=
OPENHPC

http://openhpc.community

OpenHPC: Community Building
Blocks for HPC Systems

Karl W. Schulz, Ph.D.

Scalable Datacenter Solutions Group, Intel

4" Annual MVAPICH User Group (MUG) Meeting
August 17, 2016 ¢ Columbus, Ohio

Outline

Motivation and brief history for this new community effort

Overview of project governance

Stack overview

What's coming

open

Motivation for Community Effort

« Many sites spend considerable effort aggregating a large suite of open-source
projects to provide a capable HPC environment for their users:

- necessary to build/deploy HPC focused packages that are either absent or do not keep
pace from Linux distro providers

- local packaging or customization frequently tries to give software versioning access to
users (e.g. via modules or similar equivalent)

« OpenHPC is focused on establishing a centralizing community effort to:

- provide a collection of pre-packaged binary components that can be used to help install
and manage HPC systems throughout their lifecycle

- implement integration testing to gain validation confidence

- allow and promote multiple system configuration recipes that leverage community
reference designs and best practices

- provide additional distribution/integration mechanisms for leading research groups
releasing open-source software

- foster identification and development of relevant interfaces between supported
components that allows for simple component replacement and customization

openHPC

OpenHPC: a brief History...

« ISC"15 (June 2015) — BoF discussion on the merits/interest in a Community Supported
HPC Repository and Management Framework

— discussed convenience of distribution via standard Linux package managers
- feedback at the time was that most parties were interested in CentOS/SLES

— consensus that “modules” or equivalent needed to provide capable end-user
development environment

« MUG'15 (August 2015) - shamelessly squeezed in a sidebar about potential interest in a
community supported HPC repo

« SC'15 (November 2015) — Follow on BoF for a Comprehensive Open Community HPC
Software Stack
- initial seeding of OpenHPC and a 1.0 release

- varietY of interested community members assembled thru the Linux Foundation to work towards
establishing a formal, collaborative project

* Nov'15-May'16

- Linux Foundation working group collaborating to define participating agreement, initial
governance structure and solicit volunteers

» June 16, 2016 — Linux Foundation announces technical, leadership and member
investment milestones with founding members and formal governance structure

open

OpenHPC: Project Members

Argonne

Avtech Barcelona
Natonal 7y Altai RM AUOS == ((“M
o,y Altair ARM i S inse

g UNIVERSITY OF CINECA

& CaviprinG RS AN FUﬁTSU

—

/3 — A INDIANA UNIVERSITY
T .]| BLOOMINGTON
it GENCI Hewlett Packard < intel rr/'—”\’| ‘
Enterprise BERKELEY LAB L‘ Lawrence Livermore
National Laboratory

4
M Lenovo g h?é.ﬁ'ﬂ!!}g% ratec (58 N) P SC

EST.1943

Ruew SBI “Suse TACC

Mixture of Academics, Labs, Project member participation interest? Please contact
OEMs, and ISVs/OSVs Jeff ErnstFriedman jernstfriedman@linuxfoundation.org

open

Community Governance Overview
Governing Board + Technical Steering Committee

Technical Project

Leadership
Budgetary oversight
IP policies, marketing
Long-term roadmap
Governing Board guidance TSC

| |
Board Representatives
Board for other Members,

Architecture, Component
selection , releases, day-to-
day tech work

TSC Director

Representatives Indirect
Representation (X:1)

2

'S

T1 LINUX FOUNDATION
COLLABORATIVE PROJECTS

openHPC

OpenHPC TSC - Role Overview

OpenHPC

Technical Steering Committee (TSC)

Project
Leader

Integration
Testing
Coordinator(s)

Upstream Component
Development
Representative(s)

End-User / Site
Representative(s)

Maintainers

C1 LINUX FOUNDATION

COLLABORATIVE PROJECTS

open

OpenHPC TSC - Individual Members

Reese Baird, Intel (Maintainer)

Pavan Balaji, Argonne National Laboratory (Maintainer)

David Brayford, LRZ (Maintainer)

Todd Gamblin, Lawrence Livermore National Labs (Maintainer)

Craig Gardner, SUSE (Maintainer)

Yiannis Georgiou, ATOS (Maintainer)

Balazs Gerofi, RIKEN (Component Development Representative)

Jennifer Green, Los Alamos National Laboratory (Maintainer)

Eric Van Hensbergen, ARM (Maintainer, Testing Coordinator)

Douglas Jacobsen, NERSC (End-User/Site Representative)

Chulho Kim, Lenovo (Maintainer)

