
Devendar Bureddy

August 2016

Enabling Exascale Co-Design Architecture

© 2016 Mellanox Technologies 2

Mellanox Connects the World’s Fastest Supercomputer

 93 Petaflop performance, 3X higher versus #2 on the TOP500

 40K nodes, 10 million cores, 256 cores per CPU

 Mellanox adapter and switch solutions

#1 on the TOP500 Supercomputing List

 The TOP500 list has evolved, includes HPC & Cloud / Web2.0 Hyperscale systems

 Mellanox connects 41.2% of overall TOP500 systems

 Mellanox connects 70.4% of the TOP500 HPC platforms

 Mellanox connects 46 Petascale systems, Nearly 50% of the total Petascale systems

InfiniBand is the Interconnect of Choice for

HPC Compute and Storage Infrastructures

© 2016 Mellanox Technologies 3

The Ever Growing Demand for Higher Performance

2000 202020102005

“Roadrunner”

1st

2015

Terascale Petascale Exascale

Single-Core to Many-CoreSMP to Clusters

Performance Development

Co-Design

HW SW

APP

Hardware

Software

Application

The Interconnect is the Enabling Technology

© 2016 Mellanox Technologies 4

The Intelligent Interconnect to Enable Exascale Performance

CPU-Centric Co-Design

Work on The Data as it Moves

Enables Performance and Scale

Must Wait for the Data

Creates Performance Bottlenecks

Limited to Main CPU Usage

Results in Performance Limitation

Creating Synergies

Enables Higher Performance and Scale

© 2016 Mellanox Technologies 5

Breaking the Application Latency Wall

 Today: Network device latencies are on the order of 100 nanoseconds

 Challenge: Enabling the next order of magnitude improvement in application performance

 Solution: Creating synergies between software and hardware – intelligent interconnect

Intelligent Interconnect Paves the Road to Exascale Performance

10 years ago

~10

microsecond

~100

microsecond

NetworkCommunication

Framework

Today

~10

microsecond

Communication

Framework

~0.1

microsecond

Network

~1

microsecond

Communication

Framework

Future

~0.05

microsecond

Co-Design

Network

© 2016 Mellanox Technologies 6

Highest-Performance 100Gb/s Interconnect Solutions

Transceivers

Active Optical and Copper Cables

(10 / 25 / 40 / 50 / 56 / 100Gb/s) VCSELs, Silicon Photonics and Copper

36 EDR (100Gb/s) Ports, <90ns Latency

Throughput of 7.2Tb/s

7.02 Billion msg/sec (195M msg/sec/port)

100Gb/s Adapter, 0.6us latency

200 million messages per second

(10 / 25 / 40 / 50 / 56 / 100Gb/s)

32 100GbE Ports, 64 25/50GbE Ports

(10 / 25 / 40 / 50 / 100GbE)

Throughput of 6.4Tb/s

MPI, SHMEM/PGAS, UPC

For Commercial and Open Source Applications

Leverages Hardware Accelerations

© 2016 Mellanox Technologies 7

PCIe Gen3 and Gen4

Integrated PCIe Switch

Advanced Dynamic Routing

MPI Collectives in Hardware

MPI Tag Matching in Hardware

In-Network Memory

100Gb/s Throughput

0.6usec Latency (end-to-end)

200M Messages per Second

ConnectX-5 EDR 100G Advantages

© 2016 Mellanox Technologies 8

The Performance Advantage of EDR 100G InfiniBand (28-80%)

28%

© 2016 Mellanox Technologies 9

SwitchIB-2 : Smart Switch

Switch-IB 2 Enables the Switch Network to

Operate as a Co-Processor

SHArP Enables Switch-IB 2 to Manage and

Execute MPI Operations in the Network

 The world fastest switch with <90 nanosecond latency

 36-ports, 100Gb/s per port, 7.2Tb/s throughput, 7.02

Billion messages/sec

 Adaptive routing, congestion control

 Multiple topologies

© 2016 Mellanox Technologies 10

SHArP Performance Advantage

 MiniFE is a Finite Element mini-application

• Implements kernels that represent

implicit finite-element applications

AllReduce

© 2016 Mellanox Technologies 11

SHArP Performance Data – OSU Allreduce 1PPN, 128 nodes

© 2016 Mellanox Technologies 12

ConnectX-5: MPI Tag-Matching Support

© 2016 Mellanox Technologies 13

MPI Tag Matching Primer

 Sender: tag, communicator, destination, source (implicit)

 Receiver: tag (may be wild carded), communicator, source (may be wild carded), destination

(implicit)

 Matching: sender and receiver envelopes must match

 Matching Ordering:

• Matching envelopes are required

• Posted received must be matched in-order against the in-order posted sends

Tag=A, Communicator=B,

source=C, Time=X

Tag=A, Communicator=B,

source=C, Time=X+D

Tag=A, Communicator=B,

Destination=C, Time=Y

Tag=A, Communicator=B,

Destination=C, Time=Y+D’

