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What is Machine Learning and Deep Learning?

Courtesy: https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-
deep-learning-1pcv3zeg, https://blog.dataiku.com/ai-vs.-machine-learning-vs.-deep-learning, 
https://en.wikipedia.org/wiki/Machine_learning 

• Machine Learning (ML)
– “the study of computer algorithms to improve 

automatically through experience and use of data”

• Deep Learning (DL) – a subset of ML
– Uses Deep Neural Networks (DNNs)

– Perhaps, the most revolutionary subset! 

• Based on learning data representation 

• DNN Examples: Convolutional Neural Networks, Recurrent 
Neural Networks, Hybrid Networks

• Data Scientist or Developer Perspective for using 
DNNs

1. Identify DL as solution to a problem
2. Determine Data Set
3. Select Deep Learning Algorithm to Use
4. Use a large data set to train an algorithm

https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-deep-learning-1pcv3zeg
https://hackernoon.com/difference-between-artificial-intelligence-machine-learning-and-deep-learning-1pcv3zeg
https://blog.dataiku.com/ai-vs.-machine-learning-vs.-deep-learning
https://en.wikipedia.org/wiki/Machine_learning
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History: Milestones in the Development of ML/DL
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Three Main Types of Machine Learning

Courtesy: https://bigdata-madesimple.com/machine-learning-explained-understanding-supervised-unsupervised-and-reinforcement-learning/ 

https://bigdata-madesimple.com/machine-learning-explained-understanding-supervised-unsupervised-and-reinforcement-learning/
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• Scikit-learn: 
– Supports execution via Joblib (https://joblib.readthedocs.io/en/latest/)

– Joblib supports multi-threaded and multi-process execution (on multiple 
nodes)

• XGBoost: 
– Multiple ways to run on cluster of nodes: 

• Dask (http://dask.org)

• Ray (https://ray.io/) 

• AWS YARN 

• Apache Spark (https://spark.apache.org/) using XGBoost4J-Spark

• cuML: 
– Execution is supposed on multiple nodes using Dask (http://dask.org) and 

NVIDIA’s NCCL

Support for Parallel and Distributed Execution

https://joblib.readthedocs.io/en/latest/
http://dask.org/
https://ray.io/
https://spark.apache.org/
http://dask.org/
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Parallelizing the K-means Algorithm
• Step 0: Initialize centroids

– Assign initial cluster means randomly

• Step 1: Data Division
– Distribute elements among GPUs

• Step 2: Assign elements (color)
– Assign each element to the cluster with the 

closest mean

• Step 3: Update local cluster mean
– Calculate local cluster means for all local points

• Step 4: Update global cluster mean*
– Calculate global cluster means by calling 

Allreduce()

• Step 5: Repeat steps 2-4 until convergence
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Step 5: Repeat 2-4  until convergence

Assign all local elements to the cluster with closest mean
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• The NVIDIA RAPIDS project aims to build end-to-end data science 
analytic pipelines on GPUs

• An important component is the cuML library:
– GPU-accelerated ML library

– GPU-counterpart of Scikit-learn

– Supports the execution of ML workloads on Multi-Node Multi-GPUs (MNMG) 
systems

• Most existing ML libraries, including Scikit-learn and Apache Spark’s 
MLlib, only support CPU execution of ML algorithms
– Conventional wisdom has been that only DNNs are a good match for GPUs 

because of high computational requirements

The cuML Library: Accelerating ML on GPUs
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• Main components
– Python layer

• Provides a Scikit-learn like interface

• Hides the complexities of the CUDA/C/C++ layer

– Primitives and cuML algorithms built on top of CUDA
• ML Algorithms

• Primitives
– Reusable building blocks for building machine learning 

algorithms

– Common for different machine learning algorithms

– Used to build different machine learning algorithms

– Communication Support in cuML:
• Point-to-point communication: Dask

• Collective communication: NVIDIA Collective 
Communications Library (NCCL)

Main components of the cuML library
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• Utilize MVAPICH2-GDR (with mpi4py) as communication backend during the 
training phase (the fit() function) in the Multi-node Multi-GPU (MNMG) setting 
over cluster of GPUs