Greg Kurtzer, Lawrence Berkeley National Labs (Component Development Representative)
Thomas Moschny, ParTec (Maintainer)

Karl W. Schulz, Intel (Project Lead, Testing Coordinator)

Derek Simmel, Pittsburgh Supercomputing Center (End-User/Site Representative)
Thomas Sterling, Indiana University (Component Development Representative)
Craig Stewart, Indiana University (End-User/Site Representative)

Scott Suchyta, Altair (Maintainer)

Nirmala Sundararajan, Dell (Maintainer)

https://github.com/openhpc/ohpc/wiki/Governance-Overview

open

Stack Overview

« Packaging efforts have HPC in mind and include compatible modules (for
use with Lmod) with development libraries/tools

* Endeavoring to provide hierarchical development environment that is
cognizant of different compiler and MPI families

* Intent is to manage package dependencies so they can be used as
building blocks (e.g. deployable with multiple provisioning systems)

e Include common conventions for env variables

« Development library install example:

yum install petsc-gnu-mvapich2-ohpc

* End user interaction example with above install: (assume we are a user
wanting to build a PETSC hello world in C)

S module load petsc
$ mpicc -ISPETSC INC petsc hello.c -L$PETSC LIB —lpetsc

open

OpenHPC 1.1.1 - Current S/W components
Fonctowwiss] comorews

Base OS

Administrative
Tools

Provisioning
Resource Mgmt.

Runtimes

I/0 Services

Numerical/Scient
ific Libraries

I/0O Libraries

Compiler
Families

MPI Families

Development
Tools

Performance
Tools

CentOS 7.2, SLES12 SP1

Conman, Ganglia, Lmod, LosF, Nagios, pdsh, prun, EasyBuild, ClusterShell,
mrsh, Genders, Shine, Spack

Warewulf
SLURM, Munge

OpenMP, OCR

Lustre client (community version)

Boost, GSL, FFTW, Metis, PETSc, Trilinos, Hypre, SuperLU, SuperLU_Dist,
Mumps, OpenBLAS, Scalapack

HDF5 (pHDF5), NetCDF (including C++ and Fortran interfaces), Adios

GNU (gcc, g++, gfortran)

MVAPICH2, OpenMPI

Autotools (autoconf, automake, libtool), Valgrind,R, SciPy/NumPy

PAPI, IMB, mpiP, pdtoolkit TAU

Notes:

Additional dependencies
that are not provided by
the BaseOS or community
repos (e.g. EPEL) are also
included

3 Party libraries are built
for each compiler/MPI
family (6 combinations

typically)

Resulting repositories
currently comprised of
~270 RPMs

open

10

Hierarchical Overlay for OpenHPC software

General Tools
and System
Services

Compilers

Serial Apps/Libs

MPI
Toolchains

Parallel
Apps/Libs

I CETEE, I oistro Repo

Imod slurm

munge losf

warewulf lustre client

ohpc

prun pdsh

hdf5-gnu

MVAPICH2 IMPI OpenMPI

Development Environment

S

hdf5-intel

pHDF5

boost-gnu-openmpi
boost-gnu-impi
boost-gnu-mvapich2

phdf5-gnu-openmpi
phdf5-gnu-impi
phdf5-gnu-openmpi

-

b
boost-intel-impi phdf5-intel-impi
b

|
|
|
oost-intel-openmpi phdf5-intel-openmpi:
|
|
oost-intel-mvapich2 phdf5-intel-mvapich2 |

|

\
\
\

-
-
-
-

L

L

|\

— OHPC Repo

\
\
\
‘\

Standalone

3" party

components

\
\\\“

openHPC

11

Stack Overview: Bare metal install

« Stepl: Example OpenHPC 1.1 recipe assumes base OS is first installed
on chosen master (SMS) host - e.g. install CentOS7.2 on SMS

IIIII LLATION SUMMARY CENTOS 7 INSTALLATION
Cent0S 7 = =
(=Wl 5CALIZATION
&TME ___ KEYBOARD

Install CemtOS 7 EE [—

Test this media & install CentOS 7 : e

ISOFTWARE
Troubleshoot ing
. INSTALLATION SOURCE SOFTWARE SELECTION

SYSTEM

STINATION NETWORK & HOSTNAME
d Not connected

 Step2: Enable OpenHPC repo using pre-packaged ohpc-release (or
mirror repo locally)

;# export OHPC GITHUB=https://github.com/openhpc/ohpc/releases/download
. # rpm -ivh ${OHPC_GITHUB}/vl.l.GA/ohpc-release-1.1-1.x86_64.rpm

|2

Stack Overview: Bare metal install (cont.)

