
LLNL-PRES-839068
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-
07NA27344. Lawrence Livermore National Security, LLC

Solving MPI integration problems with Spack
MUG 2022

Greg Becker

August 24, 2022

2
LLNL-PRES-839068

Modern scientific codes rely on icebergs of dependency libraries
71 packages

188 dependencies
LBANN: Neural Nets for HPCMFEM:

Higher-order finite elements
31 packages,

69 dependencies

r-condop:
R Genome Data Analysis Tools

179 packages,
527 dependencies

3
LLNL-PRES-839068

 Not much standardization in HPC: every machine/app has a different software stack

 Sites share unique hardware among teams with very different requirements
— Users want to experiment with many exotic architectures, compilers, MPI versions
— All of this is necessary to get the best performance

 Example environment for some LLNL codes:

The HPC software space is immense

70 third party packages
4 MPI versions

 IntelMPI MVAPICH2
OpenMPI MPICH

x Multiple Platforms
x86_64 aarch64 PPC64LE

x

Up to 7 compilers
Intel GCC XLC Clang

Cray NVHPC rocmcc
x Oh, and 2-3 versions of

each package
x = >10,000 combinations

We want an easy way to quickly sample the space, to install configurations on demand!

4
LLNL-PRES-839068

 Each expression is a spec for a particular configuration
— Each clause adds a constraint to the spec
— Constraints are optional – specify only what you need.
— Customize install on the command line!

 Spec syntax is recursive
— Full control over the combinatorial build space

Spack provides a spec syntax to describe customized package
configurations

$ spack install mpileaks unconstrained
$ spack install mpileaks@3.3 @ custom version
$ spack install mpileaks@3.3 %gcc@4.7.3 % custom compiler
$ spack install mpileaks@3.3 %gcc@4.7.3 +threads +/- build option
$ spack install mpileaks@3.3 cppflags="-O3 –g3" set compiler flags
$ spack install mpileaks@3.3 target=cascadelake set target microarchitecture
$ spack install mpileaks@3.3 ^mpich@3.2 %gcc@4.9.3 ^ dependency constraints

5
LLNL-PRES-839068

Concretization fills in missing configuration details
when the user is not explicit.

mpileaks ^callpath@1.0+debug ^libelf@0.8.11 User input: abstract spec with some constraints

Concrete spec is fully constrained
and can be passed to install.

Abstract, normalized spec
with some dependencies.

N
orm

aliz e

Concretize Store

spec:
- mpileaks:
 arch: linux-x86_64
 compiler:
 name: gcc
 version: 4.9.2
 dependencies:
 adept-utils: kszrtkpbzac3ss2ixcjkcorlaybnptp4
 callpath: bah5f4h4d2n47mgycej2mtrnrivvxy77
 mpich: aa4ar6ifj23yijqmdabeakpejcli72t3
 hash: 33hjjhxi7p6gyzn5ptgyes7sghyprujh
 variants: {}

 version: '1.0'
- adept-utils:
 arch: linux-x86_64
 compiler:
 name: gcc
 version: 4.9.2
 dependencies:
 boost: teesjv7ehpe5ksspjim5dk43a7qnowlq
 mpich: aa4ar6ifj23yijqmdabeakpejcli72t3
 hash: kszrtkpbzac3ss2ixcjkcorlaybnptp4
 variants: {}

 version: 1.0.1
- boost:
 arch: linux-x86_64
 compiler:
 name: gcc
 version: 4.9.2
 dependencies: {}

 hash: teesjv7ehpe5ksspjim5dk43a7qnowlq
 variants: {}

 version: 1.59.0
...

spec.yaml

Detailed provenance is stored
with the installed package

6
LLNL-PRES-839068

Spack packages are parameterized using the spec syntax
Python DSL defines many ways to build

Metadata at the class level

Versions

Install logic
in instance methods

Dependencies
(same spec syntax)

from spack import *

class Kripke(CMakePackage):
 """Kripke is a simple, scalable, 3D Sn deterministic particle transport mini-app."""

 homepage = "https://computation.llnl.gov/projects/co-design/kripke"
 url = "https://computation.llnl.gov/projects/co-design/download/kripke-openmp-1.1.tar.gz"

 version(‘1.2.3’, sha256='3f7f2eef0d1ba5825780d626741eb0b3f026a096048d7ec4794d2a7dfbe2b8a6’)
 version(‘1.2.2’, sha256='eaf9ddf562416974157b34d00c3a1c880fc5296fce2aa2efa039a86e0976f3a3’)
 version('1.1’, sha256='232d74072fc7b848fa2adc8a1bc839ae8fb5f96d50224186601f55554a25f64a’)

 variant('mpi', default=True, description='Build with MPI.’)
 variant('openmp', default=True, description='Build with OpenMP enabled.’)

 depends_on('mpi', when='+mpi’)
 depends_on('cmake@3.0:', type='build’)

 def cmake_args(self):
 return [
 '-DENABLE_OPENMP=%s’ % ('+openmp’ in self.spec),
 '-DENABLE_MPI=%s' % ('+mpi’ in self.spec),
]

 def install(self, spec, prefix):
 mkdirp(prefix.bin)
 install('../spack-build/kripke', prefix.bin)

Base package
(CMake support)

Variants (build options)

Don’t typically need install() for
CMakePackage, but we can work
around codes that don’t have it.One package.py file per software project!

