
Performance Engineering using MVAPICH and TAU

Sameer Shende
University of Oregon and ParaTools, Inc.

MVAPICH Users Group Conference
Tuesday, August 24, 2021, 3:30pm – 4:00pm EST

http://mug.mvapich.cse.ohio-state.edu

Slides:
http://tau.uoregon.edu/TAU_MUG21.pdf

http://mug.mvapich.cse.ohio-state.edu/
http://tau.uoregon.edu/TAU_MUG20.pdf

Outline

• Introduction
• The MPI Tools Interfaces and Benefits
• Integrating TAU and MVAPICH2 with MPI_T

2

Acknowledgments

• The MVAPICH2 team The Ohio State University
• http://mvapich.cse.ohio-state.edu

• TAU team at the University of Oregon
• http://tau.uoregon.edu

3

Overview of the MVAPICH2 Project
High Performance open-source MPI Library

Support for multiple interconnects
• InfiniBand, Omni-Path, Ethernet/iWARP, RDMA over Converged Ethernet (RoCE),

and AWS EFA

Support for multiple platforms
• x86, OpenPOWER, ARM, Xeon-Phi, GPGPUs (NVIDIA and AMD)

Started in 2001, first open-source version demonstrated at SC ‘02

Supports the latest MPI-3.1 standard

http://mvapich.cse.ohio-state.edu

Additional optimized versions for different systems/environments:
• MVAPICH2-X (Advanced MPI + PGAS), since 2011

• MVAPICH2-GDR with support for NVIDIA GPGPUs, since 2014

• MVAPICH2-MIC with support for Intel Xeon-Phi, since 2014

• MVAPICH2-Virt with virtualization support, since 2015

• MVAPICH2-EA with support for Energy-Awareness, since 2015

• MVAPICH2-Azure for Azure HPC IB instances, since 2019

• MVAPICH2-X-AWS for AWS HPC+EFA instances, since 2019

Tools:
• OSU MPI Micro-Benchmarks (OMB), since 2003

• OSU InfiniBand Network Analysis and Monitoring (INAM), since 2015

• Used by more than 3,175 organizations in 89 countries

• More than 1.41 Million downloads from the OSU site
directly

• Empowering many TOP500 clusters (June ‘21 ranking)
– 4th , 10,649,600-core (Sunway TaihuLight) at NSC, Wuxi, China

– 10th, 448, 448 cores (Frontera) at TACC

– 20th, 288,288 cores (Lassen) at LLNL

– 31st, 570,020 cores (Nurion) in South Korea and many others

• Available with software stacks of many vendors and Linux
Distros (RedHat, SuSE, OpenHPC, and Spack)

• Partner in the 10th ranked TACC Frontera system

• Empowering Top500 systems for more than 15 years
4

http://mvapich.cse.ohio-state.edu/

TAU Performance System®

• Tuning and Analysis Utilities (25+ year project)
• Comprehensive performance profiling and tracing

• Integrated, scalable, flexible, portable
• Targets all parallel programming/execution paradigms

• Integrated performance toolkit
• Instrumentation, measurement, analysis, visualization
• Widely-ported performance profiling / tracing system
• Performance data management and data mining
• Open source (BSD-style license)
• Uses performance and control variables to interface with MVAPICH2

• Integrates with application frameworks
• http://tau.uoregon.edu

5

Understanding Application Performance using TAU

• How much time is spent in each application routine and outer loops? Within loops, what is
the contribution of each statement?

• How many instructions are executed in these code regions?
Floating point, Level 1 and 2 data cache misses, hits, branches taken?

• What is the memory usage of the code? When and where is memory allocated/de-
allocated? Are there any memory leaks?

• What are the I/O characteristics of the code? What is the peak read and write bandwidth of
individual calls, total volume?

• What is the contribution of each phase of the program? What is the time wasted/spent
waiting for collectives, and I/O operations in Initialization, Computation, I/O phases?

• How does the application scale? What is the efficiency, runtime breakdown of performance
across different core counts?

• How can I tune MPI for better performance? What performance and control does
MVAPICH2 export to observe and control its performance?