Note that ohpc-release enables two repos:

. # yum repolist

irepo id repo name

. OpenHPC OpenHPC-1.1 - Base

. OpenHPC-updates OpenHPC-1.1 - Updates

Ebase Cent0OS-7 - Base :
- epel Extra Packages for Enterprise Linux 7 - x86 64 :

Step3: install desired building blocks to build cluster or
add development tools. Convenience aliases are provided
to group related functionality

[sms]# yum -y groupinstall ohpc-base Add provisioning
[sms]# yum -y groupinstall ohpc-warewulf components

Add SLURM server

[sms]l# yum -y groupinstall ohpc-slurm-server

components

[sms]l# cp /opt/ohpc/pub/examples/network/centos/ifcfg-ib0 /etc/sysconfig/network-scripts

Define local IPoIB address and netmask Example (.)pt|0na| .
[sms]# perl -pi -e "s/master_ipoib/${sms_ipoib}/" /etc/sysconfig/network-scripts/ifcfg-ib0 conflgurat|on enabling
[sms]l# perl -pi -e "s/ipoib_netmask/${ipoib_netmask}/" /etc/sysconfig/network-scripts/ifcfg-ib0 IPolB (eg to support
Initiate ibO Lustre over IB)

[sms]# ifup ibO

*note that community recipe is purposefully very transparent

open

on config file edits and assumes Linux familiarity 1

Stack Overview: Bare metal install (cont.)

* Recipe guides necessarily have a number of things to “cut-and-paste” if you want

to reproduce them

* Have motivating need to automate during the validation process:

— Cull out relevant commands automatically for use during Cl testing

- Seemed reasonable to make available directly, so there is a template starting script
available with the documentation RPM which can be used for local installation and

customization

Install the docs-ohpc package

[sms]# yum -y install docs-ohpc

Copy the provided template input file to use as a starting point to define local site settings:

[sms]l# cp /opt/ohpc/pub/doc/recipes/vanilla/input.local input.local

Update input.local with desired settings

Copy the template installation script which contains command-line

All the commands from
example recipe included here

Einstructions culled from this guide.

open

14

Development Infrastructure

OpenHPC Development Infrastructure
What are we using to get the job done....?

The usual software engineering stuftf: o
* GitHub (SCM and issue tracking/planning) O GItHUb

« Continuous Integration (Cl) Testing (Jenkins)

https://github.com/openhpc/ohpc
« Documentation (Latex) ps:/ig penhpc/onp

Capable build/packaging system open

oLaid

+ At present, we target a common delivery/access mechanism that adopts Linux .
SErVICcE

sysadmin familiarity - ie. yum/zypper repositories for supported distros
- ultimately delivering RPMs

https://build.openhpc.community
- [base] + [update] repositories to support life-cycle management

« Require flexible system to manage builds for multiple distros, multiple
compiler/MPI family combinations, and dependencies across packages @ IAT

* Have engineered a system using Open Build Service (OBS) which is supported o E)(
by back-end git -

- git houses .spec files, tarballs, patches, documentation recipes, and
integration tests

- OBS performs automated builds and dependency analysis

open

16

Build System - OBS

https://build.openhpc.community

M OpenHPC Build Service

Latest Updates

OpenHPC @@ OpenHPC:1.0:Factory
) warewulf-ipmi
) warewulf-provision
Welcome to the OpenHPC build service and community package repository. This community build) warewulf-vnfs
infrastructure uses the Open Build Service to automate the build and release of a variety of RPMs) warewulf-nhc
under the auspices of the OpenHPC project. When combined with a matching base OS install, the
collection of assembled tools and development packages can be used to deploy HPC Linux
clusters. Additional information regarding the project can be found at:

Jvalgrind

* openhpc.community (General information)
e GitHub (Developer resources)
* Mailing Lists (Support)

The Open Build Service (OBS)

The Open Build Service (OBS) is an open and complete distribution development platform that
provides a transparent infrastructure for development of Linux distributions, used by openSUSE,
MeeCo and other distributions. It also supports Fedora, Debian, Ubuntu, RedHat and other Linux
distributions.

The OBS is developed under the umbrella of the openSUSE project. Please find further
informations on the openSUSE Project wiki pages.

