MP]
Application Binary Interface (ABI)
Standardization

Jeff Hammond
Principal Software Architect, NVIDIA

Co-chair, MP| Forum ABI WG
|eff.science@gmail.com

mailto:jeff.science@gmail.com

What problem are we solving?

Break the dependency between how you build your MPI libraries and applications
and how you run them.

If you build with Open MPI 3.x, you need to run with Open MPI 3.x.

If you build with MVAPICH, you need to run with MVAPICH...

...or another MPICH-based implementation. Why does this work?

It's not just you who is building MPI software: package managers, Spack and ISVs
ship binaries.

API| versus ABI

API

int MP1_Bcast(void * buffer, int count, MPI_Datatype d, int root, MPl_Comm c);
MPI_Datatype and MPI_Comm are unspecified types

ABI

typedef struct ompi_datatype_t * MPI| Datatype; // Open MPI family

typedef int MPI_Datatype; // MPICH family

Lots of other stuff like SO names, SO versioning, calling convention, etc.

MPI ABI Status Quo

MPI is an API standard, which defines the source code behavior in C (C++) and
Fortran. The compiled representation of MPI features is implementation-defined.

If you compile with one of the following MPI families, you MUST run with the same.

1. MPICH / Intel MP1 / MVAPICH / Cray MPI
2. Open MPI1/ NVIDIA HPC-X / Amazon MPI / IBM Spectrum MPI

Family 1 exists because there was a demand for interoperability with Intel MPI due
to the prevalence of usage in ISV codes.

Family 2 is not guaranteed to be consistent, especially across major versions.

1 = https://www.mpich.org/abi/

https://www.mpich.org/abi/

Why?

Modern software use cases:

Third-party language support, e.g. Python, Julia, Rust, etc.
Package distribution, e.g. Spack, Apt, etc.

Tools become implementation-agnostic

Containers

More efficient testing (build only once)

We can:

e Architectural reasons not to are gone
e Two platform ABIs cover >90% of HPC platforms

MPI Application Binary Interface Standardization

Jeff R. Hammond
NVIDIA Helsinki Oy
Helsinki, Finland

NVHPC SDK, Fortran

Marc Pérache
CEA, DAM, DIF
Arpajon, France
| wi4mpi, containers, MPC |

Gonzalo Brito Gadeschi
NVIDIA GmbH
Munich, Germany
| Rust, containers |

A preprint will be on arXiv tomorrow.

Lisandro Dalcin

Extreme Computing Research Center

KAUST
Thuwal, Saudi Arabia

dalc Python |-com

Jean-Baptiste Besnard
ParaTools
Bruyeéres-le-Chatel, France

jbbes TAU, E4S |sfr

Joseph Schuchart
University of Tennessee, Knoxville
Knoxville, Tennessee, USA
scd Open MPI fu

Hui Zhou
Argonne National Laboratory
Lemont, Illinois, USA
zh¢ MPICH [ov

Erik Schnetter
Perimeter Institute for Theoretical
Physics
Waterloo, Ontario, Canada
escl Julia, MPIltrampoline (e.ca

Jed Brown
University of Colorado Boulder
Boulder, Colorado, USA
j¢ PETSc, Rust §

-

Simon Byrne

California Institute of Technology
Pasadena, California, USA
simonby1 Julia tech.edu

This link will work in the near future:
https://doi.org/10.1145/3615318.3615319

https://doi.org/10.1145/3615318.3615319

Disclaimer

e Many of the design decisions have been debated extensively and reflect very
strong consensus among MPI| Forum members.

e Some of the design decisions are still being debated extensively and
consensus among MPI| Forum members has not been achieved.

e The ABI proposal will be read for the first time September and may change
significantly before it is ratified.

This is not a tutorial. You can’t rely on any of this until MPI 4.2 is published.

MPI 4.2 ABI Design

e MPI integer types
o Only standardize 32/64-bit platforms for now
o MPI_Aintis intptr_t because that satisfies all of the requirements
o MPI_Offset is int64_t because that will be sufficient for ~30 years
o MPI_Countis int64 t

e Handles are defined like Open MPI (type-safety) but with compile-time constant
handles like MPICH (OS portability)

e Constants use a Huffman code with information encoded in values like MPICH

o 0is never a legal handle (detect uninitialized)
o Fixed-size types have size encoded in constant value

e Integer constants are globally unique to allow nice error messages

MPI| ABI Packaging

e The header is abi/mpi.h

(@)

(@)

(@)

#include <mpi.h> still works - no code changes required to adopt ABI
#include <abi/mpi.h> allows users to force the use the standard ABI
The Forum may distribute a standard header for convenience

e The library is libmpi_abi.so

(@)

(@)

Implementations are instructed to use platform-specific SO versioning conventions
The Forum may distribute a standard SO for convenience

e The ABl is versioned independently from the API

(@)

(@)
(@)
(@)

ABI starts with 1.0

Backwards-compatible changes (e.g. new handle type) increment the minor version
Backwards-incompatible changes increment the major version
Adding a new function to the API does not change the ABI

MPI 4.2 ABI Design - Fortran

Fortran isn’t tied to platform ABI like C

Integer constants are required to match C

Trivial conversions for predefined handles, like MPICH

Simple lookup overhead for other handles, like Open MPI

Sentinels aren’t part of the ABI

MPI_<Handle> {f2c,c2f} and MPI_Status_{f2c,c2f} depend on MPI_Fint, which
will be defined to be C int in order to have a fixed ABI; if INTEGER doesn’t
match C int because of compiler options, users have to deal with that.

Implementing the standard ABI

1. Standalone: dlopen MPI, dlsym everything, translate everything at runtime.
o widmpi (CEA)
o MPItrampoline (Erik Schnetter)
o Mukautuva (me)

2. Integrated: the MPI library implements the ABI in a separate header+library

and does all the conversions to the existing ABI internally.
o MPICH has done this already

3. Native: the MPI library implements the ABI throughput.

MPI Messages/second
Intel MPI 2021.9.0 4658939.64
+ Mukautuva 4606473.95
MPICH dev UCX [1] 13643117.42
+ Mukautuva 12278837.03
MPICH dev UCX ABI [2] 13643378.98

1. --enable-error-checking=no --enable-fast=0s --enable-g=none --with-device=ch4:ucx
2. Same as 1 plus --enable-mpi-abi

https://qithub.com/jeffhammond/mukautuva

https://github.com/jeffhammond/mukautuva

When?

Targeting MPI 4.2 as a single-feature ABI-only release (early 20247).
Mukautuva, widmpi, and MPIltrampoline can support this immediately.
MPICH has a prototype already.

Open MPI has not implemented this but they say it's easy.

Diffusion: upstream -> release -> packaging, etc.

FAQ

e Launchers are not part of the ABI. There are at least two options:

o Slurm and PBS launchers are supported by all the major MPls already.
o mpirun can set the shared library to use, in which case the launcher and library will match.

e \Wrapper scripts (e.g. mpicc) are not standard but the ecosystem will probably
have “mpicc_abi” or “mpicc -abi”.
e MPICH and Open MPI will continue to support their existing ABIs.

The End