Reciever Sender

© 2016 Mellanox Technologies 14

Mellanox’s Tag-Matching Support

 Offloaded to the ConnectX-5 HCA

• Full MPI tag-matching : tag matching as compute is progressing

• Rendezvous offload : large data delivery as compute is progressing

 Control can be passed between Hardware and Software

 Verbs Tag-Matching support being up-streamed

 Implementation: Work in progress in UCX

© 2016 Mellanox Technologies 15

Tag Matching – ConnectX-5 Support

© 2016 Mellanox Technologies 16

Dynamically Connected Transport

A Scalable Transport

© 2016 Mellanox Technologies 17

Reliable Connection Transport Mode

© 2016 Mellanox Technologies 18

18

The DC Model

 Dynamic Connectivity

 Each DC Initiator can be used to reach any remote DC Target

 No resources’ sharing between processes

• process controls how many (and can adapt to load)

• process controls usage model (e.g. SQ allocation policy)

• no inter-process dependencies

 Resource footprint

• Function of HCA capability

• Independent of system size

 Fast Communication Setup Time

cs – concurrency of the sender

cr=concurrency of the responder

P
ro

c
e

s
s

 0 cs

p
*(

c
s
+

c
r)

/2

cr

P
ro

c
e

s
s

 1 cs

cr

P
ro

c
e

s
s

p

-1 cs

cr

© 2016 Mellanox Technologies 19

Dynamically Connected Transport Mode

© 2016 Mellanox Technologies 20

All-To-All Performance

1

1.1

1.2

1.3

1.4

1.5

1.6

4096 8192 16384 32768

DC- UD Bandwidth Ratio

Message size (bytes)

T
o

ta
l
B

a
n

d
w

id
th

 R
a

ti
o

© 2016 Mellanox Technologies 21

Cross Channel Synchronization(aka CORE-Direct)

© 2016 Mellanox Technologies 22

Smart Offloads for MPI/SHMEM/PGAS/UPC Collective Operations

 CORE-Direct Technology

 Adapter-based hardware offloading for collectives operations

 Includes floating-point capabilities on the adapters

Ideal System noise CORE-Direct (Offload) CORE-Direct - Asynchronous

© 2016 Mellanox Technologies 23

 Scalable collective communication

 Asynchronous communication

 Manage communication by communication resources

 Avoid system noise

 Task list

 Target QP for task

 Operation

• Send

• Wait for completions

• Enable

• Calculate

Cross Channel Synchronization

© 2016 Mellanox Technologies 24

Example – Four Process Recursive Doubling

1 2 3 4

1 2 3 4

1 2 3 4

Step 1

Step 2

© 2016 Mellanox Technologies 25

Four Process Barrier Example – Using Managed Queues – Rank 0

© 2016 Mellanox Technologies 26

Nonblocking Alltoall (Overlap-Wait) Benchmark

CoreDirect Offload

allows Alltoall

benchmark with almost

100% compute

© 2016 Mellanox Technologies 27

Non-Contiguous Data

© 2016 Mellanox Technologies 28

UMR: Optimizing Non Contiguous Memory Transfers

 Support combining contiguous registered memory regions into a single memory region. H/W treats

them as a single contiguous region (and handles the non-contiguous regions)

 For a given memory region, supports non-contiguous access to memory, using a regular structure

representation – base pointer, element length, stride, repeat count.

• Can combine these from multiple different memory keys

 Memory descriptors are created by posting WQE’s to fill in the memory key

 Supports local and remote non-contiguous memory access

• Eliminates the need for some memory copies

© 2016 Mellanox Technologies 29

Optimizing Non Contiguous Memory Transfers

© 2016 Mellanox Technologies 30

Hardware Gather/Scatter Capabilities – Regular Structure – Ping-

Pong latency

Message size (bytes)

Latency

Pack/

Latency

UMR

0

0.5

1

1.5

2

2.5

32 bytes 64 bytes 128 Bytes

© 2016 Mellanox Technologies 31

Maximize Performance via Accelerator and GPU Offloads

GPUDirect RDMA Technology

© 2016 Mellanox Technologies 32

PeerDirect™ Features

 Accelerated Communication With Network And Storage Devices

• Avoid unnecessary system memory copies and CPU overhead by copying data directly to/from

pinned third-party device memory

• Peer-To-Peer Transfers Between third-party device and Mellanox RDMA devices

• Use high-speed DMA transfers to copy data between P2P devices

• Eliminate CPU bandwidth and latency bottlenecks using direct memory access (DMA)

 RDMA support

• With PeerDirect™ , memory of a third-party device can be used for Remote Direct Memory

Access (RDMA) of the data buffers resulting in letting application run more efficiently.

• Allow RDMA-based application to use a third-party device, such as a GPU for computing

power, and RDMA interconnect at the same time w/o copying the data between the P2P

devices.

