
OpenHPC: Community Building
Blocks for HPC Systems

Karl W. Schulz, Ph.D.
Scalable Datacenter Solutions Group, Intel

4th Annual MVAPICH User Group (MUG) Meeting
August 17, 2016 w Columbus, Ohio

http://openhpc.community

Outline

• Motivation and brief history for this new community effort

• Overview of project governance

• Stack overview

• What’s coming

2

Motivation for Community Effort

• Many sites spend considerable effort aggregating a large suite of open-source
projects to provide a capable HPC environment for their users:

- necessary to build/deploy HPC focused packages that are either absent or do not keep
pace from Linux distro providers

- local packaging or customization frequently tries to give software versioning access to
users (e.g. via modules or similar equivalent)

• OpenHPC is focused on establishing a centralizing community effort to:

- provide a collection of pre-packaged binary components that can be used to help install
and manage HPC systems throughout their lifecycle

- implement integration testing to gain validation confidence

- allow and promote multiple system configuration recipes that leverage community
reference designs and best practices

- provide additional distribution/integration mechanisms for leading research groups
releasing open-source software

- foster identification and development of relevant interfaces between supported
components that allows for simple component replacement and customization

3

OpenHPC: a brief History…

• ISC’15 (June 2015) – BoF discussion on the merits/interest in a Community Supported
HPC Repository and Management Framework
- discussed convenience of distribution via standard Linux package managers

- feedback at the time was that most parties were interested in CentOS/SLES

- consensus that “modules” or equivalent needed to provide capable end-user
development environment

• MUG’15 (August 2015) - shamelessly squeezed in a sidebar about potential interest in a
community supported HPC repo

• SC’15 (November 2015) – Follow on BoF for a Comprehensive Open Community HPC
Software Stack
- initial seeding of OpenHPC and a 1.0 release

- variety of interested community members assembled thru the Linux Foundation to work towards
establishing a formal, collaborative project

• Nov’15 – May’16
- Linux Foundation working group collaborating to define participating agreement, initial

governance structure and solicit volunteers

➨ June 16, 2016 – Linux Foundation announces technical, leadership and member
investment milestones with founding members and formal governance structure

4

Mixture of Academics, Labs,
OEMs, and ISVs/OSVs

OpenHPC: Project Members

Argonne
National
Laboratory

CEA

Project member participation interest? Please contact
Jeff ErnstFriedman jernstfriedman@linuxfoundation.org

6

Community Governance Overview
Governing Board + Technical Steering Committee

Governing	
 Board

Board	

Representatives

Board	
 Representatives	

for	
 other	
 Members,	

Indirect	

Representation	
 (X:1)

TSC	
 Director	

TSC

Technical Project
Leadership

Architecture, Component
selection , releases, day-­to-­
day tech work

Budgetary oversight
IP policies, marketing
Long-­term roadmap
guidance

HPC
Community

7

OpenHPC TSC - Role Overview

OpenHPC
Technical Steering Committee (TSC)

Maintainers
Integration
Testing

Coordinator(s)

Upstream Component
Development

Representative(s)

Project
Leader

End-­User / Site
Representative(s)

8

OpenHPC TSC – Individual Members

• Reese Baird, Intel (Maintainer)
• Pavan Balaji, Argonne National Laboratory (Maintainer)
• David Brayford, LRZ (Maintainer)
• Todd Gamblin, Lawrence Livermore National Labs (Maintainer)
• Craig Gardner, SUSE (Maintainer)
• Yiannis Georgiou, ATOS (Maintainer)
• Balazs Gerofi, RIKEN (Component Development Representative)
• Jennifer Green, Los Alamos National Laboratory (Maintainer)
• Eric Van Hensbergen, ARM (Maintainer, Testing Coordinator)
• Douglas Jacobsen, NERSC (End-User/Site Representative)
• Chulho Kim, Lenovo (Maintainer)
• Greg Kurtzer, Lawrence Berkeley National Labs (Component Development Representative)
• Thomas Moschny, ParTec (Maintainer)
• Karl W. Schulz, Intel (Project Lead, Testing Coordinator)
• Derek Simmel, Pittsburgh Supercomputing Center (End-User/Site Representative)
• Thomas Sterling, Indiana University (Component Development Representative)
• Craig Stewart, Indiana University (End-User/Site Representative)
• Scott Suchyta, Altair (Maintainer)
• Nirmala Sundararajan, Dell (Maintainer)

https://github.com/openhpc/ohpc/wiki/Governance-­Overview

Stack Overview

• Packaging efforts have HPC in mind and include compatible modules (for
use with Lmod) with development libraries/tools

