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Introduction to Big Data Analytics

e Big Data has changed the way people understand
and harness the power of data, both in the business
and research domains

e Big Data has become one of the most important

elements in business analytics

e Big Data and High Performance Computing (HPC)
are converging to meet large scale data processing
challenges

http://www.coolinfographics.com/blog/tag/data?currentPage=3

e Dask and Spark are two popular Big Data processing
frameworks

e Sometimes also called Data Science

http://www.climatecentral.org/news/white-house-brings-together-big-
data-and-climate-change-17194
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Big Velocity — How Much Data Is Generated Every Minute on the Internet?
Global Internet Population Growth
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Intersection of Big Data and ML/DL

e Big Data, Machine and Deep learning are closely _— —
related and interconnected

e ML/DL workloads require collecting and
processing of data

e HPC systems and distributed environments enable | Data

larger models and data to be trained '\ SEiche

— Growing quantities of training data requires Big
Data solutions

e DL workloads pushing beyond traditional NLP and

computer vision applications

. . . . Big Data-ML/DL Venn Diagram
— Moving toward real-time analysis of streaming data

Courtesy: Thakur, N. (2023, February 25). The differences between Data Science, Artificial Intelligence, Machine Learning, and Deep Learning. Medium. Retrieved April 21, 2023, from
https://ai.plainenglish.io/data-science-vs-artificial-intelligence-vs-machine-learning-vs-deep-learning-50d3718d51e5
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The Apache Spark Framework | worker
p p /

e Anin-memory data-processing framework

— lterative machine learning jobs

— Interactive data analytics - D
— Scala based Implementation Sorkcer |
HDFS

— Standalone, YARN, Mesos

e A unified engine to support Batch,

Streaming, SQL, Graph, ML/DL workloads ; wOrker
Master

e Scalable and communication intensive .
BlinkDB

. . . . Caffe,
— Wide dependencies between Resilient Spark MLlib S

- : TensorFlow,
Distributed Datasets (RDDs) Streaming (Machine

o : BigDL, etc.
. . (real-time) Learning) (Deep Learning)
— MapReduce-like shuffle operations to

repartition RDDs

— Sockets based communication Spark
Standalone Apache Mesos m

http://spark.apache.org
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http://spark.apache.org/

MPI4Spark: Using MVAPICH2 to Optimize Apache Spark

° The main mOtivation Of thlS Work iS | Apache Spark ApplicationfBenIchmark/Libraries/Frameworks J
to utilize the communication spark Core i{@wk
functionality provided by

. Sort Hash Tungsten-Sort
MVAPICH2 in the Apache Spark (efut optioe eption
i N
framework O BlockTransferService | ______________ \'
o Netty . || Nettysmp Tr:::“;rt Netty+MPI | |
— MPI4Spark relies on Java bindings of o Sever || Tnevor lient || TAnSPORt |
! fdefault) v {default) 1
the MVAPICH2 library Woreeqoreriee oo e
) /\ "
° Spark s default Shuffle Manager Java Sockets Interface [ MP| Java Bindings
relies on Netty for communication: , I , [ ! X
— Netty is a Java New I/O (NIO) “ f ’
] Native MPlI Comm. Library
client/server framework for event- |
based networking applications [ J
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MPI4Spark Interconnect Support

e The current approach is different from its predecessor design, RDMA-Spark
(http://hibd.cse.ohio-state.edu)

— RDMA-Spark supports only InfiniBand and RoCE

— Requires new designs for new interconnect

e MPI4Spark supports multiple interconnects/systems through a common MPI
library
— Such as InfiniBand (IB), Intel Omni-Path (OPA), HPE Slingshot, RoCE, and others

— No need to re-design the stack for a new interconnect as long as the MPI library supports it

MPI4Spark RDMA-Spark
MVAPICH2-J UCR
vSs.
MVAPICH2 IB Verbs

Supported Interconnects
(InfiniBand, iWARP, RoCE, Omni-Path,
EFA, Rockport, Slingshot, etc.)