• Boost Message Passing Interface (MPI) Applications with zero-copy support

• Support for RDMA transport over InfiniBand and RoCE

© 2016 Mellanox Technologies 33

 Eliminates CPU bandwidth and latency bottlenecks

 Uses remote direct memory access (RDMA) transfers between GPUs

 Resulting in significantly improved MPI efficiency between GPUs in remote nodes

 Based on PCIe PeerDirect technology

GPUDirect™ RDMA (GPUDirect 3.0)

With GPUDirect™ RDMA

Using PeerDirect™

© 2016 Mellanox Technologies 34

GPU-GPU Internode MPI Latency

L
o
w

e
r is

 B
e
tte

r

Performance of MVAPICH2 with GPUDirect RDMA

88% Lower Latency

GPU-GPU Internode MPI Bandwidth

H
ig

h
e
r

is
 B

e
tt

e
r

10X Increase in Throughput

Source: Prof. DK Panda

8.6X

2.37 usec

10x

http://www.google.com/url?sa=i&source=images&cd=&cad=rja&docid=l4bgqVY3Z-5H9M&tbnid=VeKX0Kar856WBM:&ved=0CAgQjRwwADgF&url=https://twitter.com/OSUCATS&ei=5a65UcmnGaqG0AWJ1YGwBg&psig=AFQjCNFmgs1A9YUXxMlqqJPS30QSMEHV0Q&ust=1371209829447892

© 2016 Mellanox Technologies 35

Mellanox PeerDirect™ with NVIDIA GPUDirect RDMA

 HOOMD-blue is a general-purpose Molecular Dynamics simulation code accelerated on GPUs

 GPUDirect RDMA allows direct peer to peer GPU communications over InfiniBand
• Unlocks performance between GPU and InfiniBand

• This provides a significant decrease in GPU-GPU communication latency

• Provides complete CPU offload from all GPU communications across the network

 Demonstrated up to 102% performance improvement with large number of particles

102%

© 2016 Mellanox Technologies 36

GPUDirect Async

 GPUDirect RDMA (3.0)

• direct data path between the GPU and Mellanox interconnect

• Control path still uses the CPU

 GPUDirect ASync (GPUDirect 4.0)

• Both data path and control path go directly

between the GPU and the Mellanox interconnect

• CPU prepares and queues communication tasks on GPU

• GPU triggers communication on HCA

• Mellanox HCA directly accesses GPU memory

0

10

20

30

40

50

60

70

80

2 4

A
v
e

ra
g

e
 t

im
e

 p
e

r
it

e
ra

ti
o

n
 (

u
s

)

Number of nodes/GPUs

2D stencil benchmark

RDMA only RDMA+PeerSync

27% faster 23% faster

Maximum Performance

For GPU Clusters

© 2016 Mellanox Technologies 37

Mellanox HPC-X™ Scalable HPC Software Toolkit

Complete MPI, PGAS OpenSHMEM and UPC package

Maximize application performance

For commercial and open source applications

Best out of the box experience

© 2016 Mellanox Technologies 38

Mellanox HPC-X - Package Contents

 HPC-X – Mellanox Scalable HPC Toolkit
• Allow fast and simple deployment of HPC libraries

- Both Stable & Latest Beta are bundled

- All libraries are pre-compiled

- Includes scripts/modulefiles to ease deployment

• Package Includes
 OpenMPI/OpenSHMEM

 BUPC (Berkeley UPC)

 UCX

 MXM

 FCA-2.5

 FCA-3.x (HCOLL)

 KNEM

− Allows fast intra-node MPI communication for large messages

 Profiling Tools

− Libibprof

− IPM

 Standard Benchmarks

− OSU

− IMB

© 2016 Mellanox Technologies 39

Mellanox HPC-X Software Ecosystem

InfiniBand Verbs API

Point-to-Point: MXM -> UCX
• Reliable Messaging Optimized for Mellanox HCA

• Hybrid Transport Mechanism

• Efficient Memory Registration

• Receive Side Tag Matching

Collective: FCA
• Hardware Acceleration: SHArP, Multicast, CORE-

Direct

• Topology Aware

• Separate Virtual Fabric for Collectives

Memory

P1

Memory

P2

Memory

P3

MPI

Memory

P1 P2 P3

PGAS/SHMEM

Logical Shared Memory

Memory

P1 P2 P3

PGAS/UPC

Memory Memory

Logical Shared Memory

© 2016 Mellanox Technologies 40

To Install Mellanox HPC-X

 HPC-X Download Location

• http://www.mellanox.com/products/hpcx/

 Download based on OS distribution and OFED version

 Support for Intel and GNU compilers for HPC-X for x86_64, power

 For more information:

• http://www.mellanox.com/related-docs/prod_acceleration_software/HPC-X_Toolkit_User_Manual_v1.6.pdf

 Install HPC-X with no need for root privilege

• $ tar zxvf hpcx.tar

http://www.mellanox.com/products/hpcx/
http://www.mellanox.com/related-docs/prod_acceleration_software/HPC-X_Toolkit_User_Manual_v1.6.pdf

© 2016 Mellanox Technologies 41

To Configure Mellanox HPC-X

 Update environment variables using module

• module use /opt/hpcx-v1.6.355-icc-MLNX_OFED_LINUX-3.1-1.1.0.1-redhat6.5-x86_64/modulefiles

• module load hpcx

 Load KNEM Module on all compute nodes

• # cd hpcx

• # export HPCX_HOME=$PWD

• # insmod $HPCX_HOME/knem/lib/modules/$(uname -r)/knem.ko

• # chmod 666 /dev/knem

 FCA (v2.5)

• Prior to using FCA, the following command should be executed as root once on all cluster nodes

- # $HPCX_HOME/fca/scripts/udev-update.sh

• The FCA manager should be run on only one machine, and not on one of the compute nodes

