
LLNL-PRES-838892
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Applying MPI to Manage HPC-scale Datasets
10th Annual MVAPICH User Group (MUG) Meeting

August 23, 2022

Adam Moody

https://github.com/hpc/mpifileutils
LLNL-PRES-838892

2

Dataset file and byte counts increase
as users run larger MPI jobs

Scatter plot of dataset
bytes vs files

top 20 Lustre users

log2 (files)

lo
g 2

 (b
yt

es
)

https://github.com/hpc/mpifileutils
LLNL-PRES-838892

3

Motivating example:
Consider the task of copying a large dataset

Single directory

200,000 files

128 MB per file

24.4 TB total

Goal: cp -r dir dir2

https://github.com/hpc/mpifileutils
LLNL-PRES-838892

4

Approach 1:
Use cp on a login node

>>: date; cp -r dir dir2
Tue Jun 11 10:20:35 PDT 2019

>>: date; ls -ltr dir2/ | wc
Tue Jun 11 18:20:36 PDT 2019

114352 1029161 7712420

... check in after 8 hours ...

Completed ~114,352 of 200,000 files in 8 hours.

Some math ...
(200,000 / 114,352) * 8 hours ~ 14 hours to finish

https://github.com/hpc/mpifileutils
LLNL-PRES-838892

5

Approach 2:
Use dcp on 8 compute nodes

>>: bsub –nnodes 8 –Is /bin/bash

[2019-06-10T18:14:16] Started: Jun-10-2019,18:08:01
[2019-06-10T18:14:16] Completed: Jun-10-2019,18:14:16
[2019-06-10T18:14:16] Seconds: 374.766
[2019-06-10T18:14:16] Items: 200001
[2019-06-10T18:14:16] Directories: 1
[2019-06-10T18:14:16] Files: 200000
[2019-06-10T18:14:16] Links: 0
[2019-06-10T18:14:16] Data: 24.414 TB (26843545600000 bytes)
[2019-06-10T18:14:16] Rate: 66.708 GB/s (26843545600000
bytes in 374.766 seconds)

>>: mpirun -np 320 dcp dir dir2

https://github.com/hpc/mpifileutils
LLNL-PRES-838892

6

Result:
dcp is slightly faster than cp

dcp is ~140x faster

14 hours

cp dcp

6 minutes>

https://github.com/hpc/mpifileutils
LLNL-PRES-838892

7

mpiFileUtils enables users to manage datasets
with same resources they used to create them

§ Large HPC jobs generate datasets while using
thousands of compute nodes running tens of
thousands of processes

§ The problem:
— Users must often manage those datasets using single-

node, single-process tools like cp, chgrp, and rm
— Users create a dataset with 10,000 cores but then copy it

with one.

§ mpiFileUtils is designed to:
— Let users perform common data management tasks with

the same HPC resources they used to run their jobs
— Scale to saturate available compute, network, and file

system bandwidth
— Operate across common HPC file systems like Lustre,

GPFS, and NFS

10,000

1

https://github.com/hpc/mpifileutils
LLNL-PRES-838892

8

§ libcircle
— Each process pulls work items from its local

queue.
— A process can add new work items to its local

queue.
— If a process runs out of work, it requests

work from a random process.
— “On distributed file tree walk of parallel file

systems”, Jharrod LaFon, Satyajayant Misra,
and Jon Bringhurst, SC’12.

— http://dl.acm.org/citation.cfm?id=2389114
— https://github.com/hpc/libcircle

§ dcp (original)
— Built all copy functions on libcircle
— walk, file create, data copy, metadata update
— https://github.com/hpc/dcp

Project origin: mpiFileUtils was created by
extending existing tools - libcircle and dcp

Got work?

http://dl.acm.org/citation.cfm?id=2389114
https://github.com/hpc/libcircle
https://github.com/hpc/dcp

https://github.com/hpc/mpifileutils
LLNL-PRES-838892

9

mpiFileUtils = Library + Tools + File Format

§ Library – common data structures and routines
— Quickly create new tools
— Apps can even invoke API directly

§ Tools – MPI-based versions of cp, rm, etc.
— Apps create datasets with thousands of processes.
— Why manage them using a single process?

§ File format – common format for interoperability
— Allows one to compose tools into pipelines
— Allows third-party software to generate input or process output

(e.g., Hopper)

https://github.com/hpc/mpifileutils
LLNL-PRES-838892

10

The file list (mfu_flist) is the primary data
structure within the libmfu common library

The mfu_flist is a distributed list of stat-like info for each item

d1/

f1 d2/

d3/ f2 d4/ f3

f4 f5 d5/

f6

d1/
d1/d2/d3/
d1/d2/d3/f4

d1/d2/d3/f5
d1/d2/f3

d1/f1
d1/d2/d4/
d1/d2/d4/d5/
d1/d2/d4/d5/f6

d1/d2/
d1/d2/f2

Recursively
walk and stat
items under

d1/
with libcircle

Each process
ends up with
stat data for a
random subset

https://github.com/hpc/mpifileutils
LLNL-PRES-838892

11

Collective mfu_flist operations operate across
all processes, for example, to do a global sort

d1/
d1/d2/d3/
d1/d2/d3/f4

d1/d2/d3/f5
d1/d2/f3

d1/f1
d1/d2/d4/
d1/d2/d4/d5/
d1/d2/d4/d5/f6

d1/d2/
d1/d2/f2

mfu_flist_sort()
by “name”

