

Intelligent CyberInfrastructure With Computational Learning in the Environment (ICICLE)

Stable Top-K: Exploiting Temporal Stability of Top-K Gradients

Zhao Zhang Texas Advanced Computing Center

http://icicle.ai

Why Sparsity?

- Communication latency scales with the size of gradient
- Size of the gradient scales with the size of the model parameters
- Specifically, In fp32, $memory_{gradients} = (4 \text{ bytes/param}) \cdot (\#params)$ • In fp16, $memory_{gradients} = (2 \text{ bytes/param}) \cdot (\#params)$
- Large scale training require fp32 gradients, e.g., LARS and LAMB.
- Assuming fp32 gradients, the following models must communicate (every iteration):
 - BERT-Large: (4 bytes/param) * (345M params) = 1.28 GB
 - GPT-NeoX 20B: (4 bytes/param) * (20B params) = 74 GB
 - GPT-3 175B: (4 bytes/param) * (175B params) = 652 GB

Why Sparsity?

- Communicating gradients requires expensive networking and bottlenecks training
- However, gradient values are noisy, and most values are near zero
- Only the gradients with large magnitudes matter for training convergence
- How many gradient values can be removed before convergence is affected? 90%, 99%, 99.9%?

SGD gradient distributions from: https://arxiv.org/pdf/1911.08772.pdf

What is Sparsity?

- Reduces communication volume by only propagating some gradient elements
- Compressor function Comp_k (e.g. Top_K or Rand_K) keeps only k gradient elements, and sums
 + stores the remaining values as a 'residual' (ε) for the next iteration

Top_k Sparsity

- The Top_k compressor function selects the top k largest elements (in terms of magnitudes) of the gradient and accumulates for all other elements.
- Top_k has commonly been implemented at the Python layer (except for SparCML), and has been added to native PyTorch
- Convergence has been proven and demonstrated for many model types, but requires careful hyperparameter tuning

Top_k Sparsity

- In dense data-parallel training, the full gradients are averaged across all workers via an AllReduce operation
- TopK sparsity works by applying a sparsificiation GPU kernel on each worker, then communicating the positions and topk values via a Sparse_AllReduce operation

Previous SOTA: Deep Gradient Compression

- Attempts to resolve the hyperparameter tuning problem by:
 - Topk sparsification of gradients
 - Modify the optimizer and gradient update rules to correct sparsity's convergence effects. Use this to push sparsity to 99.9%

- DGC doesn't help much when interconnect is fast
 - High GPU cost in selecting gradients
 - DGC is not scalable

Training Speedup on GPU cluster with 1Gbps Ethernet Training Speedup on GPU cluster with 10Gbps Ethernet

32

Current SOTA: OkTop_k Sparsity

- Sparsification overhead scales with number of processes P
 - (Cost of sending message of size L) = α + β L
 - Where (α = Latency) and (β = Bandwidth)
- **Dense**: Standard Allreduce
- **TopkA**: Allgather + local sparse reduction
- TopkDSA: SparCML's sparse reduce-scatter + allgather
- gTopk: reduction tree + broadcast tree
- Gaussiank: Same as TopkA with gaussian fitting
- Ok-Topk: Split buffers via isend/irecv, sparse reduction, allgatherv

Table 1. Communication overhead of dense and sparse all duces (*n* is the number of gradient components and $n \gg k$)

Algorithms	Bandwidth	Latency	
Dense [12]	$2n\frac{P-1}{P}\beta$	$2(\log P)\alpha$	
TopkA [36, 47]	$2k(P-1)\beta$	$(\log P)\alpha$	
TopkDSA [36]	$\left[4k\frac{P-1}{P}\beta,(2k+n)\frac{P-1}{P}\beta\right]^{1}$	$(P + 2 \log P) \alpha$	
gTopk [42]	$4k(\log P)\beta$	$2(\log P)\alpha$	
Gaussiank [41]	$2k(P-1)\beta$	$2(\log P)\alpha$	
Ok-Topk	$[2krac{P-1}{P}eta, 6krac{P-1}{P}eta]^1$	$(2P+2\log P)\alpha$	

Secondary result: BERT Gradients are also sparse -

Shortcomings of Current SOTA

- While OkTopk is scalable, it hurts convergence.
- Language models have two measures of accuracy:
 - Training (perplexity) loss: Accuracy while the model is training on general language data
 - **Downstream evaluations:** Effectiveness on the model on specific tasks (e.g. Q&A)
- While the OkTopk paper demonstrated reasonable training loss, our experiments show poor downstream evaluation accuracy

Model	SQuAD	GLUE
BERT-Large (Baseline)	90.40	0.802
BERT-Large (OkTopK)	88.10	0.770

• We seek to find a gradient sparsity scheme that's scalable and preserves downstream task accuracy

- We hypothesize that gradient elements are temporally stable, since:
 - Pre-training should lead to the creation of circuits that are comprised of nearby neurons
 - Such circuits should gradually adapt over many training iterations
- We find this hypothesis to be true for CNNs (ResNet-50) and transformers (BERT-Large, OpenFold, and ViT)

module.bert.encoder.layer.1.attention.self.key.weight(Bucket Size: 10000)

5 -

- While regions are stable, individual gradient positions are not (see figures below for **BERT**)
- Such behavior necessitates the use of a "TopK bucket" instead of specific elements
- These insights introduces the key idea of our work: Instead of communicating the exact TopK elements every iteration, only communicate TopK buckets every N iterations

Bucketed Indices

module.bert.encoder.layer.14.attention.self.query.weight(Bucket Size: 1)

Same insights hold for masked autoencoder (MAE) vision models (see below)

Bucketed Indices

TopK Gradient Distribution for blocks.4.attn.proj (1048576) 1.0 0.8 0.6 Indices 0.4 0.2 0.0 100 200 300 400 500 Steps (x10²)

Individual Indices

- In Stable TopK, the sparsification kernel is only applied every N iterations
- Communicate buckets of indices and their values instead of specific indices
- For all other iterations, simply apply the bucketed mask from the last recomputation

- By varying the S-TopK bucket size and sample frequency, we gain some valuable insights into the stable scheme
- If S-TopK bucket size is too small, the model quickly diverges because individual positions are not stable
- If S-TopK sample frequency is too high, the stable region may decay before the S-TopK bucket indices are updated
- If the bucket size and sample frequencies are chosen correctly, S-TopK nearly matches baseline loss

- For both BERT (top) and MAE (bottom), stable TopK trains in the shortest time
- Again, new hyperparameters must be tuned to achieve convergence
- Higher values of N and lower values of B lead to lower sparsification and communication overheads, respectively

- Since S-TopK doesn't compute the TopK indices every iteration, its throughput is higher than OkTopK
- In addition to maintaining a lower training loss than OkTopK, S-TopK preserves downstream evaluation performance

BERT-Large	SQuAD	GLUE	Time (hrs)	MAE	ImageNet	Time (hrs)
Baseline	90.4	0.802	84.3	Baseline	84.1%	20.3
Ok-TopK	88.10	0.770	52.4	Ok-TopK	81.3%	13.3
S-TopK	89.96	0.802	41.8	S-TopK	83.8%	11.0

Gradient Sparsification Summary and Future Work

- It's challenging to ensure convergence for existing methods (e.g. OkTopK)
- Gradient indices are not stable over time, but regions of gradient elements are stable
- Stable TopK exploits this property by communicating sparse gradient regions periodically
- Stable TopK converges much closer to baseline than competing sparse methods in less time for both BERT and MAE
- Continuing on convergence

Thank you

zzhang@tacc.utexas.edu zhao.zhang@rutgers.edu