Supported Interconnects
(InfiniBand, RoCE)
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Launching Spark using MPI with Dynamic Process Management

_____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Step A: Launch 4 Step B: Each Wrapper Step C: Launch 2 Executor Processes
Wrapper Processes Process Forks Spark MPI_Comm_spawn_multiple()
(for e.g. mpiexec—np 4 .. " Processes _
SparkMP!.java) ~ MPI_COMM_WORLD N@‘:}i;’;‘;"
! i (6\) {/___\;I é
Worker = Worker =
; ; > £ . Node A Node B
M PI_COM M_WORLD I M Pl_COM M_WORLD I ':g} Py I Executor A Executor B
Proc[io) Proc"( 1_\) ey ), Worker\ L/ BITE? . Worker A Worker B
A B | |
0 1
Intercomm I
5 3 (2) o Node C Node D
2, proc'3 3y | DPM_COMM
P'"ZOC\/ I:Q,OC - Master Oriver 3 - Master Driver
' Executor (O
A
Executor \1/

B
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MPIl4Spark Release (v0.3)

e MPI4Spark 0.3 release adds support for the YARN cluster manager:
e Can be downloaded from http://hibd.cse.ohio-state.edu

e Features:
e Based on Apache Spark 3.3.0
e Support for YARN cluster manager
e Compliant with user-level Apache Spark APIs and packages
* High performance design that utilizes MPI-based communication
e Utilizes MPI point-to-point operations

* (NEW) Enhanced MPI Dynamic Process Management (DPM) logic for launching executor processes for the standalone cluster

manager
* (NEW) Relies on Multiple-Program-Multiple-Data (MPMD) launcher mode for the YARN and the Standalone cluster managers
* (NEW) Supports MVAPICH versions 2.3.7 and 4.0
* Built on top of the MVAPICH2-J Java bindings for MVAPICH2 family of MPI libraries
e Tested with
* (NEW) OSU HiBD-Benchmarks, GroupBy and SortBy
* (NEW) Intel HiBench Suite, Micro Benchmarks, Machine Learning and Graph Workloads
* Mellanox InfiniBand adapters (EDR and HDR 100G and 200G)
* HPC systems with Intel OPA interconnects

* Various multi-core platforms
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Introduction to Dask

e Dask is a popular task-based distributed computing framework: _
— Scales Python applications from laptops to high-end systems [f DASK
— Builds a task-graph that is executed lazily on parallel hardware

— Natively extends popular data processing libraries like numPy, Pandas

e Dask Distributed library supports parallel and distributed execution:

— Built using the asyncio package that allows execution of asynchronous/non-blocking/concurrent
operations called coroutines:

e These are defined using async and invoked using await

— Dask Distributed library originally had two communication backends:
e TCP: Tornado-based
e UCX: Built using a Cython wrapper called UCX-Py
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MPI4Dask: MPI backend for Dask

e Dask is a popular task-based distributed computing framework:
— Scales Python applications from laptops to high-end systems
— Builds a task-graph that is executed lazily on parallel hardware
e Dask Distributed library historically had two communication backends:
— TCP: Tornado-based
— UCX: Built using a GPU-aware Cython wrapper called UCX-Py
e Designed and implemented MPI4Dask communication device:

— MPI-based backend for Dask
— Implemented using mpidpy (Cython wrappers) and MVAPICH?2

— Uses Dask-MPI to bootstrap execution of Dask programs
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Dask Distributed Execution Model

e Key characteristics:

1.  Scalability Client
2 Elasticity 0

3.  Support for coroutines T
4 Serialization/De-serialization to data | Scheduler

to/from GPU memory

________________________________________________________________
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MPIl4Dask in the Dask Architecture

Dask
Dask Bag Dask Array Dask DataFrame Delayed Future
Task Graph
* A A A
\ 4 \ 4 A\ 4
Dask-MPI Dask-CUDA Dask-Jobgueue
A A I
\4 \4
Distributed
Scheduler Worker Client
tcp.py ucx.py MPIl4Dask

Comm Layer i 7y 7y

UCX-Py :
mpi4

(Cython wrappers) PI=PY
7y X
A 4 v ) 4
TCP UCX MVAPICH2
A A A
E_)aers);c((:s;ﬁ High Performance Computing Hardware
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MPI4Dask: Bootstrapping and Dynamic Connectivity

e Several ways to start Dask programs:

