
1ICICLE

Intelligent CyberInfrastructure With
Computational Learning in the

Environment (ICICLE)
Follow us
@icicleai

http://icicle.ai

Stable Top-K: Exploiting Temporal Stability of
Top-K Gradients

Zhao Zhang
Texas Advanced Computing Center

http://icicle.ai/

2ICICLE

Why Sparsity?
• Communication latency scales with the size of gradient
• Size of the gradient scales with the size of the model parameters
• Specifically,

• Large scale training require fp32 gradients, e.g., LARS and LAMB.
• Assuming fp32 gradients, the following models must communicate (every

iteration):
– BERT-Large: (4 bytes/param) * (345M params) = 1.28 GB
– GPT-NeoX 20B: (4 bytes/param) * (20B params) = 74 GB
– GPT-3 175B: (4 bytes/param) * (175B params) = 652 GB

3ICICLE

Why Sparsity?

• Communicating gradients requires expensive networking and bottlenecks training

• However, gradient values are noisy, and most values are near zero

SGD gradient distributions from: https://arxiv.org/pdf/1911.08772.pdf

• Only the gradients with large
magnitudes matter for training
convergence

• How many gradient values can be
removed before convergence is
affected? 90%, 99%, 99.9%?

4ICICLE

What is Sparsity?
• Reduces communication volume by only propagating some gradient elements

• Compressor function Compk (e.g. TopK or RandK) keeps only k gradient elements, and sums
+ stores the remaining values as a ‘residual’ (ε) for the next iteration

Standard SGD:

Sparse SGD:

5ICICLE

Topk Sparsity

• The Topk compressor function selects the top k largest elements
(in terms of magnitudes) of the gradient and accumulates for all
other elements.
• Topk has commonly been implemented at the Python layer

(except for SparCML), and has been added to native PyTorch
• Convergence has been proven and demonstrated for many

model types, but requires careful hyperparameter tuning

6ICICLE

Topk Sparsity

• In dense data-parallel training,
the full gradients are averaged
across all workers via an
AllReduce operation

• TopK sparsity works by applying
a sparsificiation GPU kernel on
each worker, then
communicating the positions
and topk values via a
Sparse_AllReduce operation

7ICICLE

Previous SOTA: Deep Gradient Compression
• Attempts to resolve the hyperparameter tuning problem by:

• Topk sparsification of gradients
• Modify the optimizer and gradient update rules to correct sparsity’s

convergence effects. Use this to push sparsity to 99.9%

• DGC doesn’t help much when
interconnect is fast
• High GPU cost in selecting

gradients
• DGC is not scalable

8ICICLE

Current SOTA: OkTopk Sparsity

• Sparsification overhead scales with number of processes P
• (Cost of sending message of size L) = α + βL
• Where (α = Latency) and (β = Bandwidth)

• Dense: Standard Allreduce

• TopkA: Allgather + local sparse reduction

• TopkDSA: SparCML’s sparse reduce-scatter + allgather

• gTopk: reduction tree + broadcast tree

• Gaussiank: Same as TopkA with gaussian fitting

• Ok-Topk: Split buffers via isend/irecv, sparse reduction,
allgatherv

Secondary result: BERT Gradients are also sparse

9ICICLE

Shortcomings of Current SOTA

• While OkTopk is scalable, it hurts convergence.

• Language models have two measures of accuracy:
• Training (perplexity) loss: Accuracy while the model is training on general language data
• Downstream evaluations: Effectiveness on the model on specific tasks (e.g. Q&A)

• While the OkTopk paper demonstrated reasonable training loss, our experiments show poor
downstream evaluation accuracy

• We seek to find a gradient sparsity scheme that’s scalable and preserves downstream task
accuracy

Model SQuAD GLUE
BERT-Large
(Baseline)

90.40 0.802

BERT-Large
(OkTopK)

88.10 0.770

10ICICLE

Stable TopK

• We hypothesize that gradient elements are
temporally stable, since:
• Pre-training should lead to the creation

of circuits that are comprised of nearby
neurons

• Such circuits should gradually adapt over
many training iterations

• We find this hypothesis to be true for CNNs
(ResNet-50) and transformers (BERT-Large,
OpenFold, and ViT)

11ICICLE

Stable TopK
• While regions are stable, individual gradient positions are not (see figures below for BERT)

• Such behavior necessitates the use of a “TopK bucket” instead of specific elements

• These insights introduces the key idea of our work: Instead of communicating the exact TopK
elements every iteration, only communicate TopK buckets every N iterations

Bucketed Indices Individual Indices

12ICICLE

Stable TopK
• Same insights hold for masked autoencoder (MAE) vision models (see below)

Bucketed Indices Individual Indices

13ICICLE

Stable TopK

• In Stable TopK, the
sparsification kernel is only
applied every N iterations

• Communicate buckets of
indices and their values
instead of specific indices

• For all other iterations,
simply apply the bucketed
mask from the last
recomputation

14ICICLE

Stable TopK

• By varying the S-TopK bucket size and sample
frequency, we gain some valuable insights into the
stable scheme

• If S-TopK bucket size is too small, the model quickly
diverges because individual positions are not stable

• If S-TopK sample frequency is too high, the stable
region may decay before the S-TopK bucket indices
are updated

• If the bucket size and sample frequencies are chosen
correctly, S-TopK nearly matches baseline loss

15ICICLE

Stable TopK

• For both BERT (top) and MAE
(bottom), stable TopK trains in
the shortest time

• Again, new hyperparameters
must be tuned to achieve
convergence

• Higher values of N and lower
values of B lead to lower
sparsification and
communication overheads,
respectively

16ICICLE

Stable TopK

• Since S-TopK doesn’t compute the TopK indices every iteration, its throughput is higher
than OkTopK

• In addition to maintaining a lower training loss than OkTopK, S-TopK preserves
downstream evaluation performance

BERT-Large SQuAD GLUE Time (hrs)

Baseline 90.4 0.802 84.3

Ok-TopK 88.10 0.770 52.4

S-TopK 89.96 0.802 41.8

MAE ImageNet Time (hrs)

Baseline 84.1% 20.3

Ok-TopK 81.3% 13.3

S-TopK 83.8% 11.0

17ICICLE

Gradient Sparsification Summary and Future Work

• It’s challenging to ensure convergence for existing methods (e.g. OkTopK)

• Gradient indices are not stable over time, but regions of gradient elements are
stable

• Stable TopK exploits this property by communicating sparse gradient regions
periodically

• Stable TopK converges much closer to baseline than competing sparse methods
in less time for both BERT and MAE

• Continuing on convergence

18ICICLE

Thank you
zzhang@tacc.utexas.edu
zhao.zhang@rutgers.edu

mailto:zzhang@tacc.utexas.edu
mailto:zhao.zhang@rutgers.edu