6

TAU Performance System®

Parallel performance framework and toolkit
• Supports all HPC platforms, compilers, runtime system
• Provides portable instrumentation, measurement, analysis

7

TAU Performance System

8

Instrumentation
• Fortran, C++, C, UPC, Java, Python, Chapel, Spark
• Automatic instrumentation

Measurement and analysis support
• MPI, OpenSHMEM, ARMCI, PGAS, DMAPP, uGNI
• pthreads, OpenMP, OMPT interface, hybrid, other thread models
• GPU, CUDA, OpenCL, Level Zero, ROCm, OpenACC
• Parallel profiling and tracing
• Interfaces with OTF2 and Score-P

Analysis
• Parallel profile analysis (ParaProf), data mining (PerfExplorer)
• Performance database technology (TAUdb)
• 3D profile browser

TAU Instrumentation Approach

Supports both direct and indirect performance observation
• Direct instrumentation of program (system) code (probes)
• Instrumentation invokes performance measurement
• Event measurement: performance data, meta-data, context
• Indirect mode supports sampling based on periodic timer or hardware performance counter

overflow based interrupts

Support for user-defined events
• Interval (Start/Stop) events to measure exclusive & inclusive duration
• Atomic events (Trigger at a single point with data, e.g., heap memory)

• Measures total, samples, min/max/mean/std. deviation statistics

• Context events (are atomic events with executing context)
• Measures above statistics for a given calling path

9

Direct Observation: Events

Event types
• Interval events (begin/end events)

• Measures exclusive & inclusive durations between events
• Metrics monotonically increase

• Atomic events (trigger with data value)
• Used to capture performance data state
• Shows extent of variation of triggered values (min/max/mean)

Code events
• Routines, classes, templates
• Statement-level blocks, loops

10

inclusive
duration

exclusive
duration

int foo()
{

int a;
a =a + 1;

bar();

a =a + 1;
return a;

}

Inclusive and Exclusive Profiles

• Performance with respect to code regions
• Exclusive measurements for region only
• Inclusive measurements includes child regions

11

Profiling Tracing

12

Shows
how much time was
spent in each routine

Shows
when events take place

on a timeline

How much data do you want?

Limited
Profile

Flat
Profile

Loop
Profile

Callsite
Profile

Callpath
Profile

Trace

O(KB) O(TB)

13

Sampling

Running program is periodically interrupted to take
measurement

• Timer interrupt, OS signal, or HWC overflow
• Service routine examines return-address stack
• Addresses are mapped to routines using symbol

table information
Statistical inference of program behavior

• Not very detailed information on highly volatile
metrics

• Requires long-running applications
Works with unmodified executables

Time

main foo(0) foo(1) foo(2) int main()
{
int i;

for (i=0; i < 3; i++)
foo(i);

return 0;
}

void foo(int i)
{

if (i > 0)
foo(i – 1);

}

Measurement

t9t7t6t5t4t1 t2 t3 t8

14

Instrumentation

Measurement code is inserted such that every event of
interest is captured directly

• Can be done in various ways
Advantage:

• Much more detailed information
Disadvantage:

• Processing of source-code / executable
necessary

• Large relative overheads for small functions

Time

Measurement int main()
{
int i;

for (i=0; i < 3; i++)
foo(i);

return 0;
}

void foo(int i)
{

if (i > 0)
foo(i – 1);

}

Time

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11t12t13 t14

main foo(0) foo(1) foo(2)

TAU_START(“main”);

TAU_STOP(“main”);

TAU_START(“foo”);

TAU_STOP(“foo”);

15

Types of Performance Profiles

Flat profiles
• Metric (e.g., time) spent in an event
• Exclusive/inclusive, # of calls, child calls, …

Callpath profiles
• Time spent along a calling path (edges in callgraph)
• “main=> f1 => f2 => MPI_Send”
• Set the TAU_CALLPATH and TAU_CALLPATH_DEPTH environment variables

Callsite profiles
• Time spent along in an event at a given source location
• Set the TAU_CALLSITE environment variable

Phase profiles
• Flat profiles under a phase (nested phases allowed)
• Default “main” phase
• Supports static or dynamic (e.g. per-iteration) phases

16

TAU’s Support for Runtime Systems

MPI
• PMPI profiling interface
• MPI_T tools interface using performance and control variables

