MVAPICH e3*HIiBD SRXeHIDL

MPI, PGAS and Hybrid MPI+PGAS Library H ig h-Performance High-Performance
Big Data Deep Learning

)

High-Performance and Scalable Support for Big Data Stacks with
MPI

Talk at the 2024 Annual MVAPICH User Group (MUG) Conference

by
X Follow us on

https://x.com/mvapich Aamir Shafi, Kinan Al Attar, Jinghan Yao

The Ohio State University
E-mail: shafi.16@osu.edu

https://cse.osu.edu/people/shafi.16

https://twitter.com/mvapich
https://cse.osu.edu/people/shafi.16

Presentation Outline

e Introduction to Big Data Analytics

e QOverview, Design and Implementation
— MPI4Spark
— MPI4Dask

e Performance Evaluation

— MPI4Spark
— MPI4Dask

e Demo — Hands-on Exercises with MPl4Dask

e Related Publications and Summary

Network Based Computing Laboratory MUG 2023

Introduction to Big Data Analytics

e Big Data has changed the way people understand
and harness the power of data, both in the business
and research domains

e Big Data has become one of the most important

elements in business analytics

e Big Data and High Performance Computing (HPC)
are converging to meet large scale data processing
challenges

http://www.coolinfographics.com/blog/tag/data?currentPage=3

e Dask and Spark are two popular Big Data processing
frameworks

e Sometimes also called Data Science

http://www.climatecentral.org/news/white-house-brings-together-big-
data-and-climate-change-17194

Network Based Computing Laboratory MUG 2023

Big Velocity — How Much Data Is Generated Every Minute on the Internet?
Global Internet Population Growth

(IN BILLIONS)

SHOPPERS SPENI] : e y
GUESTS BOOK $455K il
STAYS ,
VIEWERS WATCH 747 TAL IN KE[?J N @
USERS SUBMIT
A3YEARS | == .
\ RESUMES
1 :

2016

OF STREAMING

CONTENT

- CYBER-
CRIMINALS

LAUNCH 30 DDOS ATTACKS

DATA NEVER SLEEPS 1.0 V5. 10.0

P1:00 %= NSTAGRAM

DOORDASH

DINERS PLACE
$122K

IN ORDERS

O F TH E DAY :: 94K REELS VIA DM 5
- —

PRESENTED BY
3.6K

48

2013 2622 2013 282: 2813 2822
GOOGLE YOUTUBE INSTAGRAM
PHOTOS SHARED

JSER QUERIES OURS UPLOADED

TAYLOR SWIFT 4 DO
As of Nov 2023, the Internet reaches around 64.6% of the

SONG 694'(TIMES e i
population and now represents

GLOBAL
| NTERN ET THE AVERAGE PEOPLE TRADE
PERSON $398M
25.1M kA A
102 MB BONDS EMAILS 5.2 Billion Peop'e_
Courtesy: https://www.domo.com/blog/data-never-sleeps-11/

USERS SPEND
PRODUCES IN TREASURY
HOURS ONLINE
OF DATA

MUG 2023

Network Based Computing Laboratory

https://www.domo.com/blog/data-never-sleeps-10/
https://www.domo.com/blog/data-never-sleeps-10/
https://www.domo.com/blog/data-never-sleeps-10/

Intersection of Big Data and ML/DL

e Big Data, Machine and Deep learning are closely _— —
related and interconnected

e ML/DL workloads require collecting and
processing of data

e HPC systems and distributed environments enable | Data

larger models and data to be trained '\ SEiche

— Growing quantities of training data requires Big
Data solutions

e DL workloads pushing beyond traditional NLP and

computer vision applications

. . . . Big Data-ML/DL Venn Diagram
— Moving toward real-time analysis of streaming data

Courtesy: Thakur, N. (2023, February 25). The differences between Data Science, Artificial Intelligence, Machine Learning, and Deep Learning. Medium. Retrieved April 21, 2023, from
https://ai.plainenglish.io/data-science-vs-artificial-intelligence-vs-machine-learning-vs-deep-learning-50d3718d51e5