• Communication primitives:
– Allreduce

– Reduce

– Broadcast

• Exploit optimized collectives

Accelerating cuML with MVAPICH2-GDR

Python

Cython

cuML Primitives

CUDA Libraries

CUDA

cuML Algorithms

CUDA/C/C++

UCX-Py

Dask

NCCL MVAPICH2-
GDR

mpi4py

UCX

MPI4cuML 0.5 release

(http://hidl.cse.ohio-state.edu)
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• cuML is a distributed machine learning training framework with a focus on GPU acceleration and distributed 
computing. MVAPICH2-GDR provides many features to augment distributed training with cuML on GPUs

• (NEW) Based on cuML 22.02.00
• Include ready-to-use examples for KMeans, Linear Regression, Nearest Neighbors, and tSVD

• (NEW) MVAPICH2 support for RAFT 22.02.00
• (NEW) Enabled cuML’s communication engine, RAFT, to use MVAPICH2-GDR backend for Python and C++ cuML applications

• KMeans, PCA, tSVD, RF, LinearModels

• Added switch between available communication backends (MVAPICH2 and NCCL)

• Built on top of mpi4py over the MVAPICH2-GDR library

• Tested with
• Mellanox InfiniBand adapters (FDR and HDR)

• (NEW) NVIDIA GPU A100, V100 and, P100

• Various x86-based multi-core platforms (AMD and Intel)

• http://hidl.cse.ohio-state.edu/ 

MPI4cuML 0.5 Release - MPI-Driven ML Training

http://hidl.cse.ohio-state.edu/
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K-Means

Nearest Neighbors Truncated SVD

M. Ghazimirsaeed , Q. Anthony , A. Shafi , H. Subramoni , and D. K. Panda, Accelerating GPU-based Machine Learning in Python 
using MPI Library: A Case Study with MVAPICH2-GDR, MLHPC Workshop, Nov 2020

1.6x

1.35x 1.38x

1.23x

MPI4cuML 0.5

Expanse GPU System

CPU Model Intel Xeon 
Gold 6248

CPU Core Info 2x20 @ 
2.5Ghz

Memory 384 GB

Interconnect Infiniband 
HDR (200 
Gbps)

OS Rocky Linux 
8.5

GPU NVIDIA V100 
(4/Node)

CUDA CUDA 11.2

Linear Regression
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• Example of a 3-layer Deep Neural Network (DNN) – (input layer is not counted) 

Understanding the Deep Neural Network Concepts

Courtesy: http://cs231n.github.io/neural-networks-1/ 

http://cs231n.github.io/neural-networks-1/
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Essential Concepts: Learning Rate (α)

Courtesy: https://www.jeremyjordan.me/nn-learning-rate/ 

https://www.jeremyjordan.me/nn-learning-rate/
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• Batched Gradient Descent

– Batch Size = N

• Stochastic Gradient Descent
– Batch Size = 1

• Mini-batch Gradient Descent
– Somewhere in the middle 

– Common:
• Batch Size = 64, 128, 256, etc.

• Finding the optimal batch 
size will yield the fastest 
learning.

Essential Concepts: Batch Size

Courtesy: https://www.jeremyjordan.me/gradient-descent/ 

N

Batch Size One full pass over N is called an epoch of training

https://www.jeremyjordan.me/gradient-descent/
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• Why do we need Parallel Training?

• Larger and Deeper models are being proposed
– Language Models: RNNs -> Transformers -> BERT – GPT – LLaMA

– Vision Models: AlexNet -> ResNet -> NASNet – AmoebaNet  Vision Transformers

– DNNs require a lot of memory and a lot of computation

– Larger models cannot fit a GPU’s memory

• Single GPU training cannot keep up with ever-larger models

• Community has moved to multi-GPU training

• Multi-GPU in one node is good but there is a limit to Scale-up (8-16 GPUs)

• Multi-node (Distributed or Parallel) Training is necessary!!