Pthread
• Captures time spent in routines per thread of execution

OpenMP
• OMPT tools interface to track salient OpenMP runtime events
• Opari source rewriter
• Preloading wrapper OpenMP runtime library when OMPT is not supported

Intel Level Zero
• Captures time spent in kernels on GPUs using oneAPI Level Zero
• Captures time spent in Intel Level Zero runtime calls

OpenACC
• OpenACC instrumentation API
• Track data transfers between host and device (per-variable)
• Track time spent in kernels

17

TAU’s Support for Runtime Systems (contd.)
OpenCL

• OpenCL profiling interface
• Track timings of kernels

CUDA
• Cuda Profiling Tools Interface (CUPTI)
• Track data transfers between host and GPU
• Track access to uniform shared memory between host and GPU

ROCm
• Rocprofiler and Roctracer instrumentation interfaces
• Track data transfers and kernel execution between host and GPU

Kokkos
• Kokkos profiling API
• Push/pop interface for region, kernel execution interface

Python
• Python interpreter instrumentation API
• Tracks Python routine transitions as well as Python to C transitions

18

Examples of Multi-Level Instrumentation

MPI + OpenMP
• MPI_T + PMPI + OMPT may be used to track MPI and OpenMP

MPI + CUDA
• PMPI + CUPTI interfaces

OpenCL + ROCm
• Rocprofiler + OpenCL instrumentation interfaces

Kokkos + OpenMP
• Kokkos profiling API + OMPT to transparently track events

Kokkos + pthread + MPI
• Kokkos + pthread wrapper interposition library + PMPI layer

Python + CUDA
• Python + CUPTI + pthread profiling interfaces (e.g., Tensorflow, PyTorch)

MPI + OpenCL
• PMPI + OpenCL profiling interfaces

19

Instrumentation

Source instrumentation using a preprocessor
• Add timer start/stop calls in a copy of the source code.
• Use Program Database Toolkit (PDT) for parsing source code.
• Requires recompiling the code using TAU shell scripts (tau_cc.sh, tau_f90.sh)
• Selective instrumentation (filter file) can reduce runtime overhead and narrow

instrumentation focus.
Compiler-based instrumentation

• Use system compiler to add a special flag to insert hooks at routine entry/exit.
• Requires recompiling using TAU compiler scripts (tau_cc.sh, tau_f90.sh…)

Runtime preloading of TAU’s Dynamic Shared Object (DSO)
• No need to recompile code! Use mpirun tau_exec ./app with options.
• Requires dynamic executable (link using –dynamic on Cray systems).

Add hooks in the code to perform measurements

20

Simplifying the use of TAU!
Uninstrumented code:

• % make

• % mpirun -np 64 ./a.out

With TAU using event-based sampling (EBS):
• % mpirun –np 64 tau_exec –ebs ./a.out

• % paraprof (GUI)

• % pprof –a | more

NOTE:

• Requires dynamic executables (-dynamic link flag on Cray XC systems).

• Source code should be compiled with –g for access to symbol table.

• Replace srun with mpirun on Attaway or your appropriate launch command.

21

TAU Execution Command (tau_exec)
Uninstrumented execution

• % mpirun -np 256 ./a.out
Track GPU operations

• % mpirun -np 256 tau_exec –rocm ./a.out
• % mpirun -np 256 tau_exec –l0 ./a.out
• % mpirun -np 256 tau_exec –cupti ./a.out
• % mpirun -np 256 tau_exec –cupti -um ./a.out (for Unified Memory)
• % mpirun -np 256 tau_exec –opencl ./a.out
• % mpirun -np 256 tau_exec –openacc ./a.out

Track MPI performance
• % mpirun -np 256 tau_exec ./a.out

Track I/O, and MPI performance (MPI enabled by default)
• % mpirun -np 256 tau_exec -io ./a.out

Track OpenMP and MPI execution (using OMPT for Intel v19)
• % export TAU_OMPT_SUPPORT_LEVEL=full;

% mpirun -np 256 tau_exec –T ompt,v5,mpi -ompt ./a.out
Track memory operations

• % export TAU_TRACK_MEMORY_LEAKS=1
• % mpirun -np 256 tau_exec –memory_debug ./a.out (bounds check)