Network Based Computing Laboratory MUG 2023

Presentation Outline

e Overview, Designh and Implementation
— MPI4Spark
— MPI4Dask

e Performance Evaluation

— MPI4Spark
— MPI4Dask

e Demo — Hands-on Exercises with MPl4Dask

e Related Publications and Summary

Network Based Computing Laboratory MUG 2023

The Apache Spark Framework | worker
p p /

e Anin-memory data-processing framework

— lterative machine learning jobs

— Interactive data analytics - D
— Scala based Implementation Sorkcer |
HDFS

— Standalone, YARN, Mesos

e A unified engine to support Batch,

Streaming, SQL, Graph, ML/DL workloads ; wOrker
Master

e Scalable and communication intensive .
BlinkDB

. . . . Caffe,
— Wide dependencies between Resilient Spark MLlib S

- : TensorFlow,
Distributed Datasets (RDDs) Streaming (Machine

o : BigDL, etc.
. . (real-time) Learning) (Deep Learning)
— MapReduce-like shuffle operations to

repartition RDDs

— Sockets based communication Spark
Standalone Apache Mesos m

http://spark.apache.org

Network Based Computing Laboratory MUG 2023

http://spark.apache.org/

MPI4Spark: Using MVAPICH2 to Optimize Apache Spark

° The main mOtivation Of thlS Work iS | Apache Spark ApplicationfBenIchmark/Libraries/Frameworks J
to utilize the communication spark Core i{@wk
functionality provided by

. Sort Hash Tungsten-Sort
MVAPICH2 in the Apache Spark (efut optioe eption
i N
framework O BlockTransferService | ______________ \'
o Netty . || Nettysmp Tr:::“;rt Netty+MPI | |
— MPI4Spark relies on Java bindings of o Sever || Tnevor lient || TAnSPORt |
! fdefault) v {default) 1
the MVAPICH2 library Woreeqoreriee oo e
) /\ "
° Spark s default Shuffle Manager Java Sockets Interface [MP| Java Bindings
relies on Netty for communication: , I , [! X
— Netty is a Java New I/O (NIO) “ f ’
] Native MPlI Comm. Library
client/server framework for event- |
based networking applications [J

Network Based Computing Laboratory MUG 2023

MPI4Spark Interconnect Support

e The current approach is different from its predecessor design, RDMA-Spark
(http://hibd.cse.ohio-state.edu)

— RDMA-Spark supports only InfiniBand and RoCE

— Requires new designs for new interconnect

e MPI4Spark supports multiple interconnects/systems through a common MPI
library
— Such as InfiniBand (IB), Intel Omni-Path (OPA), HPE Slingshot, RoCE, and others

— No need to re-design the stack for a new interconnect as long as the MPI library supports it

MPI4Spark RDMA-Spark
MVAPICH2-J UCR
vSs.
MVAPICH2 IB Verbs

Supported Interconnects
(InfiniBand, iWARP, RoCE, Omni-Path,
EFA, Rockport, Slingshot, etc.)

Supported Interconnects
(InfiniBand, RoCE)

Network Based Computing Laboratory MUG 2023

http://hibd.cse.ohio-state.edu/

Launching Spark using MPI with Dynamic Process Management

Step A: Launch 4 Step B: Each Wrapper Step C: Launch 2 Executor Processes
Wrapper Processes Process Forks Spark MPI_Comm_spawn_multiple()
(for e.g. mpiexec—np 4 .. " Processes _
SparkMP!.java) ~ MPI_COMM_WORLD N@‘:}i;’;‘;"
! i (6\) {/___\;I é
Worker = Worker =
; ; > £ . Node A Node B
M PI_COM M_WORLD I M Pl_COM M_WORLD I ':g} Py I Executor A Executor B
Proc[io) Proc"(1_\) ey), Worker\ L/ BITE? . Worker A Worker B
A B | |
0 1
Intercomm I
5 3 (2) o Node C Node D
2, proc'3 3y | DPM_COMM
P'"ZOC\/ I:Q,OC - Master Oriver 3 - Master Driver
' Executor (O
A
Executor \1/

B

Network Based Computing Laboratory MUG 2023

MPIl4Spark Release (v0.3)

e MPI4Spark 0.3 release adds support for the YARN cluster manager:
e Can be downloaded from http://hibd.cse.ohio-state.edu

e Features:
e Based on Apache Spark 3.3.0
e Support for YARN cluster manager
e Compliant with user-level Apache Spark APIs and packages
* High performance design that utilizes MPI-based communication
e Utilizes MPI point-to-point operations

* (NEW) Enhanced MPI Dynamic Process Management (DPM) logic for launching executor processes for the standalone cluster

manager
* (NEW) Relies on Multiple-Program-Multiple-Data (MPMD) launcher mode for the YARN and the Standalone cluster managers
* (NEW) Supports MVAPICH versions 2.3.7 and 4.0
* Built on top of the MVAPICH2-J Java bindings for MVAPICH2 family of MPI libraries
e Tested with
* (NEW) OSU HiBD-Benchmarks, GroupBy and SortBy
* (NEW) Intel HiBench Suite, Micro Benchmarks, Machine Learning and Graph Workloads
* Mellanox InfiniBand adapters (EDR and HDR 100G and 200G)
* HPC systems with Intel OPA interconnects