— Manual Client

— Utility classes: Y A
i Cluster
e LocalCUDACIuster, SLURMCluster, SGECluster, PBCCluster, and others

Scheduler
e MPI4Dask uses the Dask-MPI to bootstrap execution of Dask

programs (e 3
Worker Worker -+ Worker

e Dynamic connectivity is established using the asyncio I S —.
package in MPI4Dask:

— Scheduler and workers listen for incoming connections by calling

asyncio.start_server|()

— Workers and client connect using asyncio.open_connection()

MPI.COMM_WORLD

Network Based Computing Laboratory MUG 2023



MPIl4Dask Release

e MPI4Dask 0.3 was released in Feb ‘23 adding support for high-performance MPI
communication to Dask:

— Can be downloaded from: http://hibd.cse.ohio-state.edu

e Features:
— (NEW) Based on Dask Distributed 2022.8.1

— Compliant with user-level Dask APIs and packages
— Support for MPIl-based communication in Dask for cluster of GPUs
e Implements point-to-point communication co-routines
e Efficient chunking mechanism implemented for large messages
— Built on top of mpidpy over the MVAPICH2-GDR library
— Supports starting execution of Dask programs using Dask-MPI
— Tested with
e Mellanox InfiniBand adapters (FDR, EDR, and HDR)
e (NEW) Various benchmarks used by the community (MatMul, Slicing, Sum Transpose, cuDF Merge, etc.)
e (NEW) Various multi-core platforms

e (NEW) NVIDIA V100 and A100 GPUs
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Weak Scaling Evaluation with OSU HiBD Benchmarks (OHB)

OHB GroupByTest OHB SortByTest
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112GB (448 cores/8 workers) | 224GB (896 cores/16 workers) | 448GB (1792 cores/32 workers) 112GB (448 cores/8 workers) | 224GB (896 cores/16 workers) | 448GB (1792 cores/32 workers)

* The above are weak-scaling performance numbers of OHB benchmarks (GroupByTest and SortByTest) executed on the TACC Frontera
system using the Standalone cluster manager in Spark

Speed-ups for the overall total execution time for 448GB with GroupByTest is 4.1x and 2.2x compared to |IPolB and RDMA, and for
SortByTest the speed-ups are 3.8x and 1.5x, respectively

*  Speed-ups for the shuffle read stage for 112GB with GroupByTest are 13x compared with IPolB and 5.6x compared to RDMA, while for
SortByTest the speed-ups are 12.8x and 3.2x, respectively

K. Al Attar, A. Shafi, M. Abduljabbar, H. Subramoni, D. Panda, Spark Meets MPI: Towards High-Performance Communication Framework for Spark
using MPI, IEEE Cluster '22, Sep 2022.
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Weak Scaling Evaluation with OHB (YARN)

OHB GroupByTest OHB SortByTest
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* The above are weak-scaling performance numbers of OHB benchmarks (GroupByTest and SortByTest) executed on the TACC Frontera
system using the YARN cluster manager in Spark

*  Speed-ups for the overall total execution time for SortByTest, 64 NodeManagers, are 4.5x and 2.3x compared to IPolB and RDMA, and
for GroupByTest, also 64 NodeManagers, the speed-ups are 3.8x and 2.5x, respectively

*  Speed-ups for the shuffle read stage for 896GB with GroupByTest are 6.8x compared with IPolB and 4.4x compared to RDMA, while
for SortByTest the speed-ups are 8.4x and 3.9x, respectively

Network Based Computing Laboratory MUG 2023




Performance Evaluation with MPl4Spark + MVP 4.0
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The following are weak-scaling performance numbers of OHB benchmarks (GroupByTest and SortByTest) executed

on the TACC Frontera system using MVAPICH version 4.0

Speed-ups for the overall total execution time for 32 workers with GroupByTest is 4.1x and 2.6x compared to
(regular) Spark and RDMA Spark, and for SortByTest the speed-ups are 3.5 and 1.9x, respectively.
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Performance Evaluation with Intel HiBench Workloads