Use event based sampling (compile with –g)
• % mpirun -np 256 tau_exec –ebs ./a.out
• Also export TAU_METRICS=TIME,<PAPI_COUNTER> to use hardware perf. counters
• tau_exec -ebs_resolution=<file | function | line>

22

Outline

• Introduction
• The MPI Tools Interfaces and Benefits
• Integrating TAU and MVAPICH2 with MPI_T

23

MVAPICH2 and TAU

● TAU and MVAPICH2 are enhanced with the ability to generate recommendations and
engineering performance report

● MPI libraries like MVAPICH2 are now “reconfigurable” at runtime
● TAU and MVAPICH2 communicate using the MPI-T interface

24

Why PMPI is not good enough?

• Takes a “black box” view of the MPI library
25

MPI_T support with MVAPICH2

Memory Usage:
- current level

- maximum watermark

Registration cache:
- hits

- misses

Pt-to-pt messages:
- unexpected queue length

- unexp. match attempts
- recvq. length

Shared-memory:
- limic/ CMA

- buffer pool size & usage

Collective ops:
- comm. creation

- #algorithm invocations
[Bcast – 8; Gather – 10]

…

InfiniBand N/W:
- #control packets

- #out-of-order packets

• Support performance variables (PVAR)

• Variables to track different components within the MPI library

• Initial support for Control Variables (CVAR)

• Variables to modify the behavior of MPI Library

26

MPI_T_init_thread(..)
MPI_T_cvar_get_info(MV2_EAGER_THRESHOLD)
if (msg_size < MV2_EAGER_THRESHOLD + 1KB)

MPI_T_cvar_write(MV2_EAGER_THRESHOLD, +1024)
MPI_Send(..)
MPI_T_finalize(..)

Co-designing Applications to use MPI-T

Example Pseudo-code: Optimizing the eager limit dynamically:

27

Outline

• Introduction
• The MPI Tools Interfaces and Benefits
• Integrating TAU and MVAPICH2 with MPI_T

28

Integrating TAU with MVAPICH2 through MPI_T Interface

● Enhance existing support for MPI_T in
MVAPICH2 to expose a richer set of
performance and control variables

● Get and display MPI Performance
Variables (PVARs) made available by
the runtime in TAU

● Control the runtime’s behavior via MPI
Control Variables (CVARs)

● Add support to MVAPICH2 and TAU for
interactive performance engineering
sessions

29

Three Scenarios for Integration

30

Scenario 1: Non-interactive mode

Scenario 3: Policy driven mode

Scenario 2: User-interactive mode

TAU Performance Measurement Model

enter/exit events
are “interval” events (in shared memory)

application-wide
performance data

31

TAU Plugin Architecture
Extend TAU event interface for plugins

• Events: interval, atomic
• Specialized on event ID
• Synchronous operation

Create TAU interface for trigger plugins
• Named trigger
• Pass application data
• Synchronous
• Asynchronous using agent plugin

32

TAU Plugin Architecture
• Both event and trigger plugins are synchronous

• Directly called from the application
• Execute inline with the application
• Use an application’s thread of execution

• Consider utilizing a separate thread of execution to perform performance analysis
functions
• For instance, periodic daemon to sample performace

• Design an agent plugin mechanism
• Create an execution thread to execute plugin
• Register plugin with this execution thread

33

TAU Plugin Architecture
• Parallel performance systems do not typically do runtime analytics when making

measurements
• Want to extend a performance system with additional analytics functionality

WITHOUT building it directly into the performance system
• Apply a plugin architecture approach

• Develop analytics plugins (common, application)
• Register (load) them with the performance system

• Plugins have access to performance data state
• Plugins can utilize the parallel execution context

34

Plugin-based Infrastructure for Non-Interactive Tuning

• TAU supports a fully-customizable plugin
infrastructure based on callback event handler
registration for salient states inside TAU:
• Function Registration / Entry / Exit
• Phase Entry / Exit
• Atomic Event Registration / Trigger
• Init / Finalize Profiling
• Interrupt Handler
• MPI_T

• Application can define its own “trigger” states
and associated plugins
• Pass arbitrary data to trigger state plugins