* Various multi-core platforms

Network Based Computing Laboratory MUG 2023

http://hibd.cse.ohio-state.edu/

Presentation Outline

e Overview, Designh and Implementation

— MPI4Dask

e Performance Evaluation

— MPI4Spark
— MPI4Dask

e Demo — Hands-on Exercises with MPl4Dask

e Related Publications and Summary

Network Based Computing Laboratory MUG 2023

Introduction to Dask

e Dask is a popular task-based distributed computing framework: _
— Scales Python applications from laptops to high-end systems [f DASK
— Builds a task-graph that is executed lazily on parallel hardware

— Natively extends popular data processing libraries like numPy, Pandas

e Dask Distributed library supports parallel and distributed execution:

— Built using the asyncio package that allows execution of asynchronous/non-blocking/concurrent
operations called coroutines:

e These are defined using async and invoked using await

— Dask Distributed library originally had two communication backends:
e TCP: Tornado-based
e UCX: Built using a Cython wrapper called UCX-Py

Network Based Computing Laboratory MUG 2023

MPI4Dask: MPI backend for Dask

e Dask is a popular task-based distributed computing framework:
— Scales Python applications from laptops to high-end systems
— Builds a task-graph that is executed lazily on parallel hardware
e Dask Distributed library historically had two communication backends:
— TCP: Tornado-based
— UCX: Built using a GPU-aware Cython wrapper called UCX-Py
e Designed and implemented MPI4Dask communication device:

— MPI-based backend for Dask
— Implemented using mpidpy (Cython wrappers) and MVAPICH?2

— Uses Dask-MPI to bootstrap execution of Dask programs

Network Based Computing Laboratory MUG 2023

Dask Distributed Execution Model

e Key characteristics:

1. Scalability Client
2 Elasticity 0

3. Support for coroutines T
4 Serialization/De-serialization to data | Scheduler

to/from GPU memory

__

Network Based Computing Laboratory MUG 2023

MPIl4Dask in the Dask Architecture

Dask
Dask Bag Dask Array Dask DataFrame Delayed Future
Task Graph
* A A A
\ 4 \ 4 A\ 4
Dask-MPI Dask-CUDA Dask-Jobgueue
A A I
\4 \4
Distributed
Scheduler Worker Client
tcp.py ucx.py MPIl4Dask

Comm Layer i 7y 7y

UCX-Py :
mpi4

(Cython wrappers) PI=PY
7y X
A 4 v) 4
TCP UCX MVAPICH2
A A A
E_)aers);c((:s;ﬁ High Performance Computing Hardware

Network Based Computing Laboratory MUG 2023

MPI4Dask: Bootstrapping and Dynamic Connectivity

e Several ways to start Dask programs:

— Manual Client

— Utility classes: Y A
i Cluster
e LocalCUDACIuster, SLURMCluster, SGECluster, PBCCluster, and others

Scheduler
e MPI4Dask uses the Dask-MPI to bootstrap execution of Dask

programs (e 3
Worker Worker -+ Worker

e Dynamic connectivity is established using the asyncio I S —.
package in MPI4Dask:

— Scheduler and workers listen for incoming connections by calling

asyncio.start_server|()

— Workers and client connect using asyncio.open_connection()

MPI.COMM_WORLD

Network Based Computing Laboratory MUG 2023

MPIl4Dask Release

e MPI4Dask 0.3 was released in Feb ‘23 adding support for high-performance MPI
communication to Dask:

— Can be downloaded from: http://hibd.cse.ohio-state.edu

e Features:
— (NEW) Based on Dask Distributed 2022.8.1

— Compliant with user-level Dask APIs and packages
— Support for MPIl-based communication in Dask for cluster of GPUs
e Implements point-to-point communication co-routines
e Efficient chunking mechanism implemented for large messages
— Built on top of mpidpy over the MVAPICH2-GDR library
— Supports starting execution of Dask programs using Dask-MPI
— Tested with
e Mellanox InfiniBand adapters (FDR, EDR, and HDR)
e (NEW) Various benchmarks used by the community (MatMul, Slicing, Sum Transpose, cuDF Merge, etc.)
e (NEW) Various multi-core platforms

e (NEW) NVIDIA V100 and A100 GPUs

Network Based Computing Laboratory MUG 2023

http://hibd.cse.ohio-state.edu/

Presentation Outline

e Performance Evaluation

— MPI4Spark
— MPI4Dask

e Demo — Hands-on Exercises with MPl4Dask

e Related Publications and Summary

Network Based Computing Laboratory MUG 2023

Weak Scaling Evaluation with OSU HiBD Benchmarks (OHB)