1.4x on average than RDMA-Spark 1.4x on average than Vanilla Spark 1.5x on average than Vanilla Spark
o5 Intel HiBench ML Workloads - Frontera Intel HiBench Micro/Graph Workloads - Frontera Intel HiBench Micro/ML Workloads - Stampede2
aVanila Spark (PoB) | o [ = Vanilla Spark (IPolB) | > |
oo | B oRDMA-Spark = = RDMA-Spark ® Vanilla Spark
~ n
.Gé m MPI4Spark CIPV ) E  E— EMPI4Spark mMPI4Spark
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X L%’ 100 |- - e
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* This evaluation was done on the TACC Frontera (IB) and the TACC Stampede2 (OPA) Systems

* This illustrates the portability of MPI4Spark on different interconnects

* We see a speed-up for the LR machine learning workload on Stampede2 of about 2.2x

* Speed-ups for the LDA machine learning workload on Frontera are 1.7x for both IPoIB and RDMA

K. Al Attar, A. Shafi, M. Abduljabbar, H. Subramoni, D. Panda, Spark Meets MPI: Towards High-Performance Communication Framework for Spark
using MPI, IEEE Cluster '22, Sep 2022.
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cuDF Merge Benchmark on the Cambridge Wilkes-3 System

« GPU-based Operation: ddf1.merge(ddf2), using persist Wilke3 GPU System:
=  Merge two GPU data frames, each with length of 32*1e8 - 80nodes
- 2x AMD EPYC 7763 64-core
=  Compute() will gather the data from all worker nodes to the client node,  processors
and make a copy on the host memory. - 1000 GiB RAM
= Persist() will leave the data on its current nodes without any gathering - Dual-rail Mellanox HDR200 IB
- 4x NVIDIA A100 SXM4 80 GB
Execution Time Aggregated Throughput
140 [ mIPolB OUCX mMPl4Dask _ 4000 | m|PolB-DUCX WMPM4Dask —§
E‘I o0 |- On average, MPI4Daskis: B | = 3500 |
g - 4.94x faster than UCX _5"33000 84ax |
=100 |- - 26.85x faster than TCP-- g [~ S
c o ©2500
| . BB e B %
3 - 52000
Q B0 | g e i % 51500
% 40 e e e e = 1000
— ()]
220 e T e e &£ 500
0 0
2 4 8 16 32
2 Ndrmber of [?ask Worlge?rs 32 Number of Dask Workers

MPI4Dask 0.3, Dask 2022.8.1, Distributed, 2022.8.1, MVAPICH2-3.0, UCX v1.13.1, UCX-py 0.27.00
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cupy GEMM Benchmark on the Cambridge Wilkes-3 System

« GPU-based Operation: x.dot(y), using persist Wilke3 GPU System:
=  Arrays are distributed on multiple GPUs - 80 nodes
- 2x AMD EPYC 7763 64-core
=  Compute() will gather the data from all worker nodes to the client node,  prgcessors
and make a copy on the host memory. - 1000 GiB RAM
= Persist() will leave the data on its current nodes without any gathering -~ Dual-rail Mellanox HDR200 IB
- 4x NVIDIA A100 SXM4 80 GB
Execution Time Aggregated Throughput
35 6000
_ mIPolB OUCX mMPI4Dask _ BIPolB DUCX mMPl4Dask 4
w30 [ On average, MPI4Dask is:-—— s E 570100 OSSOSO
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525 """ - 8.70x faster than TCP 5 R 4000 ||
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MPI4Dask 0.3, Dask 2022.8.1, Distributed, 2022.8.1, MVAPICH2-3.0, UCX v1.13.1, UCX-py 0.27.00
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NumPy Array Slicing Benchmark on TACC Frontera CPU
System

1.26x better on average

3.17x better on average

30 90
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From 32 workers, we increase array size by 16 times

MPI4Dask 0.3 release
(http://hibd.cse.ohio-state.edu)

A. Shafi, J. Hashmi , H. Subramoni, and D. K. Panda, Efficient MPI-based
Communication for GPU-Accelerated Dask Applications, CCGrid ‘21
https://arxiv.org/abs/2101.08878

MUG 2023
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Lab 2 — Hands-on Lab with MPIl4Dask

e QObjectives
— How to run parallel and distributed data science applications using Dask on HPC systems

