

High Performance MPI over Slingshot

8/23/2022

Network-based Computing Laboratory

Department of Computer Science and Engineering

The Ohio State University

MUG 2022

Kawthar Shafie Khorassani

shafiekhorassani.1@osu.edu

Introduction

- Frontier at OLCF (#1 Supercomputer on Top500 System) deployed with Slingshot-11 networking across nodes
- MPI-level communication and performance on upcoming networking for exascale systems (i.e. Frontier & El-Capitan)
- **#1 Supercomputers Top500 Over Time ...**

Sunway TaihuLight ('16-'17)

Frontier ('22)

Top500 Supercomputers Interconnect Statistics

Interconnect System Share

Interconnect Family System Share

Reference: <u>https://www.top500.org</u>

Background

- Many Supercomputers deployed with Mellanox Infiniband Interconnect technology
- MPI Libraries have been optimized over the years to expand on Mellanox Infiniband features and support
- Underlying interconnect technology critical for achieving low latency and high throughput at scale on next-generation exascale systems

Drive future research and innovations to provide scalable and competitive options in this Slingshot ecosystem.

Slingshot Interconnect

High-performance network designed by HPE Cray for upcoming exascale-era

systems

- Based on Ethernet
- Adaptive Routing
- Congestion Control
- Isolated Workloads

Empowering the #1 Supercomputer --- Frontier

- Deployed as the interconnect for inter-node communication
- Expected to be deployed on upcoming supercomputers --> El-Capitan at LLNL, Aurora at Argonne

Limitations of State-of-the-art Approaches for Communication

Current accessibility and deployment on early access Slingshot systems:

- Ecosystem with Slingshot-10 interconnection amongst nodes
- Slingshot-10 running over a Slingshot Network with a Mellanox Infiniband adapter
- Future accessibility and deployment on upcoming Slingshot systems (i.e. El-Capitan and Frontier):
 - Slingshot-11
 - Deployed over a slingshot fabric and adapter

This second-generation deployment introduces additional challenges for communication libraries to develop functionality over the underlying adapter and fabrics.

Experimental Setup

System & Software Details

Spock Compute Node

Reference: https://docs.olcf.ornl.gov/systems/spock_quick_start_guide.html

Frontier Compute Node

- 1 HPC and AI Optimized 3rd Gen AMD EPYC CPU
- 4 Purpose Built AMD Instinct 250X GPUs
- **CPU-GPU Interconnect:** AMD Infinity Fabric
- **System Interconnect:** Multiple Slingshot NICs providing 100 GB/s network bandwidth.
 - Slingshot network which provides adaptive routing, congestion management and quality of service.

Software Details

MPI & Communication Libraries

- CrayMPICH 8.1.14
 - https://docs.nersc.gov/development/programming-models/mpi/cray-mpich/
- MVAPICH2-GDR 2.3.7 & MVAPICH2-X 2.3 & MVAPICH2-3.0a
 - https://mvapich.cse.ohio-state.edu
- OpenMPI 4.1.4 + UCX 1.12.1
 - https://www.open-mpi.org
- RCCL 5.0.2
 - <u>https://github.com/ROCmSoftwarePlatform/rccl</u>
- OSU Microbenchmarks 5.9
 - https://mvapich.cse.ohio-state.edu/benchmarks/

ROCm version 5.0.2

Experiment Details

CrayMPICH 8.1.14

- Module load cray-mpich/8.1.14
- Module load craype-accel-amd-gfx908
- Run: MPICH_GPU_SUPPORT_ENABLED=1

MVAPICH2-3.0a

Configure: --with-device=ch4:ofi --with-libfabric=<path-to-libfabric>

MVAPICH2-GDR 2.3.7

- Run: MV2_USE_ROCM=1

OpenMPI 4.1.4 + UCX 1.12.1

- Compile UCX: --with-rocm=<path-to-rocm> --without-knem –without-cuda --enable-optimizations
- Compile OpenMPI: --with-ucx=<path-to-ucx> --without-verbs
- Run: -x UCX_RNDV_THRESH=128

RCCL 5.0.2

Compile: CXX=<path-to-rocm>/bin/hipcc

Performance Evaluation

CPU

Point-to-Point Performance - Intra-Node CPU

Peak Bandwidth:

- MVAPICH2-X **39.2 GB/s**
- OpenMPI+UCX 38.2GB/s
- CrayMPICH 42 GB/s

Latency at 4 Bytes:

- MVAPICH2-X 0.22 us
- OpenMPI+UCX 0.31 us
- CrayMPICH 0.27 us

AMD Epyc Rome CPUs on Spock System

Reference: High Performance MPI over the Slingshot Interconnect: Early Experiences K. Khorassani, C. Chen, B. Ramesh, A. Shafi, H. Subramoni, D. Panda Practice and Experience in Advanced Research Computing, Jul 2022.

