
DeepSpeed and Trillion-parameter LLMs: Can synergy of
MPI and NCCL improve scalability and efficiency?

MUG ‘24

Model Scale
• 10+ Trillion parameters

Speed
• Fast & scalable training

Usability
• Few lines of code changes

Accelerated inference
• Up to 12x faster & cheaper

Ammar Ahmad Awan
(on behalf of several DeepSpeed team members at Microsoft and SnowFlake)

https://github.com/microsoft/DeepSpeed

MVAPICH

DeepSpeed and Trillion-parameter LLMs: Can synergy of
MPI and NCCL improve scalability and efficiency?

https://github.com/microsoft/DeepSpeed

DeepSpeed Training: Reshaping the LLM Training Landscape

System capability to efficiently train models with trillions of parameters

Key training technologies:
 Zero Redundancy Optimizer (ZeRO)
 ZeRO-Infinity
 3D parallelism
 Memory and compute efficient MoE

training
 Optimized CUDA/ROCm/CPU kernels
 Gradient compression 1-bit

Adam/LAMB, 0/1 Adam
 Sparse Attention
 Mixture of quantization
 Progressive layer dropping
 Curriculum learning
 …

DeepSpeed Powered Massive Models:
o METRO-LM (5.4B)
o Microsoft-Turing NLG (17B)
o GPT Neo-X (20B)
o AlexaTM (20B)
o YaLM (100B)
o GLM (130B)
o BLOOM: Big Science (176B)
o Jurrasic-1 (178B)
o Megatron-Turing NLG (530B)
o …

DeepSpeed Inference: Accelerated serving for LLMs and SLMs
 Many-GPU Dense transformer optimizations – powering large and very large models like Megatron-Turing 530B
 Massive Scale Sparse Model Inference– a trillion parameter MoE model inference under 25ms
 ZeRO-Inference –> 40x bigger model inference on single-GPU device

DeepSpeed Inference: SoTA latency and throughput across the large model inference landscape

8.7x
7.6x

5.4x

4x

2.1x

12x

2.5

5.9x

7.2x 7.3x

0

2

4

6

8

10

12

14

BERT-Base
 (112M)

BERT-Large
 (340M)

GPT2
 (340M)

GPT2-XL
 (1.5B)

Turing-NLG
 (17B)

BLOOM
 (176B)

MT-NLG
 (530B)

MoE
 (349B)

MoE
 (1T)

MoE
 (2T)

Dense
Single GPU

Dense
Multi-GPU

Sparse
Multi-GPU

La
te

nc
y

Im
pr

ov
em

en
t

Baseline DeepSpeed Inference

DeepSpeed OSS Impact

• 10x YoY growth of DeepSpeed usage
• 6 Million installs since release
• 356+ unique contributors
• 1.6k+ public packages have hard dependencies on DeepSpeed

• Open-source frameworks
• Hugging Face, PyTorch-Lightning, EleutherAI, MosaicML, etc.

• External companies
• Meta AI (FAIR), AstraZeneca, Fidelity, Salesforce, Intel, Bloomberg, Tencent, SAP,

etc.
• National Labs

• Oak Ridge, Argonne, Lawrence Livermore, etc.

DeepSpeed is simple to use and extend!

Classified as Microsoft Highly Confidential

Classified as Microsoft Highly Confidential

MCR-DL
Quentin Anthony, Ammar Awan, Jeff Rasley, Yuxiong He, Aamir Shafi, Mustafa
Abduljabbar, Hari Subramoni, and Dhabaleswar K. (DK) Panda - IPDPS ’23.

First work that explored the synergy of NCCL and MPI to push the envelope of performance!

Large models need parallelism
Max Parameter

(in billions) Max Parallelism Compute
Efficiency

Usability
(Model Rewrite)

Data Parallel (DP) Approx. 1.2 >1000 Very Good Great

Model Parallel (MP) Approx. 20 Approx. 16 Good Needs Model Rewrite

MP + DP Approx. 20 > 1000 Good Needs Model Rewrite

Pipeline Parallel (PP) Approx. 100 Approx. 128 Very Good Needs Model Rewrite

PP + DP Approx. 100 > 1000 Very Good Needs Model Rewrite

MP + PP + DP > 1000 > 1000 Very Good Needs Significant Model
Rewrite

ZeRO > 1000 > 1000 Very Good Great

• DL models use many parallelism schemes
• A single model replica may span multiple GPUs
• Thus, requiring many different communication operations

Communication in Deep Learning models

Deep Learning Recommendation Model (DLRM)

Mixture of Experts (MoE)Ack: Slide borrowed from Quentin’s IPDPS ‘23 talk

• Currently, distributed DL frameworks require that the user choose a single communication backend
• Rarely-used communication operations (e.g. IGather) must be custom-implemented as needed

Limitations of Existing Solutions

• Consider DS-MoE. Given
that communication time
is split between AllReduce
and AlltoAll, which
backend should be used?