The Need for Parallel and Distributed Training
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• Some parallelization strategies..
– Data Parallelism or Model Parallelism

– Hybrid Parallelism

Parallelization Strategies

Model Parallelism

Data Parallelism
Hybrid (Model and Data) Parallelism

Courtesy: http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks 

http://engineering.skymind.io/distributed-deep-learning-part-1-an-introduction-to-distributed-training-of-neural-networks
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Data Parallelism and MPI Collectives
• Step1: Data Propagation

– Distribute the Data among GPUs

• Step2: Forward Backward Pass
– Perform forward pass and 

calculate the prediction

– Calculate Error by comparing 
prediction with actual output 

– Perform backward pass and 
calculate gradients 

• Step3: Gradient Aggregation
– Call MPI_Allreduce to reduce the 

local gradients 

– Update parameters locally using 
global gradients

Batch
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MVAPICH2 (MPI)-driven Infrastructure for ML/DL Training

MVAPICH2 or MVAPICH2-X 
for CPU Training

MVAPICH2-GDR for 
GPU Training

Horovod

TensorFlow PyTorch MXNet

ML/DL Applications

MVAPICH2 or MVAPICH2-X 
for CPU Training

MVAPICH2-GDR for 
GPU Training

Torch.distributed

PyTorch

ML/DL Applications

DeepSpeed

More details available from: http://hidl.cse.ohio-state.edu 

http://hidl.cse.ohio-state.edu/
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HiDL Software Stack Release v1.0

For more details: http://hidl.cse.ohio-state.edu/userguide/horovod/ 

• Based on Horovod
• Optimized support for MPI controller in deep learning workloads
• Efficient large-message collectives (e.g. Allreduce) on various 

CPUs and GPUs
• GPU-Direct algorithms for collective operations (including those 

commonly used for data- and model-parallelism, e.g. Allgather 
and Alltoall)

• Support for fork safety
• Exploits efficient large message collectives
• Compatible with

– Mellanox InfiniBand adapters (EDR, FDR, HDR)
– Various x86-based multi-core CPUs (AMD and Intel)
– NVIDIA A100, V100, P100, Quadro RTX 5000 GPUs
– CUDA [9.x, 10.x, 11.x] and cuDNN [7.5.x, 7.6.x, 8.0.x, 8.2.x, 8.4.x]
– AMD MI100 GPUs
– ROCm [5.1.x]

http://hidl.cse.ohio-state.edu/userguide/horovod/
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Install Horovod with MVAPICH2-X and MVAPICH2-GDR

Command to install Horovod for CPU

$ HOROVOD_WITH_MPI=1 pip install --no-cache-dir horovod

Command to install Horovod for GPU

$ HOROVOD_GPU_ALLREDUCE=MPI HOROVOD_CUDA_HOME=/opt/cuda/11.3 HOROVOD_WITH_MPI=1 pip 
install --no-cache-dir horovod
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+ python pytorch_synthetic_benchmark.py --batch-size 64 --num-iters=5
.
.
Model: resnet50
Batch size: 64
Number of GPUs: 1
Running warmup...
Running benchmark...
Iter #0: 333.9 img/sec per GPU
Iter #1: 334.2 img/sec per GPU
Iter #2: 333.9 img/sec per GPU
Iter #3: 333.8 img/sec per GPU
Iter #4: 333.9 img/sec per GPU
Img/sec per GPU: 334.0 +-0.2
-----------------------------------------
Total img/sec on 1 GPU(s): 334.0 +-0.2
-----------------------------------------

Run PyTorch on a single GPU

V100
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+ mpirun_rsh -np 2 gpu11 gpu12 MV2_USE_CUDA=1 MV2_CPU_BINDING_POLICY=hybrid 
MV2_HYBRID_BINDING_POLICY=spread MV2_USE_RDMA_CM=0 
MV2_GPUDIRECT_GDRCOPY_LIB=/opt/gdrcopy2.0/lib64/libgdrapi.so LD_PRELOAD=mv2-gdr/lib/libmpi.so 
python pytorch_synthetic_benchmark.py --batch-size 64 --num-iters=5
.
.
Model: resnet50
Batch size: 64
Number of GPUs: 2
Running warmup...
Running benchmark...
Iter #0: 317.0 img/sec per GPU
Iter #1: 314.9 img/sec per GPU
Iter #2: 315.4 img/sec per GPU
Iter #3: 318.0 img/sec per GPU
Iter #4: 316.7 img/sec per GPU
Img/sec per GPU: 316.4 +-2.2
-----------------------------------------
Total img/sec on 2 GPU(s): 632.8 +-4.3
-----------------------------------------