7
LLNL-PRES-839068

An isolated compilation environment allows Spack
to easily swap compilers

Spack
Process

Set up environment

CC = spack/env/spack-cc SPACK_CC = /opt/ic-15.1/bin/icc
CXX = spack/env/spack-c++ SPACK_CXX = /opt/ic-15.1/bin/icpc
F77 = spack/env/spack-f77 SPACK_F77 = /opt/ic-15.1/bin/ifort
FC = spack/env/spack-f90 SPACK_FC = /opt/ic-15.1/bin/ifort

PKG_CONFIG_PATH = ... PATH = spack/env:$PATH
CMAKE_PREFIX_PATH = ...
LIBRARY_PATH = ...

do_install()

Install dep1 Install dep2 Install package…

Build
Process

Fork

install() configure make make install

-I /dep1-prefix/include
-L /dep1-prefix/lib
-Wl,-rpath=/dep1-prefix/lib

Compiler wrappers
(spack-cc, spack-c++, spack-f77, spack-f90)

icc icpc ifort

▪ Forked build process isolates environment for each build.
Uses compiler wrappers to:

— Add include, lib, and RPATH flags
— Ensure that dependencies are found automatically
— Load Cray modules (use right compiler/system deps)

8
LLNL-PRES-839068

opt
└── spack
 ├── linux-rhel7-skylake
 │ └── gcc-8.3.0
 │ ├── mpileaks-1.0-hc4sm4vuzpm4znmvrfzri4ow2mkphe2e
 │ ├── callpath-1.0.4-daqqpssxb6qbfrztsezkmhus3xoflbsy
 │ ├── openmpi-4.1.4-u64v26igxvxyn23hysmklfums6tgjv5r
 │ ├── dyninst-12.1.0-u64v26igxvxyn23hysmklfums6tgjv5r
 │ ├── libdwarf-20180129-u5eawkvaoc7vonabe6nndkcfwuv233cj
 │ └── libelf-0.8.13-x46q4wm46ay4pltriijbgizxjrhbaka6

 Each unique dependency graph is a unique
configuration.

 Each configuration in a unique directory.
— Multiple configurations of the same package

can coexist.

 Hash of entire directed acyclic graph (DAG) is
appended to each prefix.

 Installed packages automatically find
dependencies
— Spack embeds RPATHs in binaries.
— No need to use modules or set

LD_LIBRARY_PATH
— Things work the way you built them

Hashing allows us to handle combinatorial complexity

Installation Layout

Dependency DAG

opt
└── spack
 ├── linux-rhel7-skylake
 │ └── gcc-8.3.0
 │ ├── mpileaks-1.0-hc4sm4vuzpm4znmvrfzri4ow2mkphe2e
 │ ├── callpath-1.0.4-daqqpssxb6qbfrztsezkmhus3xoflbsy
 │ ├── openmpi-4.1.4-u64v26igxvxyn23hysmklfums6tgjv5r
 │ ├── dyninst-12.1.0-u64v26igxvxyn23hysmklfums6tgjv5r
 │ ├── libdwarf-20180129-u5eawkvaoc7vonabe6nndkcfwuv233cj
 │ └── libelf-0.8.13-x46q4wm46ay4pltriijbgizxjrhbaka6

Hash

9
LLNL-PRES-839068

Spack binary packages model full provenance

Traditional OS
package manager

Recipe per
package configuration

(need rewrites for new systems)

Portable (unoptimized)
x86_64 binaries

One software stack
upgraded over timeBuild farm

Parameterized recipe
per package

(Same recipe evolves for all targets)
Build farm / CI

Optimized
Graviton2 binaries

Optimized
Ice Lake binaries

Optimized
GPU binaries

Many
software stacks

Built for specific:
Systems

Compilers
OS’s
MPIs
etc.