• Endeavoring to provide hierarchical development environment that is
cognizant of different compiler and MPI families

• Intent is to manage package dependencies so they can be used as
building blocks (e.g. deployable with multiple provisioning systems)

• Include common conventions for env variables

• Development library install example:
yum install petsc-gnu-mvapich2-ohpc

• End user interaction example with above install: (assume we are a user
wanting to build a PETSC hello world in C)
$ module load petsc
$ mpicc -I$PETSC_INC petsc_hello.c -L$PETSC_LIB –lpetsc

10

OpenHPC 1.1.1 - Current S/W components

Functional Areas Components

Base OS CentOS 7.2, SLES12 SP1

Administrative
Tools

Conman, Ganglia, Lmod, LosF, Nagios, pdsh, prun, EasyBuild, ClusterShell,
mrsh, Genders, Shine, Spack

Provisioning Warewulf

Resource Mgmt. SLURM, Munge

Runtimes OpenMP, OCR

I/O Services Lustre client (community version)

Numerical/Scient
ific Libraries

Boost, GSL, FFTW, Metis, PETSc, Trilinos, Hypre, SuperLU, SuperLU_Dist,
Mumps, OpenBLAS, Scalapack

I/O Libraries HDF5 (pHDF5), NetCDF (including C++ and Fortran interfaces), Adios

Compiler
Families GNU (gcc, g++, gfortran)

MPI Families MVAPICH2, OpenMPI

Development
Tools Autotools (autoconf, automake, libtool), Valgrind,R, SciPy/NumPy

Performance
Tools PAPI, IMB, mpiP, pdtoolkit TAU

Notes:
• Additional dependencies

that are not provided by
the BaseOS or community
repos (e.g. EPEL) are also
included

• 3rd Party libraries are built
for each compiler/MPI
family (6 combinations
typically)

• Resulting repositories
currently comprised of
~270 RPMs

11

Hierarchical Overlay for OpenHPC software

Distro Repo

OHPC Repo

Centos 7

gcc Intel Composer

MVAPICH2 IMPI OpenMPI

boost-gnu-openmpi
boost-gnu-impi
boost-gnu-mvapich2

phdf5-gnu-openmpi
phdf5-gnu-impi
phdf5-gnu-openmpi

Parallel
Apps/Libs

MVAPICH2 IMPI OpenMPI

lmod slurm munge losf

warewulf lustre client pdsh

Development Environment

General Tools
and System

 Services

hdf5-gnu hdf5-intelSerial Apps/Libs

Boost pHDF5

boost-intel-openmpi
boost-intel-impi
boost-intel-mvapich2

phdf5-intel-openmpi
phdf5-intel-impi
phdf5-intel-mvapich2

Boost pHDF5

Compilers

MPI
Toolchains

ohpc prun

Standalone
3rd party
components

Stack Overview: Bare metal install

• Step1: Example OpenHPC 1.1 recipe assumes base OS is first installed
on chosen master (SMS) host - e.g. install CentOS7.2 on SMS

• Step2: Enable OpenHPC repo using pre-packaged ohpc-release (or
mirror repo locally)

12

export OHPC_GITHUB=https://github.com/openhpc/ohpc/releases/download
rpm -ivh ${OHPC_GITHUB}/v1.1.GA/ohpc-release-1.1-1.x86_64.rpm

Stack Overview: Bare metal install (cont.)

• Note that ohpc-release enables two repos:

• Step3: install desired building blocks to build cluster or
add development tools. Convenience aliases are provided
to group related functionality

13

Add provisioning
components

Add SLURM server
components

Example optional
configuration enabling
IPoIB (e.g. to support
Lustre over IB)

Install Guide - CentOS7.1 Version (v1.0)

that the OpenHPC repository be mirrored locally. The example which follows illustrates the addition of the
OpenHPC repository using the ${ohpc repo} variable.

