

Performance of Applications on Nurion and Neuron Utilizing MVAPICH2

Minsik Kim, Ph.D. Supercomputing Infrastructure Center, KISTI

9th Annual MVAPICH User Group Meeting (MUG'21)

Introduction to KISTI-5 Supercomputer and Future Roadmap

KISTI Supercomputing Center

- The National Supercomputing Center in Korea
- Provide computational resources and its support to R&D communities in Korea
- Nurion (KISTI-5): CPU system, Neuron: GPU system
- KISTI-6 production will start in 2023

KISTI-5 Procurement & Deployment

'15.06 '15.07.07	0	Data Center Building constructed Approved from Preliminary feasibility study
'16.03 '16.10~12	o	RFI and BMT Code release 1 st Bidding
'17.02~05 '17.06~07 '17.08 '17.11	0 0 0	2 nd Bidding Cray Inc. won the bid and Tech/Price Negotiation Contract finalized (49M USD) Pilot system(16nodes) delivered
'17.12~'18.4 '18.05~09 '18.07~10 '18.10~11 '18.12~		Main system delivery and deployment BMT, Functional and Stability Test Early Access on Pilot system Main system Beta service Production

KISTI Facility PUE 1.35

Cray CS500 25.7PFlops

KISTI-5 Compute Nodes

The Largest KNL/OPA based commodity cluster System Rpeak 25.7PFlops, Rmax 13.9PFlops

Compute nodes

8,305 KNL Computing modules, 116 Racks, 25.3PF

- > 1x Xeon Phi KNL 7250, 68Cores 1.4GHz, AVX512
- 3TFlops Peak, ~0.2 Bytes/Flops,
- > 96GB (6x16GB) DDR4-2400 6 channel RAM,
- > 16GB HBM (460GB/s)
- > 1x 100Gbps OPA HFI, 1x On-board GigE Port

CPU-only nodes

132 Skylake Computing modules, 4 Racks, 0.4PF

- > 2x Xeon SKX 6148 CPUs, 2.4GHz, AVX512
- > 192GB (12x 16GB) DDR4-2666 RAM
- 1x Single-port 100Gbps OPA HFI card
- > 1x On-board GigE (RJ45) port

KISTI-5 Storage System

KISTI-5 OPA Interconnect

2:1 Blocking OPA Interconnect

Benchmark Performance Result

Category	Features	# of nodes	Score	World Ranking
HPL	Large-scale Dense Matrix Computation Used for Top500	8,174(KNL) + 122(SKX)	13.93PF	31 st (Jun 2021)
HPCG	Large-scale Sparse Matrix Computation Similar to normal user applications	8,250(KNL)	0.39PF	22 nd (Jun 2021)
Graph500	Breadth-First Search, Single-Source Shortest Paths	1,024(KNL)	1,456GTEPS 337GTEPS	11 th (Jun 2021) 4 th (Jun 2021)
IO500	Various IO Workloads	2,048(KNL)	282.45	12 th (Jun 2021)

Neuron

- GPU system in KISTI (1.24 PFlops in 2020)
 - Intel Xeon Ivy Bridge (IVY), Skylake (SKL), NVIDIA K40, V100
 - 12 GB (K40), 16GB, 32GB (V100) GPU memory
 - Mellanox FDR, EDR InfiniBand
- Extends system size in every year
 - GPU servers with NVIDIA A100 in 2021 (0.93 PFlops)
 - New storage in 2021
- Testbed for KISTI-6
 - AMD Instinct MI100, NVIDIA A100

Performance Test on Nurion and Neuron

Performance of Applications on Nurion and Neuron

- Preliminary feasibility study for KISTI-6
- Prepare benchmark candidate and expected performance for KISTI-6
 - Update performance results with recent MVAPICH2 library
 - Do similar performance test on Neuron if possible
- Benchmarks
 - OSU Micro-Benchmarks (OMB)
 - NAS Parallel Benchmarks (NPB)
- Applications
 - Direct Numerical Simulation Turbulent Boundary Layer (DNS-TBL)
 - Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)
 - CosmoFlow
- Experimental environment
 - Intel Fortran/C++ compiler 19.1.2
 - MVAPICH2 2.3.6
 - NVIDIA CUDA 10.0
 - MVAPICH2-GDR 2.3.4

OMB: Collective communication on Nurion

- For the verification of the MVAPICH2 2.3.6 installation
- Collective communications on 2 2048 nodes (Message size: 64 bytes)
- Similar performance compared to MVAPICH2 2.3.1