— How to use multi-node GPUs for Dask-based applications

e Tasks
— Task 1: Sum of CuPy Array and its Transpose
— Task 2: Cupy Matrix Multiplication
— Task 3: Cupy Array Clicing
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Task 1a: Sum of CuPy Array and its Transpose (GPU-based)

* Run the benchmark with a TCP communicator

$ salloc —--nodes=4 --time=3:00 —--reservation=hibd-tutorial
$ cd /opt/tutorials/hibd/mpiddask-usrs/$USER/labs/taskl

$ sh run taskl.sh tcp

* Expected output:

<Client: '"tcp://10.3.1.2:44230"' processes=2 threads=16, memory=143.58 GiB> C||ent :

Time for iteration O 3.9933362007141113

Time for iteration 1 : 1.7020411491394043 ‘///////’

Time for iteration 2 : 1.6842925548553467 i' """""""""""""""""""""""" EI[J_s-t_e_r_i

Time for iteration 3 : 1.6863949298858643 E Scheduler i

Time for 1teration 4 : 1.577439546585083 i 0 E

Time for iteration 5 : 1.6131360530853271 i ‘\\\\\\\\\‘ |
; 3 2 )

Median Time: 1.68s i Worker Worker i
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Task 1b: Sum of CuPy Array and its Transpose (GPU-based)

e Run the benchmark with a UCX communicator
S salloc ——-nodes=4 --time=3:00 —--reservation=hibd-tutorial
$ cd /opt/tutorials/hibd/mpiddask-usrs/$USER/labs/taskl

$ sh run taskl.sh ucx

* Expected output:

<Client: 'ucx://10.3.1.2:37564"' processes=2 threads=16, memory=143.58 GiB> C||ent :

Time for iteration O 2.47611141204834

Time for iteration 1 : 1.1098558902740479 ‘///////’

Time for iteration 2 : 1.288067102432251 i' """"""""""""""""""""" EI[J-s-t_e_r-i

Time for iteration 3 : 1.0797405242919922 E Scheduler i

Time for iteration 4 : 1.0817945003509521 i 0 |

Time for iteration 5 : 1.069718360900879 i \ i
; 3 2 )

Median Time: 1.09s i Worker Worker i
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Task 1c: Sum of CuPy Array and its Transpose (GPU-based)

* Run the benchmark again with the new MPI communicator
$ salloc —--nodes=4 --time=3:00 —--reservation=hibd-tutorial
$ cd /opt/tutorials/hibd/mpiddask-usrs/$USER/labs/taskl

$ sh run taskl.sh mpi

* Expected output:

<Client: 'mpi://10.3.1.2:36198' processes=2 threads=16, memory=143.58 GiB>

Time for iteration O 3.2865982055664062

Time for iteration 1 0.3287394046783447

Time for iteration 2 0.36843132972717285

Time for iteration 3 0.3794410228729248

Time for iteration 4 0.3915135860443115

MVAPICH2: 4.4x faster than TCP

Time for iteration 5 0.3674592971801758

2.8x faster than UCX

Median Time: 0.38s
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Task 2a: Cupy Matrix Multiplication (GPU-based)

* Run the benchmark with a TCP communicator

$ salloc —--nodes=4 --time=3:00 —--reservation=hibd-tutorial
$ cd /opt/tutorials/hibd/mpiddask-usrs/S$SUSER/labs/task2

$ sh run task2.sh tcp

* Expected output:

<Client: '"tcp://10.3.1.6:33132"' processes=2 threads=16, memory=143.58 GiB> C||ent 1

Time for iteration O 5.673777103424072

Time for iteration 1 : 3.202324867248535 ‘///////’

Time for iteration 2 : 3.323018789291382 e Sttt

Time for iteration 3 : 3.1695098876953125 | Schedul Clusteri

Time for iteration 4 : 3.1934258937835693 E ElUSRIRlEr 0 E

Time for iteration 5 : 3.257124423980713 i \ E
3 2 )

Median Time: 3.22s i Worker Worker i
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Task 2b: Cupy Matrix Multiplication (GPU-based)

e Run the benchmark with a UCX communicator
S salloc —-nodes=4 --time=3:00 —--reservation=hibd-tutorial
$ cd /opt/tutorials/hibd/mpiddask-usrs/S$SUSER/labs/task2