Run PyTorch on two nodes with 1 GPU/node (using MVAPICH2-
GDR)

V100

~1.89X on 
2 GPUs
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• Data Parallelism

• Model-Parallelism

Solutions and Case Studies: Exploiting HPC for DL

CUDA-Awareness

InfiniBand GPUCPU

Large-message 
Collectives

CNTK

Point-to-
Point

Operations

Gradient 
AggregationModel Propagation Forward

Backward

Deep Learning and Machine Learning Frameworks

LBANN FlexFlow TensorFlow PyTorch

Communication Runtimes (MPI/NCCL/Gloo/MLSL)

HPC Platforms

Major Computation and Communication Phases in DL Frameworks

Co-Design 
Opportunities
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Distributed TensorFlow on ORNL Summit (1,536 GPUs)
• ResNet-50 Training using 

TensorFlow benchmark on 
SUMMIT -- 1536 Volta 
GPUs!

• 1,281,167 (1.2 mil.) images

• Time/epoch = 3 seconds

• Total Time (90 epochs)        
= 3 x 90 = 270 seconds = 4.5 
minutes!
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Number of GPUs

MVAPICH2-GDR 2.3.4

MVAPICH2-GDR 2.3.4

Platform: The Summit Supercomputer (#2 on Top500.org) – 6 NVIDIA Volta GPUs per node connected with NVLink, CUDA 10.1

MVAPICH2-GDR reaching ~0.42 million 
images per second for ImageNet-1k!

ImageNet-1k has 1.2 million images
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Distributed TensorFlow on TACC Frontera (2048 CPU nodes)
• Scaled TensorFlow to 2048 nodes on 

Frontera using MVAPICH2 and IntelMPI

• MVAPICH2 delivers close to the ideal 
performance for DNN training

• Report a peak of 260,000 images/sec on 
2048 nodes

• On 2048 nodes, ResNet-50 can be trained 
in 7 minutes! 

A. Jain, A. A. Awan, H. Subramoni, DK Panda, “Scaling TensorFlow, PyTorch, and MXNet using MVAPICH2 for High-Performance Deep 
Learning on Frontera”, DLS ’19 (SC ’19 Workshop). 
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AccDP: Exploiting Data Parallelism

• ResNet18 training throughput comparison between 
regular training and AccDP (proposed design) for 
different DNN models on up to 8 nodes 2 GPUs per 
node (16 GPUs) with 4 MPS clients per GPU

• ShuffleNet training throughput comparison between 
regular training and AccDP (proposed design) for 
different DNN models on up to 8 nodes 2 GPUs per 
node (16 GPUs) with 4 MPS clients per GPU.

Multi node with ResNet18 Multi node with ShuffleNet

N. Alnaasan, A. Jain, A. Shafi, H. Subramoni, and DK Panda, “AccDP: Accelerated Data-Parallel Distributed DNN Training for Modern 
GPU-Based HPC Clusters”, HiPC’22. 
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• Pathology whole slide image (WSI) 
– Each WSI = 100,000 x 100,000 pixels

– Can not fit in a single GPU memory

– Tiles are extracted to make training possible

• Two main problems with tiles
– Restricted tile size because of GPU memory limitation

– Smaller tiles loose structural information

• Reduced training time significantly
– GEMS-Basic: 7.25 hours (1 node, 4 GPUs)

– GEMS-MAST: 6.28 hours (1 node, 4 GPUs)

– GEMS-MASTER: 4.21 hours (1 node, 4 GPUs)

– GEMS-Hybrid: 27 mins (32 nodes, 128 GPUs)

– Overall 15x reduction in training time!!!!