OHB GroupByTest OHB SortByTest
250 250
Job0-ResultStage Job1-ShufflleMapStage m Job1-ResultStage Job(-ResultStage m Job1-ResultStage Job2-ShuffleMapStage mJob2-ResultStage
200 ; o o — 200
g 4.1x 3
= @
o] o
@ o
@ 5
[l =
8100 2.2x 3 100
é ° L>|j ‘1.5)(
o —
n 3
T 50 - < 50 .
2 | - — |
0 0
IPolB RDMA MPI IPclB RDMA MPI IPolB RDMA MPI IPolB RDMA MPI IPolB RDMA MPI IPolB RDMA MPI
112GB (448 cores/8 workers) | 224GB (896 cores/16 workers) | 448GB (1792 cores/32 workers) 112GB (448 cores/8 workers) | 224GB (896 cores/16 workers) | 448GB (1792 cores/32 workers)

* The above are weak-scaling performance numbers of OHB benchmarks (GroupByTest and SortByTest) executed on the TACC Frontera
system using the Standalone cluster manager in Spark

Speed-ups for the overall total execution time for 448GB with GroupByTest is 4.1x and 2.2x compared to |IPolB and RDMA, and for
SortByTest the speed-ups are 3.8x and 1.5x, respectively

* Speed-ups for the shuffle read stage for 112GB with GroupByTest are 13x compared with IPolB and 5.6x compared to RDMA, while for
SortByTest the speed-ups are 12.8x and 3.2x, respectively

K. Al Attar, A. Shafi, M. Abduljabbar, H. Subramoni, D. Panda, Spark Meets MPI: Towards High-Performance Communication Framework for Spark
using MPI, IEEE Cluster '22, Sep 2022.

Network Based Computing Laboratory MUG 2023

Weak Scaling Evaluation with OHB (YARN)

OHB GroupByTest OHB SortByTest

500.00 500.00
__450.00 __450.00
w) %]
— 400.00 . — 400.00
v 4.5x v 3.8x
£ 350.00 £ 350.00
(= =
< 300.00 < 300.00
o o
'g 250.00 g 250.00
(8] Q
g 200.00 2.3x g 200.00 2 .5x
% 150.00 “ 150.00
© y __ 4 . A ©
‘S 100.00 ‘5 100.00 e
[=

50.00 . 50.00 ! [| = -

0.00 0.00 - -
IPolB RDMA MPI IPolB RDMA MPI IPolB RDMA MPI IPolB RDMA MPI IPolB RDMA MPI IPolB RDMA MPI
448GB (1792 cores/32 896GB (3584 cores/64 1792GB (7168 cores/128 448GB (1792 cores/32 896GB (3584 cores/64 1792GB (7168 cores/128
NodeManagers) NodeManagers) NodeManagers) NodeManagers) NodeManagers) NodeManagers)
W JobO-ResultStage mJob1-ResultStage M Job0O-ResultStage mJobl-ResultStage mJob2-ResultStage

* The above are weak-scaling performance numbers of OHB benchmarks (GroupByTest and SortByTest) executed on the TACC Frontera
system using the YARN cluster manager in Spark

* Speed-ups for the overall total execution time for SortByTest, 64 NodeManagers, are 4.5x and 2.3x compared to IPolB and RDMA, and
for GroupByTest, also 64 NodeManagers, the speed-ups are 3.8x and 2.5x, respectively

* Speed-ups for the shuffle read stage for 896GB with GroupByTest are 6.8x compared with IPolB and 4.4x compared to RDMA, while
for SortByTest the speed-ups are 8.4x and 3.9x, respectively

Network Based Computing Laboratory MUG 2023

Performance Evaluation with MPl4Spark + MVP 4.0

180
160

= 140
£ 120
£
5 100
3 80
Q
!
Y60
&
2 40

20

250
EMVP4.0 mRDMA mRegular Spark

3.5x 200
150
1.9x
100
I I |
8 16 32

Num of Workers

OHB-Sortby

Total Execution Time (s)

Ul
o

o

EMVP4.0 mRDMA mRegularSpark

4.1x
I I I I "
8 16

Num of Workers

OHB-Groupby

2.6x I
32

The following are weak-scaling performance numbers of OHB benchmarks (GroupByTest and SortByTest) executed

on the TACC Frontera system using MVAPICH version 4.0

Speed-ups for the overall total execution time for 32 workers with GroupByTest is 4.1x and 2.6x compared to
(regular) Spark and RDMA Spark, and for SortByTest the speed-ups are 3.5 and 1.9x, respectively.