- # $HPCX_HOME/fca/scripts/fca_managerd start

 FCA (v3.x) – HCOLL

• IPoIB addresses needed to be setup on the compute nodes

© 2016 Mellanox Technologies 42

To Rebuild Mellanox HPC-X From Source

 Normally there is no need to recompile HPC-X

• Open MPI and FCA/HCOLL and MXM libraries are included in case recompiling is needed

 Scenarios for rebuilding from source:

• For threaded MPI library support – HPC-X is built without MPI thread multiple support (--enable-thread)

• CUDA support (--with-cuda)

• Support for other resource managers than SLURM

• Compiler incompatibility (GNU and Intel library supported)

 To build HPC-X from source (from README):

• $ HPCX_HOME=/path/to/extracted/hpcx

• $./configure --prefix=${HPCX_HOME}/hpcx-ompi \

--with-knem=${HPCX_HOME}/knem \

--with-fca=${HPCX_HOME}/fca --with-mxm=${HPCX_HOME}/mxm \

--with-hcoll=${HPCX_HOME}/hcoll \

--with-platform=contrib/platform/mellanox/optimized \

--with-slurm --with-pmi $ make -j9 all && make -j9 install

© 2016 Mellanox Technologies 43

Mellanox Delivers Highest Applications Performance (HPC-X)

 Bull (Atos) testing results – Quantum Espresso application

Intel MPI
Bull MPI
(HPC-X)

Quantum
Espresso

Test Case # nodes time (s) time (s) Gain

A 43 584 368 37%

B 196 2592 998 61%

Enabling Highest Applications Scalability and Performance

© 2016 Mellanox Technologies 44

Collective Communication Library - HCOLL

© 2016 Mellanox Technologies 45

HCOLL – Design Goals

 Scalable infrastructure: Designed and implemented with current and emerging “extreme-scale” systems in
mind
• Scalable communicator creation

• Scalable memory consumption

• Scalable runtime interface

• Asynchronous execution

 Flexible and Extensible: Plug-and-play component architecture
• Leverage object-oriented design patterns

 Adaptive: Designed specifically for current and emerging heterogeneous memory subsystems
• Can evolve gracefully in lockstep with new architectures

 Optimized collectives: Collective primitives are tuned to a particular communication substrate

 Expose CORE-Direct capabilities
• Fully asynchronous, non-blocking collectives: Maximize the opportunity for the application developer to overlap

computation with communication

• Increase resilience to the effects of system noise on collective operations at extreme-scale

 Rapidly expose emerging Mellanox hardware features to ULPs with minimal effort e.g. multicast, DC,
SHArP, UMR

 Easily integrated into other packages

© 2016 Mellanox Technologies 46

HCOLL Features

 Blocking and non-blocking collective routines

 Modular component architecture

 Scalable runtime interface (RTE)
• Successfully integrated into OMPI – “hcoll” component in “coll” framework

• Successfully integrated in Mellanox OSHMEM

• Experimental integration in MPICH

• Working prototype SLURM/PMI2 plug-in

 Host level hierarchy awareness
• Core groups*

• Socket groups

• UMA groups

 Support for network level topology awareness
• Fat tree: switch-leaf subgroups

• 3-D torus: subgroups of same torus dimension *

 Exposes Mellanox and InfiniBand specific capabilities
• CORE-Direct

• MXM 2(3).x
- UD, RC, DC

• UCX

• Hardware multicast

• SHArP

• UMR for non-contiguous data*

* To be released soon

© 2016 Mellanox Technologies 47

HCOLL Algorithms

 Supported collectives in 3.0

• MPI_Allgather

• MPI_Allreduce

• MPI_Barrier

• MPI_Bcast

• MPI_Alltoallv

• MPI_Reduce

• MPI_Iallgather

• MPI_Iallreduce

• MPI_Ibarrier

• MPI_Ibcast

• MPI_Ireduce

• MPI_Ialltoallv

• MPI_Alltoall - Beta

© 2016 Mellanox Technologies 48

RTE Runtime Interface / OCOMS Bindings

OCOMS

Component Services / Datatype

Support

BCOL

Collective Primitives Class

SBGP

Subgrouping Class

COMMON

Utility routines - visible to all

classes

ibnet P2P UMA Socket CD SM P2P MXM2SHArP
Net/comm

patterns OFACM

Datatype engine/

Classes/

Objects/

Linked lists

ML Level

Hierarchy Discovery / Algorithm Scheduling / Memory Management

HCOLL Software Architecture

RMC

© 2016 Mellanox Technologies 49

COLL

Other Open MPI

Frameworks

Open MPI

Open MPI Integration: HCOLL component

MCA

Tuned Basic HCOLL

RTE Implementation

© 2016 Mellanox Technologies 50

Runtime parameters for FCA-3.x in HPCx

 FCA 2.5
• To enable FCA support

- -mca coll_fca_enable 1

- -mca coll_fca_np 0

- -x fca_ib_dev_name=mlx5_0 (if multiple interfaces existed)

 FCA 3.1+ (HCOLL)
• To enable HCOLL support explicitly:

- -mca coll_hcoll_enable 1

- -mca coll_hcoll_np 0

- -x HCOLL_MAIN_IB=mlx5_0:1 (if multiple interfaces existed)

• To enable HCOLL multicast support explicitly:

- -x HCOLL_ENABLE_MCAST_ALL=1

- -x HCOLL_MCAST_NP=0

• Comm context cache

- -x HCOLL_CONTEXT_CACHE_ENABLE=1

• SHArP

- -x HCOLL_ENABLE_SHARP=1

© 2016 Mellanox Technologies 51

In Network Data Reduction

SHArP: Scalable Hierarchical Aggregation Protocol

© 2016 Mellanox Technologies 52

Accelerating Artificial Intelligence and HPC applications

Accelerating HPC Applications

 Significantly reduce MPI collective runtime

 Increase CPU availability and efficiency

 Enable communication and computation overlap

Enabling Artificial Intelligence Solutions to Perform

Critical and Timely Decision Making

 Accelerating distributed machine learning

 Improving classification accuracy

 Reducing the number of batches needed for asynchronous training

© 2016 Mellanox Technologies 53

SHArP: Scalable Hierarchical Aggregation Protocol

 Reliable Scalable General Purpose Primitive

• In-network Tree based aggregation mechanism

• Large number of groups

• Multiple simultaneous outstanding operations

 Applicable to Multiple Use-cases

• HPC Applications using MPI / SHMEM

• Distributed Deep Learning applications

 Scalable High Performance Collective Offload

• Barrier, Reduce, All-Reduce, Broadcast

• Sum, Min, Max, Min-loc, max-loc, OR, XOR, AND

• Integer and Floating-Point, 32 / 64 bit

SHArP Tree

SHArP Tree Aggregation Node

(Process running on HCA)

SHArP Tree Endnode

(Process running on HCA)

SHArP Tree Root

© 2016 Mellanox Technologies 54

SHArP

 Scalability Considerations

• Unlimited Group Size

• Large Number of Groups

• Hundreds of Simultaneous Outstanding Operations

© 2016 Mellanox Technologies 55

SHArP SW Overview

 Prerequisites

• SHArP software modules are delivered as part of HPC-X 1.6.392 or later

• Switch-IB 2 firmware - 15.1100.0072 or later

• MLXN OS - 3.6.1002 or later

• MLNX OpenSM 4.7.0 or later (available with MLNX OFED 3.3-x.x.x or UFM 5.6)

© 2016 Mellanox Technologies 56

SHARP SW components

 SHArP SW components:

• Libs

 libsharp.so (low level api)

 libsharp_coll.so (high level api)

• Daemons

 sharpd, sharp_am

• Scripts

 sharp_benchmark.sh

 sharp_daemons_setup.sh

• Utilities

 sharp_coll_dump_config

 sharp_hello

 sharp_mpi_test

• public API

 sharp_coll.h

© 2016 Mellanox Technologies 57

SHArP: SHArP Daemons

 sharpd: SHArP daemon

• compute nodes

• Light wait process

• Almost 0% cpu usage

• Only control path

 sharp_am: Aggregation Manager daemon

• same node as Subnet Manager

• Resource manager

© 2016 Mellanox Technologies 58

SHArP: Configuring Subnet Manager

 Edit the opensm.conf file.

 Set the parameter “sharp_enabled” to “2”.

 Run OpenSM with the configuration file.

• % opensm -F <opensm configuration file> -B

 Verify that the Aggregation Nodes were activated by the OpenSM, run "ibnetdiscover".

For example:

vendid=0x0

devid=0xcf09

sysimgguid=0x7cfe900300a5a2a0

caguid=0x7cfe900300a5a2a8

Ca 1 "H-7cfe900300a5a2a8" # "Mellanox Technologies Aggregation Node"

[1](7cfe900300a5a2a8) "S-7cfe900300a5a2a0"[37] # lid 256 lmc 0 "MF0;sharp2:MSB7800/U1" lid 512 4xFDR

© 2016 Mellanox Technologies 59

SHArP: Configuring Aggregation Manager

 Create a configuration directory for the future SHArP configuration file.
• % mkdir $HPCX_SHARP_DIR/conf

 Create the fabric.lst file.
• Copy the subnet LST file created by the Subnet Manager to the AM’s configuration files directory

• Rename it to fabric.lst :

- % cp /var/log/opensm-subnet.lst $HPCX_SHARP_DIR/conf/fabric.lst

 Create root GUIDs file.
• Copy the root_guids.conf file if used for configuration of Subnet Manager to $HPCX_SHARP_DIR/conf/root_guid.cfg

(or)

• Identify the root switches of the fabric and create a file with the node GUIDs of the root switches of the fabric.

• For example : if there are two root switches files contains

0x0002c90000000001

0x0002c90000000008

 Create sharp_am.conf file
% cat > $HPCX_SHARP_DIR/conf/sharp_am.conf << EOF

fabric_lst_file $HPCX_SHARP_DIR/conf/fabric.lst

root_guids_file $HPCX_SHARP_DIR/conf/root_guid.cfg

ib_port_guid <PortGUID of the relevant HCA port or 0x0>

EOF

•Create the sharp_am.conf file:

© 2016 Mellanox Technologies 60

SHArP: Running SHArP Daemons

 setup the daemons

• $HPCX_SHARP_DIR/sbin/sharp_daemons_setup.sh

 Usage

• sharp_daemons_setup.sh <-s SHArP location dir> <-r> <-d daemon> <-m>

-s - Setup SHArP daemon

-r - Remove SHArP daemon

-d - Daemon name (sharpd or sharp_am)