Spack

Users/developers can also build directly from source

10
LLNL-PRES-839068

1. Make a copy of all the files that come with an installed package in Spack except
metadata.

2. Normalize all relative paths in the new copy

3. Change all RPATHs in the ELF binaries to reflect new location and links to new
dependencies.

4. Recreate any symlinks, update any paths in text files, etc.

5. Replace any hardcoded paths in binaries.

6. Install files and finish install as usual

Relocating Binaries

11
LLNL-PRES-839068

Spack handles ABI-incompatible, versioned interfaces like MPI

$ spack install mpileaks ^mvapich@1.9 $ spack install mpileaks ^openmpi@1.4:

$ spack install mpileaks ^mpi@2

 mpi is a virtual dependency

 Install the same package built with two different MPI implementations:

 Let Spack choose MPI implementation, as long as it provides MPI 2 interface:

12
LLNL-PRES-839068

Environment Setup from Dependencies

 All MPI implementation packages make
MPICC available in the environment at
build for their dependents
— Set MPICC environment variable, etc.
— Set MPICH_CC, etc. to Spack compiler

wrappers
— Set mpicc, etc. paths on spec object.

 Similar conventions for other common
dependencies
— Python package sets `python` on spec
— Python package sets `PYTHONPATH`

environment variable
— Cmake package sets `cmake` on spec

def setup_dependent_environment(self, spack_env, dependent_spec):
 spack_env.set('MPICC', join_path(self.prefix.bin, 'mpicc'))
 spack_env.set('MPICXX', join_path(self.prefix.bin, 'mpicxx'))
 spack_env.set('MPIF77', join_path(self.prefix.bin, 'mpif77'))
 spack_env.set('MPIF90', join_path(self.prefix.bin, 'mpif90'))

 spack_env.set('MPICH_CC', spack_cc)
 spack_env.set('MPICH_CXX', spack_cxx)
 spack_env.set('MPICH_F77', spack_f77)
 spack_env.set('MPICH_F90', spack_fc)
 spack_env.set('MPICH_FC', spack_fc)

def setup_dependent_package(self, module, dependent_spec):
 self.spec.mpicc = join_path(self.prefix.bin, 'mpicc')
 self.spec.mpicxx = join_path(self.prefix.bin, 'mpicxx')
 self.spec.mpifc = join_path(self.prefix.bin, 'mpif90’)
 self.spec.mpif77 = join_path(self.prefix.bin, 'mpif77’)
 self.spec.mpicxx_shared_libs = [
 join_path(self.prefix.lib, 'libmpicxx.so'),
 join_path(self.prefix.lib, 'libmpi.so')]

13
LLNL-PRES-839068

Spack virtual packages can share test infrastructure

Test method
 for all providers

from spack.package import *

class Mpi(Package):
 """Virtual package for the Message Passing Interface."""

 homepage = "https://www.mpi-forum.org/"
 virtual = True

 def test(self):
 for lang in ("c", "f"):
 filename = self.test_suite.current_test_data_dir.join("mpi_hello." + lang)

 compiler_var = "MPICC" if lang == "c" else "MPIF90"
 compiler = os.environ[compiler_var]

 exe_name = "mpi_hello_%s" % lang
 mpirun = join_path(self.prefix.bin, "mpirun")

 compiled = self.run_test(compiler, options=["-o", exe_name, filename])
 if compiled:
 self.run_test(
 mpirun,
 options=["-np", "1", exe_name],
 expected=[r"Hello world! From rank \s*0 of \s*1"],
)

Virtual package
(No install method

Each package can also include its own particular tests
This system will be expanded
to include interface
information and safeguards

14
LLNL-PRES-839068

packages:
 mpi:
 buildable: False
 paths:
 openmpi@2.0.0 %gcc@4.7.3 arch=linux-rhel6-ppc64:
 /path/to/external/gcc/openmpi-2.0.0
 openmpi@1.10.3 %gcc@4.7.3 arch=linux-rhel6-ppc64:
 /path/to/external/gcc/openmpi-1.10.3
 ...

We can configure Spack to build with external software

/path/to/external/gcc/openmpi-2.0.0

packages.yaml

Spack prunes the DAG when adding external packages.

mpileaks
^callpath@1.0+debug
 ^openmpi ^libelf@0.8.11

15
LLNL-PRES-839068

 Running against a system MPI
— OpenMPI package maintainers tell Spack that OpenMPI 4.0.7 is ABI-compatible with OpenMPI 4.1.2
— OpenMPI 4.1.2 satisfies all symbols present in the 4.0.7 version.
— Therefore, users will know that software built against OpenMPI 4.0.7 will run against OpenMPI

4.1.2, regardless of the symbols used.
— Even if versions are the same, we need to relocate the package to use the external

 Running in a container
— User built their application with MPICH in a container
— needs to run with MVAPICH2 from the host for performance
— bind-mount host MPI into the container