Network Based Computing Laboratory MUG 2023

Performance Evaluation with Intel HiBench Workloads

1.4x on average than RDMA-Spark 1.4x on average than Vanilla Spark 1.5x on average than Vanilla Spark
o5 Intel HiBench ML Workloads - Frontera Intel HiBench Micro/Graph Workloads - Frontera Intel HiBench Micro/ML Workloads - Stampede2
aVanila Spark (PoB) | o [= Vanilla Spark (IPolB) | > |
oo | B oRDMA-Spark = = RDMA-Spark ® Vanilla Spark
~ n
.Gé m MPI4Spark CIPV) E E— EMPI4Spark mMPI4Spark
= = :
g 150 ol = 50 Omni-Path
2 O 150 "W e .
3 100 }':; """"""" Network
8100 b B P
X L%’ 100 |- - e
(_“ —_
S 50 [B e 8
e o 50 p P B e
0 o L—m W B B B B
SVM LDA GMM Nwe|ght Terasort Repartition LR Repartition GMM SVM

* This evaluation was done on the TACC Frontera (IB) and the TACC Stampede2 (OPA) Systems

* This illustrates the portability of MPI4Spark on different interconnects

* We see a speed-up for the LR machine learning workload on Stampede2 of about 2.2x

* Speed-ups for the LDA machine learning workload on Frontera are 1.7x for both IPoIB and RDMA

K. Al Attar, A. Shafi, M. Abduljabbar, H. Subramoni, D. Panda, Spark Meets MPI: Towards High-Performance Communication Framework for Spark
using MPI, IEEE Cluster '22, Sep 2022.

Network Based Computing Laboratory MUG 2023

Presentation Outline

e Performance Evaluation

— MPI4Dask

e Demo — Hands-on Exercises with MPl4Dask

e Related Publications and Summary

Network Based Computing Laboratory MUG 2023

cuDF Merge Benchmark on the Cambridge Wilkes-3 System

« GPU-based Operation: ddf1.merge(ddf2), using persist Wilke3 GPU System:
= Merge two GPU data frames, each with length of 32*1e8 - 80nodes
- 2x AMD EPYC 7763 64-core
= Compute() will gather the data from all worker nodes to the client node, processors
and make a copy on the host memory. - 1000 GiB RAM
= Persist() will leave the data on its current nodes without any gathering - Dual-rail Mellanox HDR200 IB
- 4x NVIDIA A100 SXM4 80 GB
Execution Time Aggregated Throughput
140 [mIPolB OUCX mMPl4Dask _ 4000 | m|PolB-DUCX WMPM4Dask —§
E‘I o0 |- On average, MPI4Daskis: B | = 3500 |
g - 4.94x faster than UCX _5"33000 84ax |
=100 |- - 26.85x faster than TCP-- g [~ S
c o ©2500
| . BB e B %
3 - 52000
Q B0 | g e i % 51500
% 40 e e e e = 1000
— ()]
220 e T e e &£ 500
0 0
2 4 8 16 32
2 Ndrmber of [?ask Worlge?rs 32 Number of Dask Workers

MPI4Dask 0.3, Dask 2022.8.1, Distributed, 2022.8.1, MVAPICH2-3.0, UCX v1.13.1, UCX-py 0.27.00
Network Based Computing Laboratory MUG 2023

cupy GEMM Benchmark on the Cambridge Wilkes-3 System

« GPU-based Operation: x.dot(y), using persist Wilke3 GPU System:
= Arrays are distributed on multiple GPUs - 80 nodes
- 2x AMD EPYC 7763 64-core
= Compute() will gather the data from all worker nodes to the client node, prgcessors
and make a copy on the host memory. - 1000 GiB RAM
= Persist() will leave the data on its current nodes without any gathering -~ Dual-rail Mellanox HDR200 IB
- 4x NVIDIA A100 SXM4 80 GB
Execution Time Aggregated Throughput
35 6000
_ mIPolB OUCX mMPI4Dask _ BIPolB DUCX mMPl4Dask 4
w30 [On average, MPI4Dask is:-—— s E 570100 OSSOSO
@ - 3.83x faster than UCX 3~ 2.1x
525 """ - 8.70x faster than TCP 5 R 4000 ||
S LA — 3@
= € 3000
AUEE I B I o 8
@‘ T S R R D . 52 2000 |-
2 'l B R RN e . D 1000 |
= <
0 0
2 4 8 16 32
2 lermber of [?ask Worlggrs 32 Number of Dask Workers

MPI4Dask 0.3, Dask 2022.8.1, Distributed, 2022.8.1, MVAPICH2-3.0, UCX v1.13.1, UCX-py 0.27.00
Network Based Computing Laboratory MUG 2023

NumPy Array Slicing Benchmark on TACC Frontera CPU
System

1.26x better on average

3.17x better on average

30 90
m|PolB OUCX mMPI4Dask
. S 80 __m|PolB DUCX mMPl4Dask |
R T e S e =
© 5 70
£ . 2%
i= 20 | On average, MPI4Dask is: iy e o m 60
c - 1.37x faster than UCX g O] 50
-2 15 -1.51x fasterthan TCP_ B8 [BN BN = ‘;J-’
3 = @ 40
@ o ¥
MECHIEEEE——— I e [g é 30
< 2~ 20
i ——___— - =)
= < 10
0 0
8 16 128 8 16 32 64 128