$ sh run task2.sh ucx

* Expected output:

<Client: 'ucx://10.3.1.2:55172"' processes=2 threads=16, memory=143.58 GiB> C||ent 1

Time for iteration O 2.83543062210083

Time for iteration 1 : 2.19091534614563 ‘///////’

Time for iteration 2 : 2.189948558807373 e ittt

Time for iteration 3 : 2.125943660736084 E h d I CIUSterE

Time for iteration 4 : 2.200505495071411 E SC selulEy 0 i

Time for i1teration 5 : 2.326890230178833 i \ E
3 2 )

Median Time: 2.109s i Worker Worker i
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Task 2c: Cupy Matrix Multiplication (GPU-based)

* Run the benchmark again with the new MPI communicator
$ salloc —--nodes=4 --time=3:00 —--reservation=hibd-tutorial
$ cd /opt/tutorials/hibd/mpiddask-usrs/$USER/labs/task2

$ sh run task2.sh mpi

* Expected output:

<Client: 'mpi://10.3.1.6:34910' processes=2 threads=16, memory=143.58 GiB>

Time for iteration O 2.369664192199707

Time for iteration 1 1.2211949825286865

Time for iteration 2 1.2420144081115723

Time for iteration 3 1.2281405925750732

Time for iteration 4 1.2588093280792236

Time for iteration 5 : 1.2160212993621826 MVAPICHZ: 2.5x faster than TCP

1.7x faster than UCX

Median Time: 1.25s
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Task 3a: Cupy Array Slicing (GPU-based)

* Run the benchmark with a TCP communicator

$ salloc --nodes=4 --time=3:00 —--reservation=hibd-tutorial
$ cd /opt/tutorials/hibd/mpiddask-usrs/$USER/labs/task3

$ sh run task3.sh tcp

* Expected output:

<Client: '"tcp://10.3.1.6:40202"' processes=2 threads=16, memory=143.58 GiB> C||ent 1

Time for iteration O 3.7195968627929688

Time for iteration 1 1.3150527477264404

Time for iteration 2 1.2000997486114502 Mmoo e m e

Time for iteration 3 : 1.2438180446624756 | Schedul Clusteri

Time for iteration 4 : 1.2373754978179932 | ElUSRIRlEr 0 i

Time for iteration 5 : 1.164992332458496 \ !
3 2 )

Median Time: 1.24s i Worker Worker i
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Task 3b: Cupy Array Slicing (GPU-based)

e Run the benchmark with a UCX communicator
S salloc —-nodes=4 --time=3:00 —--reservation=hibd-tutorial
$ cd /opt/tutorials/hibd/mpiddask-usrs/$USER/labs/task3

$ sh run task3.sh ucx

* Expected output:

<Client: 'ucx://10.3.1.2:56148"' processes=2 threads=16, memory=143.58 GiB> C||ent 1

Time for iteration O 2.9743316173553467

Time for i1teration 1 0.9042410850524902

Time for 1teration 2 0.8928432464599609 e Sttt

Time for iteration 3 0.8946189880371094 E S h d I CIUSteri

Time for iteration 4 0.8854148387908936 E cheduler 0 E

Time for iteration 5 0.8948419094085693 i \ E
3 2 )

Median Time: 0.89s i Worker Worker i
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Task 3c: Cupy Array Slicing (GPU-based)

* Run the benchmark again with the new MPI communicator
$ salloc —--nodes=4 --time=3:00 —--reservation=hibd-tutorial
$ cd /opt/tutorials/hibd/mpiddask-usrs/$USER/labs/task3

$ sh run task3.sh mpi

* Expected output:

<Client: 'mpi://10.3.1.6:30125' processes=2 threads=16, memory=143.58 GiB>

Time for iteration O 3.952059268951416

Time for iteration 1 0.39922380447387695

Time for iteration 2 1.061549425125122

Time for iteration 3 0.3944559097290039

Time for iteration 4 0.3925657272338867

Time for iteration 5 : 0.41716957092285156 MOEEEl s sl o SEREIERE EnRm Wl

2.2x faster than UCX

Median Time: 0.40s
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Presentation Outline

e Related Publications and Summary
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Related Publications

e Spark Meets MPI: Towards High-Performance Communication Framework for Spark using MPI K. Al
Attar, A. Shafi, M. Abduljabbar, H. Subramoni, D. Panda IEEE Cluster '22, Sep 2022.