35

TAU Customization

36

• TAU states can be named or generic
• TAU distinguishes named states in a way that allows for separation of

occurrence of a state from the action associated with it
• Function entry for “foo” and “bar” represent distinguishable states in TAU

• TAU maintains an internal map of a list of plugins associated with each state

TAU Runtime Control of Plugin

37

• TAU defines a plugin API to deliver access control to the internal
plugin map

• User can specify a regular expression to control plugins executed
for a class of named states at runtime
• Access to map on a process is serialized: application is expected

to access map through main thread

TAU Phase Based Recommendations

38

• MiniAMR: Benefits from hardware offloading using SHArP
hardware offload protocol supported by MVAPICH2 for
MPI_Allreduce operation

• Recommendation Plugin:
• Registers callback for “Phase Exit” event
• Monitors message size through PMPI interface
• If message size is low and execution time inside

MPI_Allreduce is significant, a recommendation is
generated on ParaProf (TAU’s GUI) for the user to set the
CVAR enabling SHArP

TAU Per-Phase Recommendations in ParaProf

39

Enhancing MPI_T Support
● Introduced support for new MPI_T based CVARs to MVAPICH2

○ MPIR_CVAR_MAX_INLINE_MSG_SZ
■ Controls the message size up to which “inline” transmission of data is

supported by MVAPICH2
○ MPIR_CVAR_VBUF_POOL_SIZE

■ Controls the number of internal communication buffers (VBUFs)
MVAPICH2 allocates initially. Also,
MPIR_CVAR_VBUF_POOL_REDUCED_VALUE[1] ([2…n])

○ MPIR_CVAR_VBUF_SECONDARY_POOL_SIZE
■ Controls the number of VBUFs MVAPICH2 allocates when there are no

more free VBUFs available
○ MPIR_CVAR_IBA_EAGER_THRESHOLD

■ Controls the message size where MVAPICH2 switches from eager to
rendezvous protocol for large messages

● TAU enhanced with support for setting MPI_T CVARs in a non-interactive
mode for uninstrumented applications

40

MVAPICH2

● Several new MPI_T based PVARs added to MVAPICH2
○ mv2_vbuf_max_use, mv2_total_vbuf_memory etc

● Enhanced TAU with support for tracking of MPI_T PVARs and CVARs for
uninstrumented applications
○ ParaProf, TAU’s visualization front end, enhanced with support for

displaying PVARs and CVARs
○ TAU provides tau_exec, a tool to transparently instrument MPI routines

○ Uninstrumented:
% mpirun –np 1024 ./a.out

○ Instrumented:
– % export TAU_TRACK_MPI_T_PVARS=1
– % export TAU_MPI_T_CVAR_METRICS=MPIR_CVAR_VBUF_POOL_SIZE
– % export TAU_MPI_T_CVAR_VALUES=16
– % mpirun -np 1024 tau_exec -T mvapich2,mpit ./a.out

41

PVARs Exposed by MVAPICH2

42

CVARs Exposed by MVAPICH2

43

Using MVAPICH2 and TAU with Multiple CVARs

• To set CVARs or read PVARs using TAU for an uninstrumented binary:
% export TAU_TRACK_MPI_T_PVARS=1
% export TAU_MPI_T_CVAR_METRICS=

MPIR_CVAR_VBUF_POOL_REDUCED_VALUE[1],
MPIR_CVAR_IBA_EAGER_THRESHOLD

% export TAU_MPI_T_CVAR_VALUES=32,64000
% export PATH=/path/to/tau/x86_64/bin:$PATH
% mpirun -np 1024 tau_exec -T mvapich2,mpit ./a.out
% paraprof

44

VBUF usage without CVARs

45

VBUF usage with CVARs

Total memory used by VBUFs is reduced from 3,313,056 to 1,815,056

46

VBUF Memory Usage Without CVAR

47

VBUF Memory Usage With CVAR

% export TAU_TRACK_MPI_T_PVARS=1
% export TAU_MPI_T_CVAR_METRICS=MPIR_CVAR_VBUF_POOL_SIZE
% export TAU_MPI_T_CVAR_VALUES=16
% mpirun -np 1024 tau_exec -T mvapich2 ./a.out