2 64
Number of Sask Workers

Number of Dask Workers

From 32 workers, we increase array size by 16 times

MPI4Dask 0.3 release
(http://hibd.cse.ohio-state.edu)

A. Shafi, J. Hashmi , H. Subramoni, and D. K. Panda, Efficient MPI-based
Communication for GPU-Accelerated Dask Applications, CCGrid ‘21
https://arxiv.org/abs/2101.08878

MUG 2023

Network Based Computing Laboratory

Presentation Outline

e Demo — Hands-on Exercises with MPl4Dask

e Related Publications and Summary

Network Based Computing Laboratory MUG 2023

Lab 2 — Hands-on Lab with MPIl4Dask

e QObjectives
— How to run parallel and distributed data science applications using Dask on HPC systems

— How to use multi-node GPUs for Dask-based applications

e Tasks
— Task 1: Sum of CuPy Array and its Transpose
— Task 2: Cupy Matrix Multiplication
— Task 3: Cupy Array Clicing

Network Based Computing Laboratory MUG 2023

Task 1a: Sum of CuPy Array and its Transpose (GPU-based)

* Run the benchmark with a TCP communicator

$ salloc —--nodes=4 --time=3:00 —--reservation=hibd-tutorial
$ cd /opt/tutorials/hibd/mpiddask-usrs/$USER/labs/taskl

$ sh run taskl.sh tcp

* Expected output:

<Client: '"tcp://10.3.1.2:44230"' processes=2 threads=16, memory=143.58 GiB> C||ent :

Time for iteration O 3.9933362007141113

Time for iteration 1 : 1.7020411491394043 ‘///////’

Time for iteration 2 : 1.6842925548553467 i' """""""""""""""""""""""" EI[J_s-t_e_r_i

Time for iteration 3 : 1.6863949298858643 E Scheduler i

Time for 1teration 4 : 1.577439546585083 i 0 E

Time for iteration 5 : 1.6131360530853271 i ‘\\\\\\\\\‘ |
; 3 2)

Median Time: 1.68s i Worker Worker i

Network Based Computing Laboratory MUG 2023

Task 1b: Sum of CuPy Array and its Transpose (GPU-based)

e Run the benchmark with a UCX communicator
S salloc ——-nodes=4 --time=3:00 —--reservation=hibd-tutorial
$ cd /opt/tutorials/hibd/mpiddask-usrs/$USER/labs/taskl

$ sh run taskl.sh ucx

* Expected output:

<Client: 'ucx://10.3.1.2:37564"' processes=2 threads=16, memory=143.58 GiB> C||ent :

Time for iteration O 2.47611141204834

Time for iteration 1 : 1.1098558902740479 ‘///////’

Time for iteration 2 : 1.288067102432251 i' """"""""""""""""""""" EI[J-s-t_e_r-i

Time for iteration 3 : 1.0797405242919922 E Scheduler i

Time for iteration 4 : 1.0817945003509521 i 0 |

Time for iteration 5 : 1.069718360900879 i \ i
; 3 2)

Median Time: 1.09s i Worker Worker i

Network Based Computing Laboratory MUG 2023

Task 1c: Sum of CuPy Array and its Transpose (GPU-based)

* Run the benchmark again with the new MPI communicator
$ salloc —--nodes=4 --time=3:00 —--reservation=hibd-tutorial
$ cd /opt/tutorials/hibd/mpiddask-usrs/$USER/labs/taskl

$ sh run taskl.sh mpi

* Expected output:

<Client: 'mpi://10.3.1.2:36198' processes=2 threads=16, memory=143.58 GiB>

Time for iteration O 3.2865982055664062

Time for iteration 1 0.3287394046783447

Time for iteration 2 0.36843132972717285

Time for iteration 3 0.3794410228729248

Time for iteration 4 0.3915135860443115

MVAPICH2: 4.4x faster than TCP

Time for iteration 5 0.3674592971801758

2.8x faster than UCX

Median Time: 0.38s

Network Based Computing Laboratory MUG 2023

Task 2a: Cupy Matrix Multiplication (GPU-based)

* Run the benchmark with a TCP communicator

$ salloc —--nodes=4 --time=3:00 —--reservation=hibd-tutorial
$ cd /opt/tutorials/hibd/mpiddask-usrs/S$SUSER/labs/task2

$ sh run task2.sh tcp

* Expected output:

<Client: '"tcp://10.3.1.6:33132"' processes=2 threads=16, memory=143.58 GiB> C||ent 1

Time for iteration O 5.673777103424072

Time for iteration 1 : 3.202324867248535 ‘///////’