– MVAPICH2-GDR performs
best for Alltoall, NCCL
performs best for AllReduce

Ack: Slide borrowed from Quentin’s IPDPS ‘23 talk

• Benefits for DS-MoE [top] and DLRM [bottom]
• Both primarily use AllReduce and AlltoAll
• Baseline results use a single backend for all operations
• MCR-DL coarsely chooses the best backend for each

operation based on OMB results, MCR-DL-T uses tuning
tables to choose the best backend based on the message size

• By using the best communication backends for each
individual operation, MCR-DL-T reduces time spent in
communication

MCR-DL Flagship Results

DLRM

DS-MoE

Ack: Slide borrowed from Quentin’s IPDPS ‘23 talk

Classified as Microsoft Highly Confidential

Classified as Microsoft Highly Confidential

DeepSpeed-Ulysses
Sam Ade Jacobs, Masahiro Tanaka, Chengming Zhang, Minjia Zhang, Reza Yazdani Aminabadi, Leon Song, Samyam
Rajbhandari, Yuxiong He – ArXiV ’23, PODC ‘24

System Optimizations for Enabling Training of Extreme Long Sequence Transformer Models

Motivation: Long sequence problems are all around us

Long context LLMs, chat apps and models (1K GPT-3 2022 ->128K Phi-3, 1M Gemini 2024)

Book (chapter) level summarization

Health care predictive model conditioned on entire patient record

Long-range high-resolution climate modelling

Multimodal AI

•Memory Inefficiency
• Existing (data, tensor, pipeline) parallelism
approaches cannot address memory demand of
extreme long sequences

•Communication Inefficiency
• Existing sequence parallelism approaches are
not effective because of communication
inefficiencies.

•Easy of use
• Existing approaches have limited usability
requiring error prone code refactoring

8k

Microsoft DeepSpeed ZeRO-3

16k

8k 16k

72 TFLOPS
50 TFLOPS

162 TFLOPS

NVIDIA Megatron Sequence Parallelism

Out of memory

Communication inefficiency
slows down training

Challenges: Several Inefficiencies

DeepSpeed-Ulysses

• DeepSpeed-Ulysses is our
technological innovation for long
context optimization

• Key idea: partition tensors along
sequence and head dimensions, use
optimized alltoall collective for
communication

• First long context system optimization to
scale to 1M pretraining context length

• Trains 2.5x faster and 4x longer context
length than Megatron-LM

0.5
2

4 4

128 128

1000

0.3

175
70

2.7

405
14

600

Context Scale (Thousand) Model Scale (Billion)

DeepSpeed-Ulysses: Key Features

Communication
Efficiency

Memory
Optimization

Attention
Agnostic

Ease of Use and
Open Source

DeepSpeed-Ulysses: Core Design
• Partitions individual samples along the sequence dimension
• Employs alltoall communication collective for attention computations

Converts sequence
parallelism to head

parallelism

Converts head
parallelism back to
sequence parallelism

Communication Volume Analysis

Existing work
(Megatron-LM’s SP) DeepSpeed-Ulysses

O(M) O(M/P)
Before Attention-block

After Attention-block

𝟑𝟑𝟑𝟑𝟑𝟑
𝑷𝑷N𝟑𝟑allgather all-to-all

𝟑𝟑𝟑𝟑
𝑷𝑷N𝟑𝟑reduce-

scatter
all-to-all

• Key: All-to-all communication
overhead is O(M/P)

(M= 𝟒𝟒𝟑𝟑𝟑𝟑/𝑷𝑷)(M= 𝟐𝟐𝟑𝟑𝟑𝟑)

All-to-all on DGX-type network
(each GPU pair has a dedicated link)

M

M/P

M/P

M/P

P: GPU count, N: sequence length, h: hidden size

Communication Volume Analysis

Existing work
(Megatron-LM’s SP) DeepSpeed-Ulysses

O(M) O(M/P)