List has been
reordered

globally when
collective returns

d1/
d1/d2/
d1/d2/d3/

d1/d2/d3/f4
d1/d2/d3/f5

d1/d2/d4/
d1/d2/d4/d5/
d1/d2/d4/d5/f6
d1/d2/f2

d1/d2/f3
d1/f1

Sort items alphabetically by their full path

https://github.com/hpc/mpifileutils
LLNL-PRES-838892

12

mpiFileUtils has a growing set of production and
experimental tools (v0.11); ’d’ is for distributed

§ dbcast – broadcast file to compute nodes

§ dbz2 – compress/decompress file with bz2

§ dchmod – change perms/owner/group

§ dcmp – compare directories/files

§ dcp – copy data

§ ddup – find duplicate files

§ dfilemaker – generate test files

§ dfind – filter files

§ dreln – update symlinks

§ drm – delete files

§ dstripe – restripe files (Lustre)

§ dsync – synchronize directory trees

§ dtar - create / unpack tar files

§ dwalk – list, sort, summarize files

§ dgrep – parallel grep

§ dparallel – MPI-based parallel

§ dsh – interactively list, summarize, and
remove files

https://github.com/hpc/mpifileutils
LLNL-PRES-838892

13

The common file format lets one compose tools,
e.g., purge all files last accessed over 180 days ago

walk directory to stat all files, record list
in file

dwalk --output list.mfu /path/to/walk

filter list to identify all regular files
that were last accessed over 180 days ago

dfind \
--input list.mfu \
--type f --atime +180 \
--output purgelist.mfu

delete all files in the purge list

drm --input purgelist.mfu

https://github.com/hpc/mpifileutils
LLNL-PRES-838892

14

Performance at scale

https://github.com/hpc/mpifileutils
LLNL-PRES-838892

15

§ Given our example dataset:
— Single directory
— 200,000 files
— 128 MB per file
— 24.4 TB total

§ Do the following:
1. dcp: Make a copy of the dataset
2. dchmod: Change group on all files in the copy
3. drm: Remove the copy

§ Scale from 1 node (40 procs) up to 1k nodes (40k procs)

Sierra Scaling Study: dcp, dcmp, dchmod, drm

https://github.com/hpc/mpifileutils
LLNL-PRES-838892

16

dcp walks source directory, creates destination
files, copies data, then updates file metadata

Single directory
200,000 files

128 MB per file
24.4 TB total

40 procs/node

cp time
12 hours, 45 mins

dcp time
93 secs (64 nodes)

495x faster

13 hours à 2 mins

https://github.com/hpc/mpifileutils
LLNL-PRES-838892

17

The dcp write bandwidth increases with node
count and holds steady at 320 GB/s on Sierra

Single directory
200,000 files

128 MB per file
24.4 TB total

40 procs/node

Once the bandwidth is saturated, there is no value to scale to higher node counts.

https://github.com/hpc/mpifileutils
LLNL-PRES-838892

18

dchmod changes group on files after the copy,
a test that stresses file system metadata ops

Sierra
GPFS, IBM Spectrum MPI, jsrun

Quartz
Lustre, MVAPICH2 MPI, SLURM

For quick jobs, the MPI job launch time can be significant.
Run those with smaller node counts.

https://github.com/hpc/mpifileutils
LLNL-PRES-838892

19

drm removes the copy after the test

Sierra
GPFS, IBM Spectrum MPI, jsrun

Quartz
Lustre, MVAPICH2 MPI, SLURM

An example of bad scaling. It is unknown whether the cause in this case is
mpiFileUtils or thrashing within the parallel file system.

https://github.com/hpc/mpifileutils
LLNL-PRES-838892

20

Final remarks

https://github.com/hpc/mpifileutils
LLNL-PRES-838892

21

§ Typically need to run in a job allocation
— The sweet spot for most tools is about 2-4 nodes.
— Grab more nodes for large datasets.

§ Launch your job with mpirun
— Plan to max out the CPU cores.
— Leave a few cores idle on each node for the file system client processes.

§ Most tools do not checkpoint their progress
— Be sure to request sufficient time in your allocation.
— You may need to start over from the beginning if a tool is interrupted.

§ Cannot pipe output of one tool to the input of another
— The --input and --output file options are good approximations.

§ Cannot easily check the return codes of tools
— Check the output for errors.

Things to keep in mind since mpiFileUtils are
MPI programs

https://github.com/hpc/mpifileutils
LLNL-PRES-838892

22

mpiFileUtils are designed to be portable across
all HPC sites and file systems

§ Designed to work on any HPC system
— Built with basic C, MPI, and POSIX/libc, so uses programming language

and programming models that are ubiquitous in HPC

— Available in Spack

spack install mpifileutils

§ Designed to work on all HPC file systems
— Lustre, GPFS, NFS have been targets from start
— Intel actively working to add DAOS
— Default algorithms should work with any POSIX-compliant file system
— One may include file-system specific optimizations and algorithms

https://github.com/hpc/mpifileutils
LLNL-PRES-838892

23

§ Resources:
— Documentation: https://mpifileutils.readthedocs.io
— Code: https://github.com/hpc/mpifileutils
— New users and new collaborators are always welcome!