Q

All Projects Search Status Monitor

Log In
(3}

1 day ago
1 day ago
1 day ago
1 day ago
1 day ago
1 day ago

Using the Open Build
Service (OBS) to manage
build process

OBS can drive builds for
multiple repositories

Repeatable builds
carried out in chroot
environment

Generates binary and src
roms

Publishes corresponding
package repositories

Client/server
architecture supports
distributed build slaves
and multiple
architectures

open

il

OpenHPC Build Architecture Conventions

* Motivation is to have single input to drive multiple output configurations
(e.g. hierarchy for compiler/MPI families)

« Also want to establish baseline install path conventions

* Leverage variety of macros to aid in this effort

MPI macros
Install Path Macros

$ cat OHPC_setup mpi

if [-z "$OHPC MPI_FAMILY"]; then
S cat OHPC macros — =

— ho "Unk HPC_MPI FAMILY"

$define OHPC BUILD 1 it lUn SRRSO A
%define PROJ NAME ohpe . o
fdefine OHPC HOME /opt/%{PROJ NAME) |
$define OHPC ADMIN ${OHPC HOME}/admin . .

— — £ ["SOHPC MPI_FAMILY" = " " 1; th
Sdefine OHPC PUB % {OHPC_HOME} /pub * [moiilecioad_openmpi openmpi®] then
Sdef] HPC COMPILERS % i . o
edefine OHPC_CO S ${OHPC_PUB}/compiler elif ["$OHPC MPI_FAMILY" = "impi"]; then
$define OHPC MPI STACKS %{OHPC_ PUB}/mpi oGuTe Tome dme
%define OHPC APPS %{OHPC PUB}/apps .

— - 1if ["SOHPC MPI FAMILY" = " h2"]; th
$define OHPC_LIBS % {OHPC_PUB}/libs et miduiz 1§$d s mvapichz®]; then
$define OHPC_ MODULES %${OHPC PUB}/modulefiles else p
Sdef] HPC_MODULEDEPS %{OHPC_PUB 1

define OHEC_MODU S %{OHPC_PUB} /moduledeps echo "Unsupported OHPC MPI FAMILY —-> $OHPC_MPI FAMILY"
exit 1
fi

lopt/ohpc <--- Top-level path convention for installs

open

OpenHPC Build Architecture Conventions (cont.)

Example of compiler hierarchy template

« Default family
choice defined,
but can be
overridden

« Family
dependencies
embedded for
package
managers

Snippet from METIS .spec file
$include %{_sourcedir}/OHPC_macros '

OpenHPC convention: the default assumes the gnu compiler family;
however, this can be overridden by specifying the compiler family
variable via rpmbuild or other mechanisms.

%{!?compiler family: %define compiler family gnu}

Compiler dependencie;
BuildRequires: lmod%{PROJ DELIM}

$1f %{compiler family} == gnu

BuildRequires: gnu-compilers%{PROJ_ DELIM}

Requires: gnu-compilers%{PROJ DELIM}

Sendif B

%1f %S{compiler family} == intel

BuildRequires:_gcc—c++ intel-compilers-devel% {PROJ DELIM}
Requires: gcc-c++ intel-compilers-devel%{PROJ DELIM}
sendif

yum/zypper install:

hypre-gnu-mvapich2-ohpc —> metis-gnu-ohpc —>_

open

9

Build System - OBS

OBS manages

dependency resolution
and rebuilds all
downstream packages

Leveraging ability within
OBS to link related
packages

- Convenient for
packages with
compiler and MPI
dependencies

- Single commit drives
all package
permutations

OBS builds automatically
triggered via git commit

hooks

Snippets from METIS OBS config

S 1ls metis-*
metis-gnu:
service <-- Parent

metis-intel:

15mk <-- Child

$ cat metis-intel/ link
<link project='OpenHPC:1.1l:Factory' package='metis-gnu'>
<patches>

<topadd>%define compiler family intel</topadd>
</patches>
</link>

open

Integration Testing

Integration/Test/Validation

Testing is a key element for us and the intent is to build upon existing

validation efforts and augment component-level validation with targeted
cluster-validation and scaling initiatives including:

* install recipes * mimic use cases common in HPC deployments

* cross-package interaction « upgrade mechanism
* development environment

Integrated Cluster Testing

Software

+ C}OpenHPC N

OS Distribution

T T

Individual Component Validation

|
@

openHPC

Integration/Test/Validation

To facilitate global efforts in diagnostics/validation, we have devised a
standalone integration test infrastructure

Intent was to create families of tests that could be used during:
— initial install process (can we build a system?)
— post-install process (does it work?)