• DeepSpeed-Ulysses has less communication overhead

𝟑𝟑: message size ~ sequence length, 𝑷𝑷: GPU count

• Megatron-LM increases communication overhead as sequence length increases

• DeepSpeed-Ulysses can keep the communication volume consistent by increasing GPUs
proportionally to sequence length

Parameter Memory Optimization
• DeepSpeed-Ulysses leverages DeepSpeed-ZeRO for memory parameter

optimization
• Extends parameter sharding across both data and sequence parallel group
• Allgather communication collective in forward and backward pass

• Activation partitioning (DeepSpeed-Ulysses) + parameter sharding (DeepSpeed-
ZeRO) enables larger batch sizes for higher training througput

Generality and Easy Use
 Agnostic to attention implementation
 Head parallelism allows for compatibility with different kind of attention

Compute
QKV

Compute
Attention

OutputAttention-block (DS-Ulysses)

Classic
Attention

Flash
Attention

Sparse
Attention

all-to-all all-to-all

• Require minimal code changes

attn = Attention_Ulysses(attn, …)
context = attn(q, k, v)

Only wrap the
attention module

Evaluation : Max Sequence Length

0

200

400

600

800

1000

1200

4 16 32 64

Max sequence
length (X1000)

GPU count

Scales to 1M
token context!

• GPT 1.2B model
• A100-40G

1.1X 1.5X 2.5X 2X
4X

2X

Significantly better throughput for large models

DS sequence parallelism (Ulysses) can train 2.5x faster
and 4x longer sequences than SoTA

Comparison with Existing Approach

Ongoing and Future work

• Ongoing work focuses on framework generalization, advanced
optimization and democratization

• HuggingFace integration for post training, finetuning and broad model
evaluation

• Computation-communication overlap
• 10% improvement over baseline
• Contribution from Intel

• Ulysses-Offload (summer intern project)
• Leverages memory hierarchies
• Enables training sequences over 2 million tokens for a 13B model using just a single node
• 4x improvement over baseline

• Explore the synergy of MVAPICH and NCCL?
• Which student is coming to Microsoft for Internship next? 

Classified as Microsoft Highly Confidential

Classified as Microsoft Highly Confidential

ZeRO++
Guanhua Wang, Heyang Qin, Sam Ade Jacobs, Xiaoxia Wu, Connor Holmes, Zhewei
Yao, Samyam Rajbhandari, Olatunji Ruwase, Feng Yan, Lei Yang, Yuxiong He – ICLR ‘23

Extremely Efficient Collective Communication for Large Model Training

Motivation

• Large model requires large #GPUs to train
• Max batch size has a limit
• Large number of GPU implies smaller batch per GPU

• Communication, a significant overhead
• Frequent communication with small batch size

• Make efficient large-scale training accessible
• ZeRO: Easy-to-use large model training
• Develop techniques to reduce communication

volume for better efficiency

Model size grows exponentially

ZeRO: a key enabler of large-scale training
25

Communication Characterization for ZeRO
• ZeRO partitions model states

• Utilize aggregate GPU memory
• Communication collectives to fetch required model states during training

• Communication Volume Breakdown (model size M):
1. Forward all-gather on weights: M
2. Backward all-gather on weights: M
3. Backward reduce-scatter on gradients: M

• Total Volume: 3M

How to reduce communication volume?

26

1: Reduce forward all-gather Comm
• Communicate 8-bit quantized weights

• But naïve quantization causes model divergence

• Blocked quantization
• Reduce quantization granularity to improve precision
• 3.3x precision improvement in Euclidean distance
• Optimized kernels for 2.5x faster performance over

pytorch

• E2E comm reduction: 3M 2.5M
• Forward all-gather: M  0.5M
• Backward all-gather: M
• Backward reduce-scatter: M

0.631 -6.529 -9.220
-3.044 -2.475 4.690
-8.441 2.901 -5.707

9 -90 -127
-42 -34 65

-116 40 -79

0.653 -6.534 -9.220
-3.049 -2.468 4.719
-8.421 2.904 -5.735

0.631 -6.529 -9.220
-3.044 -2.475 4.690
-8.441 2.901 -5.707

127 -128 -128
24 -18 127

-128 127 -64

0.631 -6.53 -9.220
-3.033 -2.461 4.690
-8.44 2.901 5.729

Quantize

Dequantize

Quantization
Error: 2.937E-04

Quantization
Error: 9.005E-05

27

Machine 1Machine 0

G0 G1 G3G2

P0 P1 P2 P3

P0

P1

P2

P3

P0 P1 P2 P3 P0 P1 P2 P3

P0

P3

P1

P2

hpZeRO All-gather (on Rank 0)

