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BACKGROUND & MOTIVATION
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I/O Models

• Synchronous blocking I/O
– Application blocks until the I/O system call is complete

• Synchronous nonblocking I/O
– I/O command may not be satisfied immediately, requiring 

that the application makes calls to await completion
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I/O Models

• Asynchronous blocking I/O
– Application interrogates the readiness of multiple 

descriptors by using select/poll before I/O calls

• Asynchronous nonblocking I/O
– Application can perform other processing while the 

background I/O operation completes
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Data Copies in MPI

• Shared memory channel
– Moves messages from source to destination 

via a shared memory region

– Small messages based on eager protocol

• Memory mapping channel
– Directly moves messages from source to 

destination without intermediate copies by 
means of a kernel level support

– Large messages based on rendezvous 
protocol

– CMA, LiMIC2, XPMEM, …
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CPU-based Data Movement

• Data copy operations in intra-node 
communications are performed by CPU
– CPU resources are wasted for communication

– CPU-based copying hinders overlapping of computation 
and communication
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Our Goal #1

• Introducing asynchronism to data copy 
– Overlapping between computation and communication

– Copy engine (CE)-based data movement
• Asynchronous nonblocking data copy
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Event Processing in MPI

• One-to-one mapping between processes and CPU cores
– In HPC systems, the runtime solely dedicates a CPU core to 

each parallel process

– Parallel programming libraries are optimized on the assumption 
that a parallel process occupies an entire CPU core

• MPI progress engine
– Performs busy-waiting to check the completion of outstanding 

communications
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Busy-Waiting-based Event Processing

• The longer the busy-waiting time, 
the higher the energy consumption
– Nonuniformity of network latency

– Asynchronous semantics in APIs

– Load imbalance
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Our Goal #2

• Introducing asynchronism to progress engine
– Energy efficiency

– Blocking-based event processing
• Asynchronous blocking progress engine
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Copy Engines

• A special-purpose processor that can independently 
access memory and copy data
– Does not cause cache pollution compared to the CPU-based 

memory copy

– Examples

• Intel Xeon (I/O Acceleration Technology)

• AMD EPYC

• We can offload copy operations performed by CPU 
onto the copy engine
– Can save CPU resources

– Can improve overlapping of computation and communication
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Related Work

• Exploiting I/OAT

– [IPDPS07, Cluster07, ICPP09]

– Additional process/thread that takes full charge of 
managing the copy engine for intra-node data 
movements and monopolizes a CPU core

• No support for collective communication
– Only for point-to-point communication or one-sided 

communication
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Asynchronous Nonblocking Data Copy 

• We aim at exploiting copy engines for intra-node 
MPI blocking collective communications
– MPI_Bcast

– MPI_Gather

• Asynchronous nonblocking data copy 
– CE-based approach

– CE-CPU Hybrid approach

– Enhancement of CPU-based approach
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Synchronous Blocking Semantics
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• Traditional collective interfaces
– Do not return its control to user application until the collective 

communication is completed

– Progress engine performs busy waiting to poll the completion 
or data copying to move data

– No overlapping between computation and communication

• Our collective interfaces
– Return asynchronously though the collective communication is 

not completed

– Application can perform computation while the collective 
communication is in progress (by the copy engine)

– Reserve synchronous blocking semantics by utilizing the 
memory protection mechanism (segmentation fault)



Core-to-Channel Mapping

• There can be multiple copy engines in the same 
node, and each copy engine provides several 
channels
– Our experimental system

• Two copy engines, each of which provides eight channels

• The copy engine processes requests in channels in a round-robin 
fashion

• Core-to-channel mapping
– In a round-robin manner for each NUMA node
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Copy Engine (CE)-based Approach
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• Step 1
– Communication buffers are locked, and 

their descriptors (physical addresses of 
page frames and length) are sent to 
leaf processes

• Step 2
– Leaf processes insert requests to channel 

• Step 3
– Copy engines move messages



CE-CPU Hybrid Approach

• Hybrid approach
– Uses CPU to move data when lowering the overhead is 

more important than overlapping

– Segmentation fault handler switches the copy device 
from copy engine to CPU

– Virtual queues
• We can neither preempt nor cancel the DMA request already 

submitted to a channel

• Provide a mechanism that switches from the CE mode to the CPU 
mode in the middle of data movements

– A DMA request for a collective communication is fragmented into 
several requests, each of which include vectors for only n pages

– A callback function invoked whenever a fragmented request is 
completed moves fragmented requests in virtual queues to channels
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Enhancement of CPU-based approach
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• Existing design
– Both memory mapping and copy operations are done 

on the receiver side

• New design
– Segregates memory mapping and copy operations

– The root process performs memory mapping, and the 
leaf processes perform data copy



Performance Measurements

• Experiment system
– NUMA-based multi-core system

• Two Intel Xeon 3.10 GHz 10-core Haswell processors 

• DDR4 128 GB memory

• Crystal Beach DMA v3.2 copy engine

– Linux kernel version 5.3.7 

– Intel QuickData Technology Driver 5.00

• Comparisons
– Default approach (MVAPICH2 version 2.3.7)

– Enhanced CPU-based approach (MVAPICH2 version 2.3)

– CE-CPU hybrid approach (MVAPICH2 version 2.3)
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OSU Micro-Benchmark

• MPI_Bcast
– Enhanced CPU-based approach outperforms the existing 

CPU-based approach and reduces the latency of 
MPI_Bcast up to 67%
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OSU Micro-Benchmark