-m - Add monit capability for daemon control

• $HPCX_SHARP_DIR/sbin/sharp_daemons_setup.sh -s $HPCX_SHARP_DIR -d sharp_am

© 2016 Mellanox Technologies 61

SHArP: Running SHArP Daemons

 sharp_am

• $HPCX_SHARP_DIR/sbin/sharp_daemons_setup.sh -s $HPCX_SHARP_DIR -d sharp_am

• Log : /var/log/sharp_am.log

 Sharpd

• conf file: $HPCX_SHARP_DIR/conf/sharpd.conf

 ib_dev <relevant_hca:port>

 sharpd_log_level 2

• $pdsh -w <hostlist> $HPCX_SHARP_DIR/sbin/sharp_daemons_setup.sh -s $HPCX_SHARP_DIR -d

sharpd

• Log : /var/log/sharpd.log

/var/log/sharp_am.log

© 2016 Mellanox Technologies 62

Running with SHArP

 Enabled through FCA-3.x (HCOLL)

 Flags
• HCOLL_ENABLE_SHARP (default : 0)

0 - Don't use SHArP

1 - probe SHArP availability and use it

2 - Force to use SHArP

3 - Force to use SHArP for all MPI communicators

4 - Force to use SHArP for all MPI communicators and for all supported collectives

• HCOLL_SHARP_NP (default: 2)
Number of nodes(node leaders) threshold in communicator to create SHArP group and use SHArP collectives

• SHARP_COLL_LOG_LEVEL
0 – fatal , 1 – error, 2 – warn, 3 – info, 4 – debug, 5 – trace

• HCOLL_BCOL_P2P_ALLREDUCE_SHARP_MAX
- Maximum allreduce size run through SHArP

© 2016 Mellanox Technologies 63

Running with SHArP ..

 Resources (quota)

• SHARP_COLL_JOB_QUOTA_MAX_GROUPS

- #communicators

• SHARP_COLL_JOB_QUOTA_OSTS

- Parallelism on communicator

• SHARP_COLL_JOB_QUOTA_PAYLOAD_PER_OST

- Payload/OST

 For complete list of SHARP COLL tuning options

- $HPCX_SHARP_DIR/bin/sharp_coll_dump_config -f

© 2016 Mellanox Technologies 64

SHArP Integration

 High level API

• sharp_coll.h

- Public

- Implementation of low level API

- Matches with MPI semantics

- libsharp_coll.so

- Integrated into FCA-3.x

 Low level API

• sharp.h

- Not public yet. Will be soon

- Finer grain control

© 2016 Mellanox Technologies 65

SHArP Integration: high level API

 JOB Init/finalize

• int sharp_coll_init(struct sharp_coll_init_spec *sharp_coll_spec,

struct sharp_coll_context **sharp_coll_context);

• int sharp_coll_finalize(struct sharp_coll_context *context);

struct sharp_coll_init_spec {

uint64_t job_id; /**< Job unique ID */

int world_rank; /**< Global unique process number. */

int world_size; /**< Num of processes in the job. */

int (*progress_func)(void); /**< External progress function. */

struct sharp_coll_config config; /**< @ref sharp_coll_config "SHARP COLL Configuration". */

struct sharp_coll_out_of_band_colls oob_colls; /**< @ref sharp_coll_out_of_band_colls "List of OOB collectives". */

};

struct sharp_coll_out_of_band_colls {

int (*bcast) (void* context, void* buffer, int len, int root);

int (*barrier) (void* context);

int (*gather) (void * context, int root, void *sbuf, void *rbuf, int len);

}

© 2016 Mellanox Technologies 66

SHArP Integration: high level API ..

 COMM Init/finalize

• int sharp_coll_comm_init(struct sharp_coll_context *context,

struct sharp_coll_comm_init_spec *spec,

struct sharp_coll_comm **sharp_coll_comm);

• int sharp_coll_comm_destroy(struct sharp_coll_comm *comm);

struct sharp_coll_comm_init_spec {

int rank; /**< Uniq process rank in the group. */

int size; /**< Size of the SHArP group. */

int is_comm_world; /**< Is universal group (MPI_COMM_WORLD). */

void *oob_ctx; /**< External group context for OOB functions. */

};

© 2016 Mellanox Technologies 67

SHArP Integration: high level API..

 Collective operations
• int sharp_coll_do_barrier(struct sharp_coll_comm *comm);

• int sharp_coll_do_barrier_nb(struct sharp_coll_comm *comm,

struct sharp_coll_request **handle);

• int sharp_coll_do_allreduce(struct sharp_coll_comm *comm,

struct sharp_coll_reduce_spec *spec);

• int sharp_coll_do_allreduce_nb(struct sharp_coll_comm *comm,

struct sharp_coll_reduce_spec *spec,

struct sharp_coll_request **req);

struct sharp_coll_reduce_spec {

int root; /**< [in] root rank number (ignored for allreduce) */

struct sharp_coll_data_desc sbuf_desc; /**< [in] source data buffer desc */

struct sharp_coll_data_desc rbuf_desc; /**< [out] destination data buffer desc */

enum sharp_datatype dtype; /**< [in] data type @ref sharp_datatype */

int length; /**< [in] reduce operation size */

enum sharp_reduce_op op; /**< [in] reduce operator @ref sharp_reduce_op */

};