2: Reduce backward all-gather Comm
• Heterogeneous partitioning (hpZeRO)

• Model weights within node, rest across all
nodes

• All-gather happens within node only
• Trade off between memory and

communication
• Eliminates backward all-gather across

nodes

• E2E comm reduction: 3M 1.5M
• Forward all-gather: M  0.5M
• Backward all-gather: M  0
• Backward reduce-scatter: M

Basic All-gather (on Rank 0)

28

3: Reduce backward reduce-scatter Comm
• Can we quantize gradient communication ?

• Significant precision loss due to reduction operations

• Novel hierarchical All-to-All replacing reduce-scatter
• Communicate in 4 or 8-bits
• Reduce in full-precision

• Solves multiple system and algorithmic challenges
• Details illustration later

• E2E comm reduction: 3M 0.75M
• Forward all-gather: M  0.5M
• Backward all-gather: M  0
• Backward reduce-scatter: M  0.25M

29

Breakdown of ZeRO communication cost (consider a model of size M):

1. Forward all-gather (size M) (size 0.5M)

2. Backward all-gather (size M) (size 0)

3. Backward reduce-scatter (size M) (size 0.25M)

Methodology Summary

Accurate & Efficient Quantization

Heterogeneous Partitioning (hpZeRO)

Novel Quantized Collective

Overall communication reduction: 3M -> 0.75M

30

System Design for Gradients Communication

G0 G1 G3G2

Q D QD Q D QD

D DequantizeQ Quantize

NCCL Ring based reduce_scatter

of sequential Q+D == # of GPUs

Too many Quantizations

Initial Challenges for Quantization on Gradients:
• No existing collectives for quantized gradient communication
• 1-bit Adam optimizer cannot be applied at ZeRO-3.
• Directly apply quantization on reduce_scatter has longer latency & lower precision

31

System Design for Gradients Communication
Challenge 1: Too many Quantizations
Solution 1: Replacing ring-based reduce_scatter with 1-hop all_to_all

Our 1-hop all_to_all
of sequential Q+D == 1

1 2 3 4

32

All_to_All
1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4

Machine 1Machine 0

G0 G1 G3G2

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Quantize

Dequantize+Reduce

G0 G1 G3G2

Q D QD Q D QD

D DequantizeQ Quantize

NCCL Ring-based reduce_scatter
of sequential Q+D == # of GPUs

System Design for Gradients Communication
Challenge 2: Issue with 1-hop all_to_all -> communication volumes blow-up

Machine 0

...G0 G_N

Machine 1

...G0 G_N

M

Reduce-scatter M

Machine 0

...G0 G_N

Machine 1

...G0 G_N

M/4

1-hop all-to-all N*M/4

M/4 M/4

N gpu per node, model size M

Machine 0

...G0 G_N

Machine 1

...G0 G_N

Step 1: intra node all-to-all
and reduction (M/(4N))

33

Solution 2: Hierarchical all-to-all

System Design for Gradients Communication

34

Challenge 3: Hierarchical all-to-all (Data-misplacement)
Solution 3: Tensor slices reordering

Machine 1Machine 0

G0 G1 G3G2

1 23 4 1 23 4 1 23 4 1 23 4

1 3 2 4

2 41 3

1 3 2 4

2 41 3

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Step 1: intra-node all_to_all

2 41 3 2 41 3

2 41 3 2 41 3

Machine 1Machine 0

G0 G1 G3G2

2

4

1

32

4

1

3

1 2 3 4

Step 2: inter-node all_to_all

Further Optimization: kernel fusion & overlapping

35

Machine 1Machine 0

G0 G1 G3G2

Tensor slice reordering1 23 4 1 23 4 1 23 4 1 23 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Quantization
1 3 2 4

2 41 3
Intra-node All-to-All Communication

1 3 2 4

2 41 3
Dequantization

Intra-node Reduction2 41 3 2 41 3
Quantization

Inter-node All-to-All Communication
2

4

1

32

4

1

3

Dequantization
Inter-node Reduction4321

Chunk 1

Chunk 2
Fused kernels

Reduce up to 80% gradient comm. time
with only 128 GPUs

End-to-end Evaluation

• ZeRO++ on different number of GPUs
• ZeRO++ improves throughput on different

scalability levels
• 100Gbps: 121% - 140% speedup
• 800Gbps: 8% - 30% speedup

• ZeRO++ on different sizes of models
• ZeRO++ shows consistent speedup regardless of

model size
• 100Gbps: over 100% speedup
• 800Gbps: up to 30% speedup
• 10Gbps: up to 300% speedup

36

End-to-end Evaluation (Cont.)