• MPI_Gather
– Enhanced CPU-based approach reduces the latency of 

MPI_Gather up to 85%
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Overlapping with Computation

• MPI_Bcast
– The enhanced CPU-based approach and the CE-CPU 

hybrid approach could reduce the overall execution time 
up to 45% and 58%, respectively

– 20-process case with 4, 8, and 16 MB messages
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Overlapping with Computation
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• MPI_Gather
– The enhanced CPU-based approach and the CE-CPU 

hybrid approach could reduce the execution time up to 
63% and 65%, respectively

– 20-process case with 4, 8, and 16 MB messages
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CPU Power Management States

• Dynamic Voltage and Frequency Scaling (DVFS)
– Provides different levels of voltage and frequency for 

operating processors

– P-states (ACPI)
• P0: Maximum power and frequency

• Pn: Less than P(n–1) voltage and frequency scaled

• Core-Idling
– Turns off hardware components of idle cores

– C-states (ACPI)
• C0: Active

• C1: Halt

• C2: Stop-clock

• C3: Sleep
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Related Work

• Decision policies
– EAM [SC’15] 

• Estimates the duration of MPI and communication phases based on 
temporal execution patterns

• Interrupt-based core-idling

– COUNTDOWN [ToC 2021]
• Intercepts MPI calls and uses a time-out strategy for DVFS

• Countdown Slack [TPDS 2020]

– EAR/EARL [Cluster 2020]
• Detects iterative regions and maintains application signatures by 

intercepting MPI calls 

• Decides the CPU frequency based on an energy model

• No support for core-idling on intra-node 
communication channels
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Asynchronous Blocking Progress Engine

• We aim to provide a framework that efficiently 
supports core-idling over multiple MPI 
communication channels
– Intra-node communication channels

• Shared memory

• Memory mapping

• Asynchronous Blocking Progress Engine
– Framework for energy-efficient MPI

– Asynchronous blocking intra-node communication

– Integration with blocking inter-node communication
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Framework for Energy Efficient MPI

• Interfaces
– APIs

• MPI_Energy_handler_reg()

– int *(enter_function) (MPI_Energy_Info*)

• MPI_Energy_handler_dereg()

• Application can change the policy at runtime

– Hooking of MPI calls
• MPI_Init() and MPI_Finalize()

• No application-level modification is required 
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Framework for Energy Efficient MPI

• Internal runtime information
– Ranks

– Communication channel

– Message size

– Number of busy-waiting iterations

– Current busy-waiting time

– Last busy-waiting time

– …
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Signal-based Blocking Communication

• CPU dependent implementation
– Assembly instructions (e.g., mwait)

• CPU independent implementation
– Timers: only for coarse-grained controls

– Semaphores: deadlock-prone

– Signals: lossy
• Easy to support callback functions

• Flexible enough to support the inter-node communication 
channel

• Able to leverage existing decision policies used in DVFS and 
core-idling approaches
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Signaling Points

• Shared memory channel
– When a shared buffer becomes available

– When a new message is arrived
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Signaling Points

• Memory mapping channel
– When a control message of rendezvous protocol arrives
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Integration with Blocking Inter-Node 

Communication

• Blocking inter-node communication
– MV2_USE_BLOCKING

• epoll-based integration

– File descriptors
• Signal for 

intra-node 
communication

• Completion channel for
inter-node 
communication
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Performance Measurements

• Experiment system
– Two ARM-based multi-core systems

• Ampere eMAG 8180 (ARMv8) 3 GHz 32-core processor

• DDR4 250 GB memory

– NVIDIA ConnectX-5 InfiniBand adapter

– Linux kernel version 5.4.0-156-generic 

– Wattman HPM-100A power meter

• Comparisons
– Default blocking mode 

• MVAPICH2 version 2.3.7 with MV2_USE_BLOCKING

– Our energy efficient framework
• MVAPICH2 version 2.3.1
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OSU Micro-Benchmark

• MPI_Alltoall
– Execution time: 43.4% reduction (1 MB)

– Energy consumption: 41.8% saving (1 MB)
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OSU Micro-Benchmarks

• MPI_Allreduce
– Execution time: 28.1% reduction (128 KB)

– Energy consumption: 28.9% saving (128 KB)
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NAS Parallel Benchmarks

• Class C
– Execution time: 16.5% reduction (CG)

– Energy consumption: 14.9% saving (CG)
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CONCLUDING REMARK
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Conclusions

• Asynchronous nonblocking data copy
– A scheme to exploit multiple copy engines and CPUs for intra-

node MPI collective communications

– J.-Y. Cho, P.-R. Seo, and H.-W. Jin, “Exploiting Copy Engines for 
Intra-Node MPI Collective Communication,” The Journal of 
Supercomputing, May 2023

• Asynchronous blocking progress engine
– A framework for better supports for energy-aware decision 

policies over multiple MPI communication channels

– K.-W. Kim, H.-W. Jin, and E.-K. Byun, “Core-idling on MPI Intra-
node Communication Channels for Energy Efficiency,” SC’21, 
Poster, November 2021
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Future Work

• Asynchronous nonblocking data copy
– Other collective calls

• Blocking and nonblocking collective communications

– Integration with inter-node communication

– Measurement with real applications

• Asynchronous blocking progress engine
– Various policies

– Measurement with real applications
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