© 2016 Mellanox Technologies 68

HCOLL upcoming features

 SHArP (Sep, 2016)

• Multiple node leaders

• Result distribution over MCAST-UD

• Group Trimming

• Error flow

 New and improved CORE-Direct/Cross-Channel collectives

 UCX BCOL

 Full Datatypes support

 Power arch Optimizations

© 2016 Mellanox Technologies 69

MXM and migrating over to UCX

Point-to-Point Support

© 2016 Mellanox Technologies 70

MXM

© 2016 Mellanox Technologies 71

Mellanox HPC-X - MXM

• Point to Point acceleration

• InfiniBand and RoCE

• Ease of use - simple API

• Uses multiple transports

- RC, UD, DC, SHM, loopback

• Hybrid mode – mix transports

- switching between them as needed.

• Increases scalability by using DC and/or UD

• Efficient memory registration

• Improves shared memory communication using process-to-process memcpy (KNEM)

• Support for hardware atomics

© 2016 Mellanox Technologies 72

Mellanox HPC-X - MXM

• Thread-safe

- Supports all MPI threading models

− allow use of Hybrid model, i.e. MPI + OpenMP

• Re-use same protocols on different transports

- Inline for small data

- Fragmentation for medium data

- Rendezvous for large data

• Scalability:

• Fixed amount of buffers

• Create connections on-demand

• Reduce memory consumption per-connection

• Scalable tag matching

© 2016 Mellanox Technologies 73

MXM Layered design

API

Protocol Layer

Tag

Matching

Transport
Switching

Transport Layer

UD

CIB

RC DC

SHM self

Core Services

Async

Progress

Config

Parser
Memory Managers

IB SHM

© 2016 Mellanox Technologies 74

MXM integration in OpenMPI

Applications

OpenMPI

Yalla PML (CM/OB1)

MXM

InfiniBand Network (Hardware)

OpenIB BTL

CM OB1

© 2016 Mellanox Technologies 75

Mellanox HPC-X – MXM Yalla

 Communications Library Support – MXM

 In OpenMPI v1.8, a new pml layer(yalla) was added that reduces overhead by

bypassing layers and using the MXM library directly.

 for messages < 4K in size

 Improves latency by 5%

 Improves message rate by 50%

 Improve bandwidth by up to 45%

HPC-X will choose this pml automatically

 To use this, pass the following command line in mpirun:

 --mca pml yalla (instead of --mca pml cm –mca mtl mxm)

© 2016 Mellanox Technologies 76

MXM

 MXM:

• To enable MXM support explicitly:

- -mca pml yalla

• Transport selection

- -x MXM_TLS=self,shm,ud

• Device selection

- -x MXM_RDMA_PORTS=mlx5_0:1 (if multiple interfaces existed)

• For running low-level micro benchmarks, use RC transport

- -x MXM_TLS=self,shm,rc

• To disable MXM and enable openib BTL

- --mca pml ob1

© 2016 Mellanox Technologies 77

MXM parameters hierarchy

 Each class has its own set of parameters.

 Each parameter from the parent class defines the same one in all descendant classes.

 For example MXM_IB_RX_QUEUE_LEN=1024 defines the same RX queue length in UD, RC and DC.

 But if we set the parameter together with MXM_RC_RX_QUEUE_LEN=2048  UD and DC

components RX queues will have length of 1024 and 2048 in RC.

To see the all list of parameters with their defaults:

cd HPC-X-INSTALL-DIR/mxm/bin

./mxm_dump_config

TL

SHM IB

UD CIB

RC DC

© 2016 Mellanox Technologies 78

MXM: TL parameters

Each param has MXM_TL_ prefix

The next set of parameters could be useful for big data transactions tuning:

MXM_TL_RNDV_THRESH - Threshold for using rendezvous protocol.

Smaller value may harm performance,

but too large value can cause a deadlock in the application.

Default is 16384.

© 2016 Mellanox Technologies 79

SHM

 Stands for “shared memory”

 Used for inter-process communication in the same node

 Works out of the box

 KNEM DMA will be automatically selected by MXM

© 2016 Mellanox Technologies 80

IB

Each param has MXM_IB_ prefix

The next two ones could be useful for small messages rate increasing:

MXM_IB_CQ_MODERATION - Number of send WQEs for which completion is requested, the default is 64.

MXM_IB_TX_BATCH - Number of send WREs to batch in one post-send list.

Larger values reduce the CPU usage, but increase the latency

and pipelining between sender and receiver, the default is 16.

Use the next parameter in order to run your job over ROCE:

MXM_IB_GID_INDEX - GID index to use as local Ethernet port address, 0 is the default value.

© 2016 Mellanox Technologies 81

UD

 Scalable

 Can be used with AR

 ROCE support

 Protocols: RNDV, ZCOPY

 Each param has MXM_UD_ prefix

 Each send will be fragmented on sequence of MTUs sends

 Defaults:

MXM_UD_RNDV_THRESH=256k;

MXM_UD_HARD_ZCOPY_THRESH=64k;

© 2016 Mellanox Technologies 82

UD - some useful parameters

MXM_UD_WINDOW_SIZE - How many un-acknowledged packets can be on the fly,

the default is 1024.