§ From its beginning, mpiFileUtils has been a multi-organizational
open-source effort
— Numerous people have contributed over time
— https://github.com/hpc/mpifileutils/blob/master/AUTHORS
— https://github.com/hpc/mpifileutils/graphs/contributors
— Particularly: Jon Bringhurst, Jharrod LaFon, Danielle Sikich, Dalton

Bohning, Elsa Gonsiorowski, Feiyi Wang, Xi Li, and Zheng Gu

Take away: For most of your work, use standard
tools like cp. Too slow? Then try mpiFileUtils.

https://mpifileutils.readthedocs.io/
https://github.com/hpc/mpifileutils
https://github.com/hpc/mpifileutils/blob/master/AUTHORS
https://github.com/hpc/mpifileutils/graphs/contributors

https://github.com/hpc/mpifileutils
LLNL-PRES-838892

24

Thank you MVAPICH team!

§ The MPI programming model
has enabled HPC users to
continually scale up their
problems for decades …

§ … but only because of the hard
work done by the people who
implement MPI, and in
particular due to the leading
R&D from the MVAPICH team.

MPI = scalability.h
MVAPICH = scalability.c

https://github.com/hpc/mpifileutils
LLNL-PRES-838892

25

Extra

https://github.com/hpc/mpifileutils
LLNL-PRES-838892

26

§ walk - recursively walk one or more
paths to create a list

§ stat - given a list, execute stat on each
item

§ filter - apply find-like tests to find a
matching subset of items

§ depth - split list into sublists dividing
items by depth

§ remap/spread - reassign elements to
different ranks

§ sort - globally order elements across
ranks, based on item properties (path,
name, size, user, access time)

§ copy - copy items in source list to a
destination on the file system

§ mkdir/mknod - create directories or
inodes on file system

§ unlink - remove all items named in a
list from the file system

§ read/write - load list from a file, write
list to a file

§ pack/unpack - serialize an element for
network transfer

§ query properties of global list, such as
global list size and offset of local rank

§ iterate over local elements

§ query/set properties of a local
element

Frequently used mfu_flist functions. Some are
collectives, some are local to the calling process.

https://github.com/hpc/mpifileutils
LLNL-PRES-838892

27

mfu_flist flist = mfu_flist_new();
mfu_flist_walk_param_paths(numpaths, paths,

walk_opts, flist);

mfu_flist flist_links = mfu_flist_subset(flist);
uint64_t size = mfu_flist_size(flist);
for (uint64_t idx = 0; idx < size; idx++) {

mfu_filetype type = mfu_flist_file_get_type(flist, idx);
if (type != MFU_TYPE_FILE)

continue;

const char* file = mfu_flist_file_get_name(flist, idx);
mfu_lstat(file, &statbuf);
if (statbuf.st_nlink > 1)

mfu_flist_file_copy(flist, idx, flist_links);
}
mfu_flist_summarize(flist_links);

mfu_flist_write_cache(outputname, flist_links);

mfu_flist_free(&flist_links);
mfu_flist_free(&flist);

An example tool: walk a path, write out list of
all regular files having more than one hardlink

walk path(s) to get
initial list of items

create subset list

iterate over all local
items in initial list

check whether item is a
regular file

copy item to subset if
hardlink count is more
than one

finalize subset list

write subset list out
to a file

free lists

https://github.com/hpc/mpifileutils
LLNL-PRES-838892

28

import os
import stat
import mpifileutils as mfu

flist = mfu.FList(“/path/to/walk”)

hardlinks = flist.subset(lambda f:
f.type == mfu.TYPE_FILE and
os.stat(f.name)[stat.ST_NLINK] > 1)

hardlinks.write(“hardlinks.mfu”)

Same tool in six lines of python

import mpifileutils

walk target path

sublist of
reg files with
hardlink > 1

write sublist to file

https://github.com/hpc/mpifileutils
LLNL-PRES-838892

29

dcmp checks the new copy with the original,
reads back and compares all bytes

Single directory
200,000 files

128 MB per file
24.4 TB total

40 procs/node

It is recommended to run dcmp after dcp to verify contents.

https://github.com/hpc/mpifileutils
LLNL-PRES-838892

30

dcmp saturates read bandwidth and
holds steady at 1 TB/s on Sierra

Single directory
200,000 files

128 MB per file
24.4 TB total

40 procs/node

dcmp is read heavy and can often reach peak file system bandwidth.

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United
States government. Neither the United States government nor Lawrence Livermore National
Security, LLC, nor any of their employees makes any warranty, expressed or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of
any information, apparatus, product, or process disclosed, or represents that its use would
not infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by trade name, trademark, manufacturer, or otherwise does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States
government or Lawrence Livermore National Security, LLC, and shall not be used for
advertising or product endorsement purposes.