OMB: P2P & Collective communication on Neuron

- P2P inter-node communications on 2 GPU nodes (V100)
- Collective communications on 4 GPU nodes (V100)
- Better performance on small message compared to MVAPICH2

NPB: NAS Parallel Benchmarks on Nurion

- Benchmarks are derived from computational fluid dynamics applications
- Experimental environment
 - Evaluation on 256-1296 nodes on normal queue (cache mode)
 - Problem Class = F (Grid size: $2560 \times 2560 \times 2560$), strong scaling
 - 1 OpenMP thread, PPN = 64, 16384-82944 MPI processes
- Performance evaluation
 - MVAPICH2 2.3.6 is 3% 10% faster on NPB benchmark compared to MVAPICH2 2.3.1
 - MVAPICH2 2.3.6 shows better performance on the small number of nodes
 - MVAPICH2-X shows better performance on the <u>large number of nodes</u> (XPMEM)

DNS-TBL

- Direct Numerical Simulation Turbulent Boundary Layer*
- Velocity solver and pressure solver (Application of turbulent flow)
- Solve the continuity and incompressible Navier-Stokes equation
 - Second-order finite difference scheme on the 7-point stencil
 - Discretized into hepta-diagonal matrix in 3D, and broke into 3 tridiagonal matrices
 - Transformed pressure Poisson's equation into a single tridiagonal matrix by 2D FFT
- Optimized code for Intel[®] Xeon Phi[™] Processor, Fortran, FFTW 3.3.7 library

cience and Technology Informat

* J-H. Kang and Hoon Ryu, Acceleration of Turbulent Flow Simulations with Intel Xeon Phi(TM) Manycore Processors (IEEE CLUSTER 2017)

DNS-TBL: Experiment Results on Nurion

- Experimental environment
 - Evaluation on 64-256 nodes on normal queue (cache mode)
 - 8193 X 401 X 8193 grids, 800 Reynolds number, 10 time step, strong scaling
 - 8 OpenMP thread, PPN = 8, 512-2048 MPI processes
- Performance evaluation
 - MVAPICH2 2.3.6 shows better performance on velocity and pressure solver
 - Similar performance results on update velocity and pressure and others
 - MVAPICH2 2.3.6 shows better performance on DNS-TBL

LAMMPS

- Large-scale Atomic/Molecular Massively Parallel Simulator*
- Molecular dynamics simulator
- Rhodo benchmark: Rhodopsin protein in solvated lipid bilayer
- Pair, Bond, K-space, Neighbor, Output, Modify, and others
- Version: 3Mar20

LAMMPS: Experimental Results on Nurion

- Experimental environment
 - Evaluation on 2-64 nodes on normal queue (cache mode)
 - 10X10X10 with 32M atoms, strong scaling
 - 1 OpenMP thread, PPN = 64, 128-4096 MPI processes
- Performance evaluation
 - MVAPICH2 2.3.6 is 1% 5% faster on LAMMPS compared to MVAPICH2 2.3.1

LAMMPS: Experimental Results on Neuron

- Experimental environment
 - Evaluation on 1-3 V100 GPU nodes
 - 8X8X8 with 16M atoms, strong scaling
 - 1 OpenMP thread, PPN = 20 for CPU part
- Performance evaluation
 - It shows some performance gain and scalability even in small problem
 - Hard to fit large problem on V100 HBM memory

CosmoFlow Benchmark on Neuron and Neuron

- MLPerf HPC v0.5
- Nurion: KNL 64-1024 nodes
- Neuron: 4x V100 1-4 nodes
- Network: 3D CNN
- Dataset: cosmoUniverse_2019_02_4 (2.1 TB)
- Local batch size: 1, 4

* A. Mathuriya *et al.*, CosmoFlow: using deep learning to learn the universe at scale (International Conference for High Performance Computing, Networking, Storage, and Analysis, 2018)

Conclusion & Future Plan

- Additional performance improvements with MVAPICH2 version upgrade
 - There was performance improvements due to MPI communication improvement.
 - It could be reflected in the performance prediction of KISTI-6
- Neuron on MVAPICH2-GDR
 - Due to the system scale, MPI communication performance has less effect on the application performance compared to Nurion.
 - Additional experiment will be proceed after the system extension is completed
- Prepare benchmark candidates for KISTI-6
 - HPC in-house codes are quite difficult to test due to program porting issues
 - Although HPC application has been ported to the GPU, there is a limit to performing largescale tasks due to the GPU memory capacity
 - ML applications is already good fit to GPU system