Time for iteration 2 : 3.323018789291382 e Sttt

Time for iteration 3 : 3.1695098876953125 | Schedul Clusteri

Time for iteration 4 : 3.1934258937835693 E ElUSRIRlEr 0 E

Time for iteration 5 : 3.257124423980713 i \ E
3 2)

Median Time: 3.22s i Worker Worker i

Network Based Computing Laboratory MUG 2023

Task 2b: Cupy Matrix Multiplication (GPU-based)

e Run the benchmark with a UCX communicator
S salloc —-nodes=4 --time=3:00 —--reservation=hibd-tutorial
$ cd /opt/tutorials/hibd/mpiddask-usrs/S$SUSER/labs/task2

$ sh run task2.sh ucx

* Expected output:

<Client: 'ucx://10.3.1.2:55172"' processes=2 threads=16, memory=143.58 GiB> C||ent 1

Time for iteration O 2.83543062210083

Time for iteration 1 : 2.19091534614563 ‘///////’

Time for iteration 2 : 2.189948558807373 e ittt

Time for iteration 3 : 2.125943660736084 E h d I CIUSterE

Time for iteration 4 : 2.200505495071411 E SC selulEy 0 i

Time for i1teration 5 : 2.326890230178833 i \ E
3 2)

Median Time: 2.109s i Worker Worker i

Network Based Computing Laboratory MUG 2023

Task 2c: Cupy Matrix Multiplication (GPU-based)

* Run the benchmark again with the new MPI communicator
$ salloc —--nodes=4 --time=3:00 —--reservation=hibd-tutorial
$ cd /opt/tutorials/hibd/mpiddask-usrs/$USER/labs/task2

$ sh run task2.sh mpi

* Expected output:

<Client: 'mpi://10.3.1.6:34910' processes=2 threads=16, memory=143.58 GiB>

Time for iteration O 2.369664192199707

Time for iteration 1 1.2211949825286865

Time for iteration 2 1.2420144081115723

Time for iteration 3 1.2281405925750732

Time for iteration 4 1.2588093280792236

Time for iteration 5 : 1.2160212993621826 MVAPICHZ: 2.5x faster than TCP

1.7x faster than UCX

Median Time: 1.25s

Network Based Computing Laboratory MUG 2023

Task 3a: Cupy Array Slicing (GPU-based)

* Run the benchmark with a TCP communicator

$ salloc --nodes=4 --time=3:00 —--reservation=hibd-tutorial
$ cd /opt/tutorials/hibd/mpiddask-usrs/$USER/labs/task3

$ sh run task3.sh tcp

* Expected output:

<Client: '"tcp://10.3.1.6:40202"' processes=2 threads=16, memory=143.58 GiB> C||ent 1

Time for iteration O 3.7195968627929688

Time for iteration 1 1.3150527477264404

Time for iteration 2 1.2000997486114502 Mmoo e m e

Time for iteration 3 : 1.2438180446624756 | Schedul Clusteri

Time for iteration 4 : 1.2373754978179932 | ElUSRIRlEr 0 i

Time for iteration 5 : 1.164992332458496 \ !
3 2)

Median Time: 1.24s i Worker Worker i

Network Based Computing Laboratory MUG 2023

Task 3b: Cupy Array Slicing (GPU-based)

e Run the benchmark with a UCX communicator
S salloc —-nodes=4 --time=3:00 —--reservation=hibd-tutorial
$ cd /opt/tutorials/hibd/mpiddask-usrs/$USER/labs/task3

$ sh run task3.sh ucx

* Expected output:

<Client: 'ucx://10.3.1.2:56148"' processes=2 threads=16, memory=143.58 GiB> C||ent 1

Time for iteration O 2.9743316173553467

Time for i1teration 1 0.9042410850524902

Time for 1teration 2 0.8928432464599609 e Sttt

Time for iteration 3 0.8946189880371094 E S h d I CIUSteri

Time for iteration 4 0.8854148387908936 E cheduler 0 E

Time for iteration 5 0.8948419094085693 i \ E
3 2)

Median Time: 0.89s i Worker Worker i

Network Based Computing Laboratory MUG 2023

Task 3c: Cupy Array Slicing (GPU-based)

* Run the benchmark again with the new MPI communicator
$ salloc —--nodes=4 --time=3:00 —--reservation=hibd-tutorial
$ cd /opt/tutorials/hibd/mpiddask-usrs/$USER/labs/task3

$ sh run task3.sh mpi

* Expected output:

<Client: 'mpi://10.3.1.6:30125' processes=2 threads=16, memory=143.58 GiB>

Time for iteration O 3.952059268951416

Time for iteration 1 0.39922380447387695

Time for iteration 2 1.061549425125122

Time for iteration 3 0.3944559097290039

Time for iteration 4 0.3925657272338867

Time for iteration 5 : 0.41716957092285156 MOEEEl s sl o SEREIERE EnRm Wl

2.2x faster than UCX

Median Time: 0.40s

Network Based Computing Laboratory MUG 2023

Presentation Outline

e Related Publications and Summary

Network Based Computing Laboratory MUG 2023

Related Publications

e Spark Meets MPI: Towards High-Performance Communication Framework for Spark using MPI K. Al
Attar, A. Shafi, M. Abduljabbar, H. Subramoni, D. Panda IEEE Cluster '22, Sep 2022.

e Towards Java-based HPC using the MVAPICH?2 Library: Early Experiences K. Al Attar, A. Shafi, H.
Subramoni, D. Panda HIPS '22 (IPDPSW), May 2022.

e Efficient MPl-based Communication for GPU-Accelerated Dask Applications A. Shafi, J. Hashmi, H.
Subramoni, D. Panda, The 21t IEEE/ACM International Symposium on Cluster, Cloud and Internet
Computing, May 2021. https://arxiv.org/abs/2101.08878

e Blink: Towards Efficient RDMA-based Communication Coroutines for Parallel Python Applications A.
Shafi, J. Hashmi, H. Subramoni, D. Panda, 27t IEEE International Conference on High Performance
Computing, Data, and Analytics, Dec 2020.

Network Based Computing Laboratory MUG 2023

https://arxiv.org/abs/2101.08878

Summary

e Apache Spark and Dask are two popular Big Data processing frameworks

e There is existing support for parallel and distributed on HPC systemes:

— One bottleneck is the lack of support for low-latency and high-bandwidth
interconnects

e This talk presented latest developments in the MPI4Dask (MPI-based
Dask ecosystem) and MPI4Spark (MPI-based Spark ecosystem)

e Provided an overview of issues, challenges, and opportunities for
designing efficient communication runtimes

— Efficient, scalable, and hierarchical designs are crucial for Big Data/Data Science frameworks

— Co-design of communication runtimes and BigData/Data Science frameworks will be essential

Network Based Computing Laboratory

MUG 2023

Thank You!

{shafi.16}@osu.edu

ased
& oo,

A
X Follow us on 3’

https://x.com/mvapich ‘Z‘

:?.
Laboratory

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

=— MVAPICH

%/—ﬁo/_

MPI, PGAS and Hybrid MPI+PGAS Library High-Performance
Deep Learning
The MVAPICH Project The High-Performance Deep Learning Project
http://mvapich.cse.ohio-state.edu/ http://hidl.cse.ohio-state.edu/

Network Based Computing Laboratory MUG 2023

http://nowlab.cse.ohio-state.edu/
https://twitter.com/mvapich

	High-Performance and Scalable Support for Big Data Stacks with MPI��
	Presentation Outline
	Introduction to Big Data Analytics
	Big Velocity – How Much Data Is Generated Every Minute on the Internet?
	Intersection of Big Data and ML/DL
	Presentation Outline
	The Apache Spark Framework
	MPI4Spark: Using MVAPICH2 to Optimize Apache Spark
	MPI4Spark Interconnect Support
	Launching Spark using MPI with Dynamic Process Management
	MPI4Spark Release (v0.3)
	Presentation Outline
	Introduction to Dask
	MPI4Dask: MPI backend for Dask
	Dask Distributed Execution Model
	MPI4Dask in the Dask Architecture
	MPI4Dask: Bootstrapping and Dynamic Connectivity
	MPI4Dask Release
	Presentation Outline
	Weak Scaling Evaluation with OSU HiBD Benchmarks (OHB)
	Weak Scaling Evaluation with OHB (YARN)
	Performance Evaluation with MPI4Spark + MVP 4.0
	Performance Evaluation with Intel HiBench Workloads
	Presentation Outline
	cuDF Merge Benchmark on the Cambridge Wilkes-3 System
	cupy GEMM Benchmark on the Cambridge Wilkes-3 System
	NumPy Array Slicing Benchmark on TACC Frontera CPU System
	Presentation Outline
	Lab 2 – Hands-on Lab with MPI4Dask
	Task 1a: Sum of CuPy Array and its Transpose (GPU-based)�
	Task 1b: Sum of CuPy Array and its Transpose (GPU-based)�
	Task 1c: Sum of CuPy Array and its Transpose (GPU-based)�
	Task 2a: Cupy Matrix Multiplication (GPU-based)
	Task 2b: Cupy Matrix Multiplication (GPU-based)
	Task 2c: Cupy Matrix Multiplication (GPU-based)

	Task 3a: Cupy Array Slicing (GPU-based)
	Task 3b: Cupy Array Slicing (GPU-based)
	Task 3c: Cupy Array Slicing (GPU-based)

	Presentation Outline
	Related Publications
	Summary
	Thank You!

