OMB Allgather Latency (PPN: 4, M: 32MB)

1000000
900000
800000
700000
600000
500000 16.92 x
400000
300000
200000
100000 6.65 x +

0

Latency (ms)

4 6 8 10
Number of Nodes

—Traditional CXL SHM-based Allgather
ETiIRI



Experimental Results for CXL SHM-based AllGather

= Performance as the PPN increases

* The results showed that with 6 PPN, the maximum performance improvement was 10.03 times

* With 1 PPN, the minimum performance improvement observed was 1.77 times

OMB Allgather Latency (N: 4, M: 32MB)
450000
400000
350000
= 300000
~E; 250000
S 200000 10.03 x
E 150000
100000

50000 177 x A 4

0 &

1 2 4 6
ppn

—Traditional CXL SHM-based Allgather

ETRRI

15



Experimental Results for CXL SHM-based AllGather

" Performance as the message size increases

* For mid-sized messages, we achieved a maximum performance improvement of 4.99 times

* For large-sized messages, we achieved a maximum performance improvement of 6.65 times

20000
18000
16000
14000
12000
10000
8000
6000
4000
2000

Latency (ms)

ETRRI

= Traditional Allgather

OMB Allgather Latency (N: 4, PPN: 4)
180000
160000
140000

Ne}

4.99 x 20000

? ( 0
64K 128K 256
Message Size (Bytes)

~

e CXL SHM-based Allgather

OMB Allgather Latency (N: 4, PPN: 4)

6.65 X
v
512K M 2M 4M 8M 16M 32M
Message Size (Bytes)
=—=Traditional Allgather = == CXL SHM-based Allgather

16



= We aim to improve the performance of data-intensive applications in multi-node systems

Road Map

-

Host
Processor

PCle

Commercial FPGA board-based MEX
Up to 32GB expanded memory
Prototype version of accelerator
Support a single node

Expanded
Memory

Compute Node

Commercial FPGA
board-based MEX

Accelerator
(protype)

\X MEX (Memory EXpander)

~

Now, we are here

-

memory capacity

Host
Processor

Compute Node O

CXL

e Support multi-node system using CXL

e Accelerate MPI collective operation
using dedicated accelerator

e Use CXL Memory Pool for expanded

IMEX

Expanded
Memory

Host
Processor

Compute Node 1

/

ETRRI

Accelerator

Intelligent
CXL-Switch
based on MEX

\X iIMEX (intelligent MEX)

~

/

-

e Improvement the scalability of iMEX

e Multiple iMEX devices will be connected
to a CXL Switch

e Support more complex topology

CXL
Switch

Compute Compute
Node O Node 1
Compute Compute
Node 2 Node 3

~

17



Conclusion

= We expect to enhance the collective communication performance utilizing iMEX’s MPI
Computation Accelerator

= We expect to Improve the Memory Utilization for HPC systems utilizing CXL Memory
Pool as a MPI Communication buffer

= We expect to Improve the Al and HPC Application performance by reducing the
Communication Cost

= We plan to showcase the research progress of iMEX at SC24

ETIiIRI 18



References

1.

Rajbhandari, Samyam, et al. "Zero-infinity: Breaking the gpu memory wall for extreme scale deep
learning." Proceedings of the International Conference for High Performance Computing, Networking, Storage and
Analysis. 2021.

KLENK, Benjamin, et al. An in-network architecture for accelerating shared-memory multiprocessor collectives. In:
2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA). IEEE, 2020. p. 996-1009.

Zhou, Qinghua, et al. "Accelerating distributed deep learning training with compression assisted allgather and
reduce-scatter communication.” 2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 2023.

. "Enfabrica Scaling CXL Memory Using High Speed Networking ",

https://www.youtube.com/watch?v=YdJWhqeT5DM

“MemVerge Flight simulator, ” https://memverge.com/cxl-gemuemulating-cxl-shared-memory-devices-in-gemu/
“QEMU-CXL branch,” https://gitlab.com/jic23/gemu

“OSU Micro-Benchmarks,” https://mvapich.cse.ohio-state.edu/benchmarks/

ETRRI

19


https://www.youtube.com/watch?v=YdJWhqeT5DM
https://memverge.com/cxl-qemuemulating-cxl-shared-memory-devices-in-qemu/
https://gitlab.com/jic23/qemu
https://mvapich.cse.ohio-state.edu/benchmarks/

ETRRI

Thank You!

Contacts : ahnhy@etri.re.kr

20


mailto:ahnhy@etri.re.kr

	Slide Number 1
	Contents
	Motivation & Problem Definition (1/3)
	Motivation & Problem Definition (2/3)
	Motivation & Problem Definition (3/3)
	Project Goals 
	Project Goals 
	Roles of ETRI and OSU
	Proposed Approach for Goal 1
	Implementation for CXL SHM-based AllGather
	Implementation for CXL SHM-based AllGather
	Experimental Setup for CXL SHM-based AllGather
	Experimental Items for CXL SHM-based AllGather
	Experimental Results for CXL SHM-based AllGather
	Experimental Results for CXL SHM-based AllGather
	Experimental Results for CXL SHM-based AllGather
	Road Map
	Conclusion
	References
	Slide Number 20