[sms]# ohpc_repo=http://build.openhpc.community/OpenHPC:/1.0/CentOS_7.1/OpenHPC:1.0.repo

Once set, the repository can be enabled via the following:

[sms]# wget -P /etc/yum.repos.d ${ohpc_repo}

In addition to the OpenHPC package repository, the master host also requires access to the standard
base OS distro repositories in order to resolve necessary dependencies. For CentOS7.1, the requirements are
to have access to both the base OS and EPEL repositories for which mirrors are freely available online:

• CentOS-7 - Base 7.1.1503 (e.g. http://mirror.centos.org/centos/7.1.1503/os/x86 64)
• EPEL 7 (e.g. http://download.fedoraproject.org/pub/epel/7/x86 64)

3.2 Installation template

The collection of command-line instructions that follow in this guide, when combined with local site inputs,
can be used to implement a bare-metal system installation and configuration. The format of these com-
mands is intended to be usable via direct cut and paste (with variable substitution for site-specific settings).
Alternatively, the OpenHPC documentation package includes a template script which includes a summary of
all of the commands used herein. This script can be used in conjunction with a simple text file to define the
local site variables defined in the previous section (§ 1.4) and is provided as a convenience for administrators.
For additional information on accessing this script, please see Appendix A.

3.3 Add provisioning services on master node

With the OpenHPC repository enabled, we can now begin adding desired components onto the master server.
This repository provides a number of aliases that group logical components together in order to help aid
in this process. For reference, a complete list of available group aliases and RPM packages available via
OpenHPC are provided in Appendix B. To add support for provisioning services, the following commands
illustrate addition of a common base package followed by the Warewulf provisioning system.

[sms]# yum -y groupinstall ohpc-base
[sms]# yum -y groupinstall ohpc-warewulf

Provisioning services with Warewulf rely on DHCP, TFTP, and HTTP network protocols. Depending
on the local Base OS configuration on the SMS host, default firewall rules may prohibit these services.
Consequently, this recipe assumes that the local firewall running on the SMS host is disabled. If installed,
the default firewall service can be disabled as follows:

[sms]# systemctl disable firewalld
[sms]# systemctl stop firewalld

HPC systems typically rely on synchronized clocks throughout the system and the NTP protocol can be
used to facilitate this synchronization. To enable NTP services on the SMS host with a specific ntp server
${ntp server}, issue the following:

[sms]# systemctl enable ntpd.service
[sms]# echo "server ${ntp_server}" >> /etc/ntp.conf
[sms]# systemctl restart ntpd

8 Rev: bf8c471

Install Guide - CentOS7.1 Version (v1.0)

3.4 Add resource management services on master node

The following command adds the Slurm workload manager server components to the chosen master host.
Note that client-side components will be added to the corresponding compute image in a subsequent step.

[sms]# yum -y groupinstall ohpc-slurm-server

Slurm requires the designation of a system user that runs the underlying resource management daemons.
The default configuration file that is supplied with the OpenHPC build of Slurm identifies this SlurmUser
to be a dedicated user named “slurm” and this user must exist. The following command can be used to add
this user to the master server:

[sms]# useradd slurm

3.5 Add InfiniBand support services on master node

The following command adds OFED and PSM support using base distro-provided drivers to the chosen
master host.

[sms]# yum -y groupinstall "InfiniBand Support"
[sms]# yum -y install infinipath-psm

Load IB drivers
[sms]# systemctl start rdma

With the InfiniBand drivers included, you can also enable (optional) IPoIB functionality which provides
a mechanism to send IP packets over the IB network. If you plan to mount a Lustre file system over
InfiniBand (see §3.7.4.4 for additional details), then having IPoIB enabled is a requirement for the Lustre
client. OpenHPC provides a template configuration file to aid in setting up an ib0 interface on the master

host. To use, copy the template provided and update the ${sms ipoib} and ${ipoib netmask} entries to
match local desired settings (alter ib0 naming as appropriate if system contains dual-ported or multiple
HCAs).