 How can we deploy this in Spack?
— We need to model the provenance
— We need to modify the packages on disk

We frequently want to swap in a new MPI

16
LLNL-PRES-839068

1. New deployment and metadata model
— Splicing

• Need to be able to swap one dependency for another
• Need to avoid losing provenance and preserve build metadata even when deployment is different

— Rewiring
• Need to be able to relocate package RPATH’s, shebangs, etc. to point to new dependency
• Use patchelf, binary rewriting, rewriting symlinks, etc. on installation as part of relocation
• Rewiring is fundamentally similar to binary relocation, no need to dwell on it

2. New ABI information in packages
— Specified with DSL by user
— Tells you what swaps are safe

3. Solver changes
— Solver needs to know about ABI constraints
— Find safe configurations

We need three things to make binary swapping possible in Spack

17
LLNL-PRES-839068

 A binary of trilinos has already been built
and will be deployed on a system with its
own MVAPICH installation (in green).

 We need to use this system-installed
MVAPICH (in red).

 We we don’t want to totally rebuild
trilinos.

 So the system-installed MVAPICH is
spliced into the DAG

Splicing: a new deployment model for Spack

mvapich

mvapich'

18
LLNL-PRES-839068

 Trilinos* installation uses the the system-
installed MVAPICH.
— Different MPI than it was built with
— RPATHs from trilinos install now point at the

new MVAPICH

 Black arrow is a “build_spec”
— Metadata recording original build graph
— Records original build information
— Can be used to check ABI compatibility later

 Trilinos now also uses the system-
installed zlib’ that MVAPICH depended on
— We call this a ”transitive” splice

Splicing MPI

Deployed spec

MVAPICH deployed
un-spliced

Old build
provenance

mvapich

mvapich'

19
LLNL-PRES-839068

 In some cases, the version of a
dependency in the root spec is the one
which satisfies both specs constraints

 We support this use case with the
intransitive splice, where only the spliced
dependency is brought in.

 Our trilinos* installation now depends on
a new installation of MVAPICH based on
the system build, but always uses the zlib
that came with the original trilinos binary
distribution.

An Intransitive Splice

Deployed spec

Both trilinos and
mvapich are spliced.

Old build
provenance

Old build
provenance

mvapich

mvapich’*

mvapich'

20
LLNL-PRES-839068

 We will reduce the Spec for each package to its ABI-
relevant attributes
— This will require per-package logic

• What changed?
• What’s relevant?
• (eventually) What’s used?

 For each deployed edge A B:
— Check whether abispec(B) satisfies abispec(A)[B]

• Includes DSL information from packages:
– Version constraints
– Enabled sub-APIs
– Compiler flags
– etc.

ABI constraints and splicing

Pure metadata;
not deployed

Spliced trilinos
deployment

mvapich'

mvapich

21
LLNL-PRES-839068

Future goal: Build fine-grained compatibility models that cover
functions, data types, and other aspects of ABI

A version v1

B version v2

C version v3

C++ runtime
version v4

(not modeled)

C++ runtime version v4
defines t1

Current model is coarse Complete model represents how changes affect code

A version v1

B version v2, defines t2

C version v3, defines t3

f(t1) g(t1, t2)

h(t3) i(t1, t3)

j(t1)

k(t1)

l(t1)

 We will model libraries at call
granularity:
— Entry calls
— Exit calls
— Data type definitions & usage

 We will model runtime libraries
behind compilers
— C++, OpenMP, glibc
— GPU runtimes

 We will model changes in the graph
— “If h(t3) changes, is B still correct?
— “If C changes, what needs to be

rebuilt?”
— We will model semantics of interfaces

C version v3, defines t3

h(t3) i(t1, t3)

C++ runtime version v4
defines t1

A version v1

B version v2, defines t2

C version v3, defines t3

f(t1) g(t1, t2)

h(t3) i(t1, t3)

j(t1)

k(t1)

l(t1)

This model will allow us to solve for compatibility, so we can find usable packages and splices

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security, LLC.
The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

	Solving MPI integration problems with Spack
	Slide 2
	The HPC software space is immense
	Spack provides a spec syntax to describe customized package con
	Slide 5
	Spack packages are parameterized using the spec syntax Python D
	An isolated compilation environment allows Spack to easily swa
	Slide 8
	Spack binary packages model full provenance
	Relocating Binaries
	Slide 11
	Environment Setup from Dependencies
	Spack virtual packages can share test infrastructure
	Slide 14
	We frequently want to swap in a new MPI
	We need three things to make binary swapping possible in Spack
	Splicing: a new deployment model for Spack
	Splicing MPI
	An Intransitive Splice
	ABI constraints and splicing
	Future goal: Build fine-grained compatibility models that cover
	Slide 22