48

TAU: Extending Control Variables on a Per-Communicator Basis
• Based on named communicators (MPI_Comm_set_name) in an application,

TAU allows a user to specify triples to set MPI_T cvars for each communicator:
• Communicator name
• MPI_T CVAR name
• MPI_T CVAR value

• % ./configure –mpit –mpi –c++=mpicxx –cc=mpicc –fortran=mpif90 …
• % make install
• % export TAU_MPI_T_COMM_METRIC_VALUES=<comm, cvar, value>,…
• % mpirun –np 64 tau_exec –T mpit ./a.out
• % paraprof

49

COMB LLNL App MPI_T Tuning for COMB_MPI_CART_COMM
bash-4.2$

TAU_MPI_T_COMM_METRIC_VALUES=COMB_MPI_CART_COMM,MPIR_CVAR_GPUDIRECT_LIMIT,2097152,COMB_MPI_CART_COMM,MPIR_CVAR_USE_GPUDIRECT_RECEIVE_LIMIT,2097152,
COMB_MPI_CART_COMM,MPIR_CVAR_CUDA_IPC_THRESHOLD,16384 MV2_USE_CUDA=1 mpirun -np 8 tau_exec -ebs -T mvapich2,mpit,cuda9,cupti,communicators,gnu -cupti ./comb -comm
post_recv wait_all -comm post_send wait_all -comm wait_recv wait_all -comm wait_send wait_all 200_200_200 -divide 2_2_2 -periodic 1_1_1 -ghost 1_1_1 -vars 3 -cycles 100 -comm cutoff
250 -omp_threads 1

Started rank 0 of 8
Node lassen710
Compiler COMB_COMPILER
Cuda compiler COMB_CUDA_COMPILER
GPU 0 visible undefined
Not built with openmp, ignoring -omp_threads 1.
Cart coords 0 0 0
Message policy cutoff 250
Post Recv using wait_all method
Post Send using wait_all method
Wait Recv using wait_all method
Wait Send using wait_all method
Num cycles 100
Num vars 3
ghost_widths 1 1 1
sizes 200 200 200
divisions 2 2 2
periodic 1 1 1
division map
map 0 0 0
map 100 100 100
map 200 200 200
Starting test memcpy seq dst Host src Host
Starting test Comm mock Mesh seq Host Buffers seq Host seq Host
Starting test Comm mpi Mesh seq Host Buffers seq Host seq Host

50

Default With MPI_T CVARs

COMB Profile

51

CVARs Exposed by MVAPICH2

52

Path Aware Profiling in TAU and MVAPICH2

53

• To identify the path taken by an MPI message:
• GPU memory to GPU memory
• Unique send and receive path ids captured

• Configure TAU with -PROFILEPATHS:
• Partition the time in MPI pt-to-pt operations:

• MPI_Send and MPI_Recv
• Parameter based profiling identifies paths

• Path captured as metadata in TAU profiles
• PVARs based on CUPTI counters
• MVAPICH2 exports PVARs to TAU with MPI_T

Path Aware Profiling in TAU and MVAPICH2

54

• Available for download in TAU v2.29.1

TAU‘s ParaProf 3D Browser

55

Download TAU from U. Oregon

http://tau.uoregon.edu
http://taucommander.com

http://www.hpclinux.com [OVA for VirtualBox]
https://e4s.io [Extreme-scale Scientific Software Stack]

for more information
Free download, open source, BSD license

56

http://tau.uoregon.edu
http://taucommander.com
http://www.hpclinux.com
https://e4s.io

PRL, OACISS, University of Oregon, Eugene

www.uoregon.edu

57

http://www.uoregon.edu

Support Acknowledgments
US Department of Energy (DOE)

• ANL
• Office of Science contracts, ECP
• SciDAC, LBL contracts
• LLNL-LANL-SNL ASC/NNSA contract
• Battelle, PNNL and ORNL contract

CEA, France
Department of Defense (DoD)

• PETTT, HPCMP
National Science Foundation (NSF)

• SI2-SSI, Glassbox
Intel, NVIDIA (Mellanox), AWS, AMD, Broadcom, IBM, Google
NASA
Partners:

•University of Oregon
•The Ohio State University
•ParaTools, Inc.
•University of Tennessee, Knoxville
•T.U. Dresden, GWT
•Jülich Supercomputing Center

58

Reference

59

Installing and Configuring TAU
•Installing PDT:

• wget tau.uoregon.edu/pdt_lite.tgz
• ./configure –prefix=<dir>; make ; make install

•Installing TAU:
• wget tau.uoregon.edu/tau.tgz; tar zxf tau.tgz; cd tau-2.<ver>
• wget http://tau.uoregon.edu/ext.tgz ; tar xf ext.tgz
• ./configure -bfd=download -pdt=<dir> -papi=<dir> -mpi

–pthread –c++=mpicxx –cc=mpicc –fortran=mpif90
–dwarf=download –unwind=download –otf=download
–iowrapper –papi=<dir>

• make install

•Using TAU:
• export TAU_MAKEFILE=<taudir>/x86_64/lib/Makefile.tau-

<TAGS>
• make CC=tau_cc.sh CXX=tau_cxx.sh F90=tau_f90.sh

60

Compile-Time Options
Optional parameters for the TAU_OPTIONS environment variable:
% tau_compiler.sh

-optVerbose Turn on verbose debugging messages
-optCompInst Use compiler based instrumentation
-optNoCompInst Do not revert to compiler instrumentation if source

instrumentation fails.
-optTrackIO Wrap POSIX I/O call and calculates vol/bw of I/O operations

(Requires TAU to be configured with –iowrapper)
-optTrackGOMP Enable tracking GNU OpenMP runtime layer (used without –opari)
-optMemDbg Enable runtime bounds checking (see TAU_MEMDBG_* env vars)
-optKeepFiles Does not remove intermediate .pdb and .inst.* files
-optPreProcess Preprocess sources (OpenMP, Fortran) before instrumentation
-optTauSelectFile=”<file>" Specify selective instrumentation file for tau_instrumentor
-optTauWrapFile=”<file>" Specify path to link_options.tau generated by tau_gen_wrapper
-optHeaderInst Enable Instrumentation of headers
-optTrackUPCR Track UPC runtime layer routines (used with tau_upc.sh)
-optLinking="" Options passed to the linker. Typically

$(TAU_MPI_FLIBS) $(TAU_LIBS) $(TAU_CXXLIBS)
-optCompile="" Options passed to the compiler. Typically

$(TAU_MPI_INCLUDE) $(TAU_INCLUDE) $(TAU_DEFS)
-optPdtF95Opts="" Add options for Fortran parser in PDT (f95parse/gfparse) …

61

Compile-Time Options (contd.)

Optional parameters for the TAU_OPTIONS environment variable:
% tau_compiler.sh

-optShared Use TAU’s shared library (libTAU.so) instead of static library (default)
-optPdtCxxOpts=“” Options for C++ parser in PDT (cxxparse).
-optPdtF90Parser=“” Specify a different Fortran parser
-optPdtCleanscapeParser Specify the Cleanscape Fortran parser instead of GNU gfparser
-optTau=“” Specify options to the tau_instrumentor
-optTrackDMAPP Enable instrumentation of low-level DMAPP API calls on Cray
-optTrackPthread Enable instrumentation of pthread calls

See tau_compiler.sh for a full list of TAU_OPTIONS.

…

62

Environment Variable Default Description

TAU_TRACE 0 Setting to 1 turns on tracing

TAU_CALLPATH 0 Setting to 1 turns on callpath profiling

TAU_TRACK_MEMORY_FOO
TPRINT

0 Setting to 1 turns on tracking memory usage by sampling periodically the resident set size
and high water mark of memory usage

TAU_TRACK_POWER 0 Tracks power usage by sampling periodically.

TAU_CALLPATH_DEPTH 2 Specifies depth of callpath. Setting to 0 generates no callpath or routine information,
setting to 1 generates flat profile and context events have just parent information (e.g.,
Heap Entry: foo)

TAU_SAMPLING 1 Setting to 1 enables event-based sampling.