[sms]# cp /opt/ohpc/pub/examples/network/centos/ifcfg-ib0 /etc/sysconfig/network-scripts

Define local IPoIB address and netmask
[sms]# perl -pi -e "s/master_ipoib/${sms_ipoib}/" /etc/sysconfig/network-scripts/ifcfg-ib0
[sms]# perl -pi -e "s/ipoib_netmask/${ipoib_netmask}/" /etc/sysconfig/network-scripts/ifcfg-ib0

Initiate ib0
[sms]# ifup ib0

3.6 Complete basic Warewulf setup for master node

At this point, all of the packages necessary to use Warewulf on the master host should be installed. Next,
we need to update several configuration files in order to allow Warewulf to work with CentOS7.1 and to
support local provisioning using a second private interface (refer to Figure 1).

9 Rev: bf8c471

Install Guide - CentOS7.1 Version (v1.0)

3.4 Add resource management services on master node

The following command adds the Slurm workload manager server components to the chosen master host.
Note that client-side components will be added to the corresponding compute image in a subsequent step.

[sms]# yum -y groupinstall ohpc-slurm-server

Slurm requires the designation of a system user that runs the underlying resource management daemons.
The default configuration file that is supplied with the OpenHPC build of Slurm identifies this SlurmUser
to be a dedicated user named “slurm” and this user must exist. The following command can be used to add
this user to the master server:

[sms]# useradd slurm

3.5 Add InfiniBand support services on master node

The following command adds OFED and PSM support using base distro-provided drivers to the chosen
master host.

[sms]# yum -y groupinstall "InfiniBand Support"
[sms]# yum -y install infinipath-psm

Load IB drivers
[sms]# systemctl start rdma

With the InfiniBand drivers included, you can also enable (optional) IPoIB functionality which provides
a mechanism to send IP packets over the IB network. If you plan to mount a Lustre file system over
InfiniBand (see §3.7.4.4 for additional details), then having IPoIB enabled is a requirement for the Lustre
client. OpenHPC provides a template configuration file to aid in setting up an ib0 interface on the master

host. To use, copy the template provided and update the ${sms ipoib} and ${ipoib netmask} entries to
match local desired settings (alter ib0 naming as appropriate if system contains dual-ported or multiple
HCAs).

[sms]# cp /opt/ohpc/pub/examples/network/centos/ifcfg-ib0 /etc/sysconfig/network-scripts

Define local IPoIB address and netmask
[sms]# perl -pi -e "s/master_ipoib/${sms_ipoib}/" /etc/sysconfig/network-scripts/ifcfg-ib0
[sms]# perl -pi -e "s/ipoib_netmask/${ipoib_netmask}/" /etc/sysconfig/network-scripts/ifcfg-ib0

Initiate ib0
[sms]# ifup ib0

3.6 Complete basic Warewulf setup for master node

At this point, all of the packages necessary to use Warewulf on the master host should be installed. Next,
we need to update several configuration files in order to allow Warewulf to work with CentOS7.1 and to
support local provisioning using a second private interface (refer to Figure 1).

9 Rev: bf8c471

yum repolist
repo id repo name
OpenHPC OpenHPC-1.1 - Base
OpenHPC-updates OpenHPC-1.1 - Updates
base CentOS-7 - Base
epel Extra Packages for Enterprise Linux 7 - x86_64

*note that community recipe is purposefully very transparent
on config file edits and assumes Linux familiarity

Stack Overview: Bare metal install (cont.)

• Recipe guides necessarily have a number of things to “cut-and-paste” if you want
to reproduce them

• Have motivating need to automate during the validation process:
- Cull out relevant commands automatically for use during CI testing

- Seemed reasonable to make available directly, so there is a template starting script
available with the documentation RPM which can be used for local installation and
customization

14

Install Guide - CentOS7.1 Version (v1.0)

Appendices

A Installation Template

This appendix highlights the availability of a companion installation script that is included with OpenHPC
documentation. This script, when combined with local site inputs, can be used to implement a starting
recipe for bare-metal system installation and configuration. This template script is used during validation
e↵orts to test cluster installations and is provided as a convenience for administrators as a starting point for
potential site customization.