Network Based Computing Laboratory

MUG '22

Point-to-Point Performance - Inter-Node CPU

Slingshot-10 Interconnect for over network communication (12.5+12.5 GB/s)

Peak Bandwidth:

- MVAPICH2-X 122.4 MB/s
- OpenMPI+UCX 122.4 MB/s
- CrayMPICH 122.4 MB/s

Latency at 4 Bytes:

- MVAPICH2-X 2.55 us
- OpenMPI+UCX 2.27 us
- CrayMPICH 2.07 us

AMD Epyc Rome CPUs on Spock System

Reference: High Performance MPI over the Slingshot Interconnect: Early Experiences K. Khorassani, C. Chen, B. Ramesh, A. Shafi, H. Subramoni, D. Panda Practice and Experience in Advanced Research Computing, Jul 2022.

Collectives Performance - CPU

GATHER

256 CPUs - 4 Nodes & 64 PPN on Spock System

Reference: High Performance MPI over the Slingshot Interconnect: Early Experiences K. Khorassani, C. Chen, B. Ramesh, A. Shafi, H. Subramoni, D. Panda Practice and Experience in Advanced Research Computing, Jul 2022.

Network Based Computing Laboratory

MUG '22

Collectives Performance - CPU

REDUCE

256 CPUs - 4 Nodes & 64 PPN on Spock System

Reference: High Performance MPI over the Slingshot Interconnect: Early Experiences K. Khorassani, C. Chen, B. Ramesh, A. Shafi, H. Subramoni, D. Panda Practice and Experience in Advanced Research Computing, Jul 2022.

Performance Evaluation

GPU

Point-to-Point Performance - Intra-Node GPU

All GPUs connected by Infinity Fabric (46+46GB/s)

- PCI Bar Mapped Memory for small message sizes.
- ROCm Inter-Process Communication (IPC) used in med-large message range.

Peak Bandwidth:

- MVAPICH2-GDR 52.5 GB/s
- OpenMPI+UCX 30.2 GB/s
- CrayMPICH 88 GB/s

Latency at 4 Bytes:

- MVAPICH2-GDR 2.01 us
- OpenMPI+UCX 3.79 us
- CrayMPICH 2.44 us

MI100 GPUs on Spock System

Reference: High Performance MPI over the Slingshot Interconnect: Early Experiences K. Khorassani, C. Chen, B. Ramesh, A. Shafi, H. Subramoni, D. Panda Practice and Experience in Advanced Research Computing, Jul 2022.

Network Based Computing Laboratory

MUG '22

Point-to-Point Performance - Inter-Node GPU

Slingshot-10 Interconnect for over network communication (12.5+12.5 GB/s)

Peak Bandwidth:

- MVAPICH2-GDR 9.9 GB/s
- OpenMPI+UCX 9.8 GB/s
- CrayMPICH **9.2 GB/s**

Latency at 4 Bytes:

- MVAPICH2-GDR 3.73 us
- OpenMPI+UCX 4.23 us
- CrayMPICH 3.8 us

MI100 GPUs on Spock System

Reference: High Performance MPI over the Slingshot Interconnect: Early Experiences K. Khorassani, C. Chen, B. Ramesh, A. Shafi, H. Subramoni, D. Panda Practice and Experience in Advanced Research Computing, Jul 2022.

Network Based Computing Laboratory

MUG '22

Collectives Performance - GPU

64 GPUs - 16 Nodes & 4 GPUs Per Node on Spock System

Reference: High Performance MPI over the Slingshot Interconnect: Early Experiences K. Khorassani, C. Chen, B. Ramesh, A. Shafi, H. Subramoni, D. Panda Practice and Experience in Advanced Research Computing, Jul 2022.

Network Based Computing Laboratory

Collectives Performance - GPU

64 GPUs - 16 Nodes & 4 GPUs Per Node on Spock System

Reference: High Performance MPI over the Slingshot Interconnect: Early Experiences K. Khorassani, C. Chen, B. Ramesh, A. Shafi, H. Subramoni, D. Panda Practice and Experience in Advanced Research Computing, Jul 2022.

Collectives Performance - GPU

64 GPUs - 16 Nodes & 4 GPUs Per Node on Spock System

Reference: High Performance MPI over the Slingshot Interconnect: Early Experiences K. Khorassani, C. Chen, B. Ramesh, A. Shafi, H. Subramoni, D. Panda Practice and Experience in Advanced Research Computing, Jul 2022.

Network Based Computing Laboratory

Performance Evaluation Slingshot-11

CPU

Point-to-Point Performance - Intra-Node CPU

LATENCY

BANDWIDTH

BI-BANDWIDTH

System with Slingshot-11 Networking

Point-to-Point Performance - Inter-Node CPU

BANDWIDTH

System with Slingshot-11 Networking

THANK YOU!

Network-Based Computing Laboratory http://nowlab.cse.ohio-state.edu/

The High-Performance MPI/PGAS Project <u>http://mvapich.cse.ohio-state.edu/</u>

High-Performance Big Data

The High-Performance Big Data Project <u>http://hibd.cse.ohio-state.edu/</u>

The High-Performance Deep Learning Project <u>http://hidl.cse.ohio-state.edu/</u>

Network Based Computing Laboratory

MUG '22