Exploiting Model Parallelism in AI-Driven Digital Pathology

Courtesy: https://blog.kitware.com/digital-slide-
archive-large-image-and-histomicstk-open-source-
informatics-tools-for-management-visualization-and-
analysis-of-digital-histopathology-data/ 

Scaling ResNet110 v2 on 1024×1024 image tiles 
using histopathology data

A. Jain, A. Awan, A. Aljuhani, J. Hashmi, Q. Anthony, H. Subramoni, D. K. Panda, R. Machiraju, and A. Parwani, “GEMS: 
GPU Enabled Memory Aware Model Parallelism System for Distributed DNN Training”, Supercomputing (SC ‘20).
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https://blog.kitware.com/digital-slide-archive-large-image-and-histomicstk-open-source-informatics-tools-for-management-visualization-and-analysis-of-digital-histopathology-data/
https://blog.kitware.com/digital-slide-archive-large-image-and-histomicstk-open-source-informatics-tools-for-management-visualization-and-analysis-of-digital-histopathology-data/
https://blog.kitware.com/digital-slide-archive-large-image-and-histomicstk-open-source-informatics-tools-for-management-visualization-and-analysis-of-digital-histopathology-data/
https://blog.kitware.com/digital-slide-archive-large-image-and-histomicstk-open-source-informatics-tools-for-management-visualization-and-analysis-of-digital-histopathology-data/
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MPI4DL v0.6
MPI4DL v0.6 is a distributed, accelerated and memory efficient training framework for very high-resolution images 
that integrates Spatial Parallelism, Bidirectional Parallelism, Layer Parallelism, and Pipeline Parallelism.

Features:
• Based on PyTorch
• Support for training very high-resolution images
• Distributed training support for:

• Support for different image sizes and custom datasets.
• Exploits collective features of MVAPICH2-GDR

• Model Parallelism
- Layer Parallelism (LP)
- Pipeline Parallelism (PP)

• Spatial Parallelism for High Resolution Images
- Spatial and Layer Parallelism (SP+LP)
- Spatial and Pipeline Parallelism (SP+PP)

• Memory Efficient Bidirectional Parallelism (GEMS)
- Bidirectional and Layer Parallelism (GEMS+LP)
- Bidirectional and Pipeline Parallelism (GEMS+PP)
- Spatial, Bidirectional and Layer Parallelism (SP+GEMS+LP)
- Spatial, Bidirectional and Pipeline Parallelism (SP+GEMS+PP)

https://github.com/OSU-Nowlab/MPI4DL
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Throughput comparison of Pipeline Parallelism and Pipeline + Spatial Parallelism techniques for AmoebaNet on 1024 * 1024 and 2048 
* 2048 image sizes.

Throughput comparison of Spatial Parallelism and Spatial + Bidirectional Parallelism  for AmoebaNet and ResNet with the following 
configurations: 5 model splits,4 spatial parts, and 2 model replicas for Bidirectional Parallelism.
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ParaInfer-X v1.0: a Temporal Fusion framework for LLM inference
ParaInfer-X is a collection of parallel inference techniques that can facilitate the deployment of emerging AI models 
on edge devices and HPC clusters. In v1.0, we proposes a temporal fusion framework, named Flover, to smartly 
batch multiple requests during LLM generation, which is also known as temporal fusion/in-flight batching.
Features:
• Based on Faster Transformer

• Support for inference of various large language models:
– GPT-J 6B, LlaMA 7B, 13B, 33B, 65B

– Support for persistent model inference stream

– Support for temporal fusion/in-flight batching of multiple requests

– Support for multiple GPU tensor parallelism

– Support for asynchronous memory reordering for evicting finished requests
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• Exponential growth in Machine Learning and Deep Learning frameworks

• Provided an overview of issues, challenges, and opportunities for 
designing efficient communication runtimes
– Efficient, scalable, and hierarchical designs are crucial for ML and DL frameworks

– Co-design of communication runtimes and ML and DL frameworks will be essential

• Presented use-cases to demonstrate the complex interaction between DL and ML 
middleware with the underling HPC technologies and middleware 

• Need collaborative efforts to achieve the full potential

Conclusion
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