The template script relies on the use of a simple text file to define local site variables that were outlined
in §1.4. By default, the template install script attempts to use local variable settings sourced from the /opt/
ohpc/pub/doc/recipes/vanilla/input.local file, however, this choice can be overridden by the use of the
${OHPC INPUT LOCAL} environment variable. The template install script is intended for execution on the SMS
master host and is installed as part of the docs-ohpc package into /opt/ohpc/pub/doc/recipes/vanilla/
recipe.sh. After enabling the OpenHPC repository and reviewing the guide for additional information on
the intent of the commands, the general starting approach for using this template is as follows:

1. Install the docs-ohpc package

[sms]# yum -y install docs-ohpc

2. Copy the provided template input file to use as a starting point to define local site settings:

[sms]# cp /opt/ohpc/pub/doc/recipes/vanilla/input.local input.local

3. Update input.local with desired settings

4. Copy the template installation script which contains command-line instructions culled from this guide.

[sms]# cp -p /opt/ohpc/pub/doc/recipes/vanilla/recipe.sh .

5. Review and edit recipe.sh to suite.

6. Use environment variable to define local input file and execute recipe.sh to perform a local installation.

[sms]# export OHPC_INPUT_LOCAL=./input.local
[sms]# ./recipe.sh

Tip

Note that the template script provided is intended for use during initial installation and is not designed for
repeated execution. If modifications are required after using the script initially, we recommend running the
relevant subset of commands interactively.

24 Rev: bf8c471

All the commands from
example recipe included here

15

Development Infrastructure

OpenHPC Development Infrastructure
What are we using to get the job done....?

The usual software engineering stuff:
• GitHub (SCM and issue tracking/planning)

• Continuous Integration (CI) Testing (Jenkins)

• Documentation (Latex)

Capable build/packaging system

• At present, we target a common delivery/access mechanism that adopts Linux
sysadmin familiarity - ie. yum/zypper repositories for supported distros

- ultimately delivering RPMs

- [base] + [update] repositories to support life-cycle management

• Require flexible system to manage builds for multiple distros, multiple
compiler/MPI family combinations, and dependencies across packages

• Have engineered a system using Open Build Service (OBS) which is supported
by back-end git

- git houses .spec files, tarballs, patches, documentation recipes, and
integration tests

- OBS performs automated builds and dependency analysis

16

https://github.com/openhpc/ohpc

https://build.openhpc.community

17

Build System - OBS

• Using the Open Build
Service (OBS) to manage
build process

• OBS can drive builds for
multiple repositories

• Repeatable builds
carried out in chroot
environment

• Generates binary and src
rpms

• Publishes corresponding
package repositories

• Client/server
architecture supports
distributed build slaves
and multiple
architectures

https://build.openhpc.community

OpenHPC Build Architecture Conventions

• Motivation is to have single input to drive multiple output configurations
(e.g. hierarchy for compiler/MPI families)

• Also want to establish baseline install path conventions

• Leverage variety of macros to aid in this effort

18

$ cat OHPC_macros
%define OHPC_BUILD 1
%define PROJ_NAME ohpc
%define OHPC_HOME /opt/%{PROJ_NAME}
%define OHPC_ADMIN %{OHPC_HOME}/admin
%define OHPC_PUB %{OHPC_HOME}/pub
%define OHPC_COMPILERS %{OHPC_PUB}/compiler
%define OHPC_MPI_STACKS %{OHPC_PUB}/mpi
%define OHPC_APPS %{OHPC_PUB}/apps
%define OHPC_LIBS %{OHPC_PUB}/libs
%define OHPC_MODULES %{OHPC_PUB}/modulefiles
%define OHPC_MODULEDEPS %{OHPC_PUB}/moduledeps

Install Path Macros
$ cat OHPC_setup_mpi
if [-z "$OHPC_MPI_FAMILY"]; then

echo "Unknown OHPC_MPI_FAMILY"
exit 1

fi

if ["$OHPC_MPI_FAMILY" = "openmpi"]; then
module load openmpi

elif ["$OHPC_MPI_FAMILY" = "impi"]; then
module load impi

elif ["$OHPC_MPI_FAMILY" = "mvapich2"]; then
module load mvapich2

else
echo "Unsupported OHPC_MPI_FAMILY -> $OHPC_MPI_FAMILY"
exit 1

fi

MPI macros

/opt/ohpc <-­-­-­ Top-­level path convention for installs

OpenHPC Build Architecture Conventions (cont.)

• Default family
choice defined,
but can be
overridden

• Family
dependencies
embedded for
package
managers

19

Install Path Macros

%include %{_sourcedir}/OHPC_macros

OpenHPC convention: the default assumes the gnu compiler family;
however, this can be overridden by specifying the compiler_family
variable via rpmbuild or other mechanisms.