e Towards Java-based HPC using the MVAPICH?2 Library: Early Experiences K. Al Attar, A. Shafi, H.
Subramoni, D. Panda HIPS '22 (IPDPSW), May 2022.

e Efficient MPl-based Communication for GPU-Accelerated Dask Applications A. Shafi, J. Hashmi, H.
Subramoni, D. Panda, The 21t IEEE/ACM International Symposium on Cluster, Cloud and Internet
Computing, May 2021. https://arxiv.org/abs/2101.08878

e Blink: Towards Efficient RDMA-based Communication Coroutines for Parallel Python Applications A.
Shafi, J. Hashmi, H. Subramoni, D. Panda, 27t IEEE International Conference on High Performance
Computing, Data, and Analytics, Dec 2020.
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Summary

e Apache Spark and Dask are two popular Big Data processing frameworks

e There is existing support for parallel and distributed on HPC systemes:

— One bottleneck is the lack of support for low-latency and high-bandwidth
interconnects

e This talk presented latest developments in the MPI4Dask (MPI-based
Dask ecosystem) and MPI4Spark (MPI-based Spark ecosystem)

e Provided an overview of issues, challenges, and opportunities for
designing efficient communication runtimes

— Efficient, scalable, and hierarchical designs are crucial for Big Data/Data Science frameworks

— Co-design of communication runtimes and BigData/Data Science frameworks will be essential

Network Based Computing Laboratory
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Thank You!

{shafi.16}@osu.edu
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MPI, PGAS and Hybrid MPI+PGAS Library High-Performance
Deep Learning
The MVAPICH Project The High-Performance Deep Learning Project
http://mvapich.cse.ohio-state.edu/ http://hidl.cse.ohio-state.edu/

Network Based Computing Laboratory MUG 2023


http://nowlab.cse.ohio-state.edu/
https://twitter.com/mvapich

	High-Performance and Scalable Support for Big Data Stacks with MPI��
	Presentation Outline
	Introduction to Big Data Analytics
	Big Velocity – How Much Data Is Generated Every Minute on the Internet?
	Intersection of Big Data and ML/DL
	Presentation Outline
	The Apache Spark Framework
	MPI4Spark: Using MVAPICH2 to Optimize Apache Spark
	MPI4Spark Interconnect Support
	Launching Spark using MPI with Dynamic Process Management
	MPI4Spark Release (v0.3)
	Presentation Outline
	Introduction to Dask
	MPI4Dask: MPI backend for Dask
	Dask Distributed Execution Model
	MPI4Dask in the Dask Architecture
	MPI4Dask: Bootstrapping and Dynamic Connectivity
	MPI4Dask Release
	Presentation Outline
	Weak Scaling Evaluation with OSU HiBD Benchmarks (OHB)
	Weak Scaling Evaluation with OHB (YARN)
	Performance Evaluation with MPI4Spark + MVP 4.0
	Performance Evaluation with Intel HiBench Workloads
	Presentation Outline
	cuDF Merge Benchmark on the Cambridge Wilkes-3 System
	cupy GEMM Benchmark on the Cambridge Wilkes-3 System
	NumPy Array Slicing Benchmark on TACC Frontera CPU System 
	Presentation Outline
	Lab 2 – Hands-on Lab with MPI4Dask
	Task 1a: Sum of CuPy Array and its Transpose (GPU-based)�
	Task 1b: Sum of CuPy Array and its Transpose (GPU-based)�
	Task 1c: Sum of CuPy Array and its Transpose (GPU-based)�
	Task 2a: Cupy Matrix Multiplication (GPU-based)
	Task 2b: Cupy Matrix Multiplication (GPU-based)
	Task 2c: Cupy Matrix Multiplication (GPU-based)

	Task 3a: Cupy Array Slicing (GPU-based)
	Task 3b: Cupy Array Slicing (GPU-based)
	Task 3c: Cupy Array Slicing (GPU-based)

	Presentation Outline
	Related Publications
	Summary
	Thank You!