• ZeRO++ democratizes large scale training
• ZeRO++ can achieve the same or better

throughput with only ¼ of bandwidth
• Confirms our 4x communication reduction

• Ablation study of individual optimizations
• ZeRO++ achieves a good composition of

individual optimizations

37

Summary of ZeRO++

• 3 novel communication optimizations on top of ZeRO
• Reduce communication volume from 3M to 0.75M

• End-to-end evaluations show 50%-140% speedup on various test scenarios

• Open-sourced as part of DeepSpeed

• LinkedIn reports 2.4x speedup in their training stack by using ZeRO++

• Read more details in the paper: “ZeRO++: expand scalability to power bigger
models on more devices by minimizing communication cost” – ICLR ‘23

38

Classified as Microsoft Highly Confidential

Classified as Microsoft Highly Confidential

Exploring new ideas: MVAPICH +
NCCL can unlock next level of
performance!

• Impact-first mindset vs. publication-first mindset

• Build on top vs. build from scratch
• Collaborate not compete! But also, collaborate and compete!

© Copyright Microsoft Corporation. All rights reserved.

We are looking for people and organizations to support the open-source
DeepSpeed ecosystem

Make your first pull request 

https://github.com/microsoft/DeepSpeed

www.deepspeed.ai

https://github.com/microsoft/DeepSpeed
http://www.deepspeed.ai/

	DeepSpeed and Trillion-parameter LLMs: Can synergy of MPI and NCCL improve scalability and efficiency?
	DeepSpeed Training: Reshaping the LLM Training Landscape
	DeepSpeed Inference: Accelerated serving for LLMs and SLMs
	DeepSpeed OSS Impact
	DeepSpeed is simple to use and extend!
	MCR-DL�Quentin Anthony, Ammar Awan, Jeff Rasley, Yuxiong He, Aamir Shafi, Mustafa Abduljabbar, Hari Subramoni, and Dhabaleswar K. (DK) Panda - IPDPS ’23.�
	Large models need parallelism
	Communication in Deep Learning models
	Limitations of Existing Solutions
	MCR-DL Flagship Results
	DeepSpeed-Ulysses�Sam Ade Jacobs, Masahiro Tanaka, Chengming Zhang, Minjia Zhang, Reza Yazdani Aminabadi, Leon Song, Samyam Rajbhandari, Yuxiong He – ArXiV ’23, PODC ‘24�
	Motivation: Long sequence problems are all around us
	Challenges: Several Inefficiencies
	DeepSpeed-Ulysses
	DeepSpeed-Ulysses: Key Features
	DeepSpeed-Ulysses: Core Design
	Communication Volume Analysis
	Communication Volume Analysis
	Parameter Memory Optimization
	Slide Number 20
	Evaluation : Max Sequence Length
	Comparison with Existing Approach
	Ongoing and Future work
	ZeRO++�Guanhua Wang, Heyang Qin, Sam Ade Jacobs, Xiaoxia Wu, Connor Holmes, Zhewei Yao, Samyam Rajbhandari, Olatunji Ruwase, Feng Yan, Lei Yang, Yuxiong He – ICLR ‘23
	Motivation
	Communication Characterization for ZeRO
	1: Reduce forward all-gather Comm
	2: Reduce backward all-gather Comm
	3: Reduce backward reduce-scatter Comm
	Methodology Summary
	System Design for Gradients Communication
	System Design for Gradients Communication
	System Design for Gradients Communication
	System Design for Gradients Communication
	Further Optimization: kernel fusion & overlapping
	End-to-end Evaluation
	End-to-end Evaluation (Cont.)
	Summary of ZeRO++
	Exploring new ideas: MVAPICH + NCCL can unlock next level of performance!
	Slide Number 40