%{!?compiler_family: %define compiler_family gnu}

Compiler dependencies
BuildRequires: lmod%{PROJ_DELIM}
%if %{compiler_family} == gnu
BuildRequires: gnu-compilers%{PROJ_DELIM}
Requires: gnu-compilers%{PROJ_DELIM}
%endif
%if %{compiler_family} == intel
BuildRequires: gcc-c++ intel-compilers-devel%{PROJ_DELIM}
Requires: gcc-c++ intel-compilers-devel%{PROJ_DELIM}
%endif

Snippet from METIS .spec file

metis-­gnu-­ohpc

Example of compiler hierarchy template

gnu-­compilers-­ohpchypre-­gnu-­mvapich2-­ohpcyum/zypper install:

w

Build System - OBS

20

• OBS manages
dependency resolution
and rebuilds all
downstream packages

• Leveraging ability within
OBS to link related
packages

- Convenient for
packages with
compiler and MPI
dependencies

- Single commit drives
all package
permutations

• OBS builds automatically
triggered via git commit
hooks

$ ls metis-*
metis-gnu:
_service

metis-intel:
_link

$ cat metis-intel/_link
<link project='OpenHPC:1.1:Factory' package='metis-gnu'>
<patches>

<topadd>%define compiler_family intel</topadd>
</patches>
</link>

Snippets from METIS OBS config

<-­-­ Parent

<-­-­ Child

22

Integration Testing

Integration/Test/Validation

Testing is a key element for us and the intent is to build upon existing
validation efforts and augment component-level validation with targeted
cluster-validation and scaling initiatives including:

• install recipes
• cross-package interaction
• development environment

• mimic use cases common in HPC deployments
• upgrade mechanism

OS Distribution

Hardware +

Integrated Cluster Testing

+

Dev
 Tools

Parallel
Libs

Perf.
Tools

User Env

Mini
Apps

Serial
Libs

System
Tools

Resource
Manager

Provisioner

I/O Libs

Compilers

Software

 OpenHPC

Individual Component Validation

Integration/Test/Validation

• To facilitate global efforts in diagnostics/validation, we have devised a
standalone integration test infrastructure

• Intent was to create families of tests that could be used during:
- initial install process (can we build a system?)

- post-install process (does it work?)

- developing tests that touch all of the major components (can we compile
against 3rd party libraries, will they execute under resource manager, etc)

• Expectation is that each new component included will need
corresponding integration test collateral

• These integration tests and harness are included in GitHub repo

24

Provisioning OOB
Mgmt O/S Config

Mgmt.
Resource
Manager

User
Env Fabric Node-Level

Perf I/O 3rd Party
Libs Apps

Root Level User Space

Post Install Integration Tests - Overview

• Where do we get the tests? Ideally, we leverage directly from the
packages we are testing:
- as an example, we went down this path originally with HDF5

• discovered the tests that ship with their “make check” actually test internal (non-
public) API’s

• did not make sense as the internal header files are not part of a normal HDF5 install
• ended up using separate collection of tests from HDF5 community that are used to

illustrate APIs (only C and Fortran though)
• we integrated these as a subcomponent and added some

companion C++ tests
- in other cases, we have to cook up the tests from scratch (great

opportunity for community participation)

• Dev environment tests are a mixture of flavors:
- interactive execution to verify certain binaries are in working order
- successful compilation to test libraries provided via OpenHPC
- successful interactive execution
- tests for module usability and consistency
- successful remote execution under resource manager

25

> 1,000 jobs submitted
to RM as part of the
current test suite

Post Install Integration Tests - Overview

26

Package version............... : test-suite-1.0.0

Build user.................... : jilluser
Build host.................... : master4-centos71.localdomain
Configure date................ : 2015-10-26 09:23
Build architecture............ : x86_64-unknown-linux-gnu
Test suite configuration...... : long

Submodule Configuration:

User Environment:
RMS test harness.......... : enabled
Munge..................... : enabled
Apps...................... : enabled
Compilers................. : enabled
MPI....................... : enabled
HSN....................... : enabled
Modules................... : enabled
OOM....................... : enabled