TAU_TRACK_SIGNALS 0 Setting to 1 generate debugging callstack info when a program crashes

TAU_COMM_MATRIX 0 Setting to 1 generates communication matrix display using context events

TAU_THROTTLE 1 Setting to 0 turns off throttling. Throttles instrumentation in lightweight routines that are
called frequently

TAU_THROTTLE_NUMCALLS 100000 Specifies the number of calls before testing for throttling

TAU_THROTTLE_PERCALL 10 Specifies value in microseconds. Throttle a routine if it is called over 100000 times and
takes less than 10 usec of inclusive time per call

TAU_CALLSITE 0 Setting to 1 enables callsite profiling that shows where an instrumented function was
called. Also compatible with tracing.

TAU_PROFILE_FORMAT Profile Setting to “merged” generates a single file. “snapshot” generates xml format

TAU_METRICS TIME Setting to a comma separated list generates other metrics. (e.g.,
ENERGY,TIME,P_VIRTUAL_TIME,PAPI_FP_INS,PAPI_NATIVE_<event>:<subevent>)

TAU’s Runtime Environment Variables

63

Environment Variable Default Description

TAU_TRACE 0 Setting to 1 turns on tracing

TAU_TRACE_FORMAT Default Setting to “otf2” turns on TAU’s native OTF2 trace generation (configure with –
otf=download)

TAU_EBS_UNWIND 0 Setting to 1 turns on unwinding the callstack during sampling (use with tau_exec –ebs
or TAU_SAMPLING=1)

TAU_EBS_RESOLUTION line Setting to “function” or “file” changes the sampling resolution to function or file level
respectively.

TAU_TRACK_LOAD 0 Setting to 1 tracks system load on the node

TAU_SELECT_FILE Default Setting to a file name, enables selective instrumentation based on exclude/include lists
specified in the file.

TAU_OMPT_SUPPORT_LEVEL basic Setting to “full” improves resolution of OMPT TR6 regions on threads 1.. N-1. Also,
“lowoverhead” option is available.

TAU_OMPT_RESOLVE_ADDRESS_
EAGERLY

1 Setting to 1 is necessary for event based sampling to resolve addresses with OMPT.
Setting to 0 allows the user to do offline address translation.

Runtime Environment Variables

64

Environment Variable Default Description

TAU_TRACK_MEMORY_LEAKS 0 Tracks allocates that were not de-allocated (needs –optMemDbg or tau_exec
–memory)

TAU_EBS_SOURCE TIME Allows using PAPI hardware counters for periodic interrupts for EBS (e.g.,
TAU_EBS_SOURCE=PAPI_TOT_INS when TAU_SAMPLING=1)

TAU_EBS_PERIOD 100000 Specifies the overflow count for interrupts

TAU_MEMDBG_ALLOC_MIN/MAX 0 Byte size minimum and maximum subject to bounds checking (used with
TAU_MEMDBG_PROTECT_*)

TAU_MEMDBG_OVERHEAD 0 Specifies the number of bytes for TAU’s memory overhead for memory
debugging.

TAU_MEMDBG_PROTECT_BELOW/AB
OVE

0 Setting to 1 enables tracking runtime bounds checking below or above the
array bounds (requires –optMemDbg while building or tau_exec –memory)

TAU_MEMDBG_ZERO_MALLOC 0 Setting to 1 enables tracking zero byte allocations as invalid memory
allocations.

TAU_MEMDBG_PROTECT_FREE 0 Setting to 1 detects invalid accesses to deallocated memory that should not
be referenced until it is reallocated (requires –optMemDbg or tau_exec –
memory)

TAU_MEMDBG_ATTEMPT_CONTINUE 0 Setting to 1 allows TAU to record and continue execution when a memory
error occurs at runtime.

TAU_MEMDBG_FILL_GAP Undefined Initial value for gap bytes

TAU_MEMDBG_ALINGMENT Sizeof(int) Byte alignment for memory allocations

TAU_EVENT_THRESHOLD 0.5 Define a threshold value (e.g., .25 is 25%) to trigger marker events for
min/max

Runtime Environment Variables

65

Acknowledgment

“This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of
two U.S. Department of Energy organizations (Office of Science and the National Nuclear Security

Administration) responsible for the planning and preparation of a capable exascale ecosystem, including
software, applications, hardware, advanced system engineering, and early testbed platforms, in support

of the nation’s exascale computing imperative.”

66