- developing tests that touch all of the major components (can we compile
against 3rd party libraries, will they execute under resource manager, etc)

Expectation is that each new component included will need
corresponding integration test collateral

These integration tests and harness are included in GitHub repo

openHPC 1

Post Install Integration Tests - Overview

« Where do we get the tests? Ideally, we leverage directly from the
packages we are testing:

- as an example, we went down this path originally with HDF5

» discovered the tests that ship with their “make check” actually test internal (non-
public) API's
« did not make sense as the internal header files are not part of a normal HDF5 install

» ended up using separate collection of tests from HDF5 community that are used to
illustrate APIs%only C and Fortran though)

* we integrated these as a subcomponent and added some
companion C++ tests

- in other cases, we have to cook up the tests from scratch (great
opportunity for community participation)

« Dev environment tests are a mixture of flavors:
- interactive execution to verify certain binaries are in working order
- successful compilation to test libraries provided via OpenHPC

- successful interactive execution
- tests for module usability and consistency
- successful remote execution under resource manager

openHPC 1

Post Install Integration Tests - Overview

Global testing harness
includes a number of
embedded subcomponents:

* major components have
configuration options to

enable/disable

* end user tests need to
touch all of the supported
compiler and MPI families

* we abstract this to repeat
the tests with different
compiler/MPI

environments:

* gcc/Intel compiler
toolchains

* Intel, OpenMPI, MVAPICH2
MPI families

Example ./configure output (non-root)

Package version.......ceeeeeese

Build USEr..ceeeeeeececsacsnns
Build host...ceeeeeeeeeenenenns
Configure date....ccceeeeeennn
Build architecture............
Test suite configuration......

Submodule Configuration:

User Environment:

Dev Tools:

: test-suite-1.0.0

: jilluser

: master4-centos71
: 2015-10-26 09:23
: X86_64-unknown-1
: long

.localdomain

inux-gnu

Libraries:
Adios .ceee..
Boost

Superlu.....
Superlu dist
Trilinos ...

Apps:
MiniFE......

.............. : enabled
.............. : enabled
.............. : enabled
.............. : enabled
.............. : enabled
.............. : enabled
.............. : enabled
.............. : enabled
.............. : enabled
.............. : enabled
.............. : enabled
.............. : enabled
.............. : enabled
.............. : enabled
.............. : enabled
.............. : enabled
.............. : enabled
.............. : enabled
.............. : enabled
.............. : enabled

.............. : enabled
.............. : enabled
.............. : enabled
.............. : enabled

open

26

Integration Tests - Let's see one submodule test in action
Lmod user environment

* These are examples
that primarily test

$./interactive_commands

[modules] module purge Lmod submodule
interactive [modules] module list
[modules] module help
commands

[modules] module load/unload
[modules] module whatis
[modules] module swap
[modules] path updated

AN NN N

* We are using the
Bash Automated
Testing System (Bats) 7 tests, 0 failures
for these tests

$./rm_execution

. v/ [modules] env variable passes through (slurm)

- a TAP-complaint v [modules] loaded module passes through (slurm)
framework for Bash v [modules] module commands available (slurm)

i ; v [modules] module load propagates thru RMS (slurm
- available on GitHub [] propag ()

4 tests, 0 failures Test Result : modules «% Jenkins L
 We have extended Qairee (0
BatS tO 11 tests (x0)
- create Junit output All Tests
for parsing into
Jen_klns C Test name Duration Status
enVIronment [module] module commands available (slurm) 0.49 sec Passed
. [module] module load propagates thru BMS (slurm) 0.62 sec Passed
- Capture execution [modules] env variable passes through (slurm) 0.44sec Passed
runtlmes [modules] loaded module passes through (slurm) 0.54 sec Passed
[modules] module help 0.47 sec Passed
[modules] module list 0.37 sec Passed
[modules] module load/unload 2.9 sec Passed
[modules] module purge 0.14 sec Passed
[modules] module swap 0.94 sec Passed
[modules] module whatis 0.46 sec Passed
[modules] path updated 1.4 sec Passed

open

What's Coming

« Some known big ticket items on the horizon for the TSC

establishing a process and prioritization/selection process for including
new software components

establish minimum integration test expectations

establish packaging conventions:
* naming schemes
» dependency hierarchy management
* installation paths
» upgrade/rollback? mechanisms

roadmap timeline for next release (and cadence strategy for future
releases)

addition of public Cl infrastructure, roll out of additional architecture builds
(e.g. ARM)

open

28

open

http://openhpc.community

Thanks for your Time - Questions?

karl.w.schulz@intel.com

http://openhpc.community
https://github.com/openhpc/ohpc
https://build.openhpc.community (repo)

open