Dev Tools:
Valgrind.................. : enabled
R base package............ : enabled
TBB....................... : enabled
CILK...................... : enabled

Performance Tools:
mpiP Profiler........ : enabled
Papi...................... : enabled
PETSc..................... : enabled
TAU....................... : enabled

Example ./configure output (non-root)

Global testing harness
includes a number of
embedded subcomponents:
• major components have

configuration options to
enable/disable

• end user tests need to
touch all of the supported
compiler and MPI families

• we abstract this to repeat
the tests with different
compiler/MPI
environments:
• gcc/Intel compiler

toolchains
• Intel, OpenMPI, MVAPICH2

MPI families

Libraries:
Adios : enabled
Boost : enabled
Boost MPI................. : enabled
FFTW...................... : enabled
GSL....................... : enabled
HDF5...................... : enabled
HYPRE..................... : enabled
IMB....................... : enabled
Metis..................... : enabled
MUMPS..................... : enabled
NetCDF.................... : enabled
Numpy..................... : enabled
OPENBLAS.................. : enabled
PETSc..................... : enabled
PHDF5..................... : enabled
ScaLAPACK................. : enabled
Scipy..................... : enabled
Superlu................... : enabled
Superlu_dist.............. : enabled
Trilinos : enabled

Apps:
MiniFE.................... : enabled
MiniDFT................... : enabled
HPCG...................... : enabled
PRK....................... : enabled

27

Integration Tests - Let’s see one submodule test in action
Lmod user environment

• These are examples
that primarily test
interactive
commands

• We are using the
Bash Automated
Testing System (Bats)
for these tests
- a TAP-­complaint

framework for Bash
- available on GitHub

• We have extended
Bats to:
- create Junit output

for parsing into
Jenkins CI
environment

- capture execution
runtimes

$./interactive_commands
✓ [modules] module purge
✓ [modules] module list
✓ [modules] module help
✓ [modules] module load/unload
✓ [modules] module whatis
✓ [modules] module swap
✓ [modules] path updated

7 tests, 0 failures

$./rm_execution
✓ [modules] env variable passes through (slurm)
✓ [modules] loaded module passes through (slurm)
✓ [modules] module commands available (slurm)
✓ [modules] module load propagates thru RMS (slurm)

4 tests, 0 failures

Lmod submodule

8/12/2015 (15.31) - SLES12 #936 modules [Jenkins]

http://10.23.187.83:8080/view/15.31/job/(15.31)%20-%20SLES12/936/testReport/UserLevelTests/modules/ 1/1

 log in

Test Result : modules
0 failures (±0)

11 tests (±0)
Took 8.9 sec.

All Tests

Test name Duration Status
[module] module commands available (slurm) 0.49 sec Passed
[module] module load propagates thru RMS (slurm) 0.62 sec Passed
[modules] env variable passes through (slurm) 0.44 sec Passed
[modules] loaded module passes through (slurm) 0.54 sec Passed
[modules] module help 0.47 sec Passed
[modules] module list 0.37 sec Passed
[modules] module load/unload 2.9 sec Passed

[modules] module purge 0.14 sec Passed
[modules] module swap 0.94 sec Passed
[modules] module whatis 0.46 sec Passed
[modules] path updated 1.4 sec Passed

 Back to Project

 Status

 Changes

 Console Output

 View as plain text

 View Build Information

 History

 Parameters

 Metadata

 Locked Resources

 Parameters

 Environment Variables

 Git Build Data

 Git Build Data

 Test Result

 Compare environment

 Previous Build

 Next Build

Jenkins 15.31 (15.31) - SLES12 #936 Test Results ENABLE AUTO REFRESH

UserLevelTests modules

What’s Coming

• Some known big ticket items on the horizon for the TSC

- establishing a process and prioritization/selection process for including
new software components

- establish minimum integration test expectations

- establish packaging conventions:
• naming schemes
• dependency hierarchy management
• installation paths
• upgrade/rollback? mechanisms

- roadmap timeline for next release (and cadence strategy for future
releases)

- addition of public CI infrastructure, roll out of additional architecture builds
(e.g. ARM)

28

Thanks for your Time - Questions?

karl.w.schulz@intel.com

http://openhpc.community
https://github.com/openhpc/ohpc
https://build.openhpc.community (repo)

http://openhpc.community