MXM_UD_ACK_TIMEOUT - Timeout for getting an acknowledgment for sent packet,

the default is 300ms.

© 2016 Mellanox Technologies 83

UD RNDV ZCOPY

oGood for big buffers when memcpy from internal to user buffer could be an issue

We can manage UD RNDV ZCOPY protocol with the next parameters:

MXM_UD_RNDV_ZCOPY_WIN_SIZE - UD RNDV ZCOPY window size, the default is 1024.

MXM_UD_RNDV_ZCOPY_NUM_QPS - The number of UD QPs for RNDV ZCOPY protocol, the default is 64.

MXM_UD_RNDV_ZCOPY_WIN_TIMEOUT - Timeout for getting window acknowledgment from a remote peer,

the default is “1800ms”.

MXM_UD_RNDV_ZCOPY - Enable UD RNDV ZCOPY protocol (y/n), the default is “y”.

Need to activate the Adaptive Routing at the Subnet Management (SM) level.

MXM configuration parameter -x MXM_UD_FIRST_SL=8 (where SM has been configured to use SL=8 for

adaptive routing)

© 2016 Mellanox Technologies 84

Examples

OSU MPI All-to-All Latency Test - 32 procs on 2 nodes with UD

MXM_UD_RNDV_ZCOPY=n

Size Avg Latency(us)

1 18.48

2 18.19

4 18.41

8 19.00

16 22.10

32 25.59

64 31.02

128 46.24

256 68.14

512 139.26

1024 189.07

2048 400.34

4096 581.21

8192 966.42

16384 1781.00

32768 3398.96

65536 6198.17

131072 12656.01

262144 25729.65

524288 50504.39

1048576 99179.86

2097152 195143.01

4194304 388099.91

MXM_UD_RNDV_ZCOPY=y

MXM_UD_RNDV_ZCOPY_WIN_SIZE=1024

Size Avg Latency(us)

1 18.16

2 18.25

4 18.35

8 18.96

16 22.15

32 25.38

64 30.61

128 46.20

256 67.70

512 139.68

1024 188.45

2048 399.74

4096 581.53

8192 964.70

16384 1793.53

32768 3390.14

65536 6210.84

131072 12664.36

262144 19489.20

524288 38133.77

1048576 75860.85

2097152 151774.91

4194304 303383.81

© 2016 Mellanox Technologies 85

Examples

OSU MPI Multiple Bandwidth / Message Rate Test - 32 procs on 2 nodes with UD

Defaults

Size MB/s Messages/s

1 18.03 18026624.82

2 24.59 12294717.05

4 49.45 12362597.59

8 97.66 12208049.47

16 195.17 12197821.48

32 386.50 12078106.99

64 736.31 11504845.35

128 1148.48 8972464.40

256 1528.40 5970321.64

512 2141.69 4182988.69

1024 3367.09 3288170.57

2048 6178.14 3016668.92

4096 5687.36 1388516.30

8192 6121.58 747263.71

16384 6257.47 381925.41

32768 6110.82 186487.47

65536 5956.91 90895.21

131072 6018.24 45915.55

262144 15509.30 59163.27

524288 15600.46 29755.52

1048576 15702.19 14974.78

2097152 15757.31 7513.67

4194304 15796.38 3766.15

8388608 15802.43 1883.80

16777216 15805.43 942.08

33554432 15802.25 470.94

MXM_UD_HARD_ZCOPY_THRESH=32k

MXM_UD_RNDV_THRESH=32k

Size MB/s Messages/s

1 14.96 14960286.31

2 25.07 12535704.18

4 48.55 12138569.53

8 96.11 12014230.60

16 197.82 12363509.51

32 405.37 12667675.01

64 695.73 10870772.04

128 1148.90 8975745.81

256 1562.98 6105402.21

512 2148.77 4196821.99

1024 3341.03 3262721.68

2048 6046.14 2952218.83

4096 5747.08 1403096.90

8192 6115.85 746563.76

16384 6277.95 383175.48

32768 13576.23 414313.56

65536 14964.31 228337.25

131072 15391.85 117430.48

262144 15541.13 59284.71

524288 15600.30 29755.21

1048576 15714.73 14986.74

2097152 15765.52 7517.58

4194304 15797.68 3766.46

8388608 15807.84 1884.44

16777216 15811.52 942.44

33554432 15802.17 470.94

© 2016 Mellanox Technologies 86

UD Adaptive Routing – All-to-All 128 Haswell nodes, 28 PPN,

FDR adapters, EDR network, 1:4 blocking

Message Size (bytes) Latency – NO

Adaptive Routing

(usec)

Latency – with

adaptive routing

(usec)

Percent Improvement

using Adaptive

Routing

64 13413.2 12429.4 7.334699

128 19725.8 17397.1 11.80536

256 33157.6 27360.1 17.48449

512 68007.4 56606.8 16.76381

1024 75764.8 56596.0 25.30042

2048 89690.0 82247.3 8.298242

4096 170533.8 151588.2 11.10961

8192 335020.0 294236.3 12.17351

16384 669354.9 580389.7 13.29118

32768 1343660.5 1166258.8 13.20287

65536 2714040.4 2364910.2 12.86385

131072 5436677.8 4761931.9 12.411

© 2016 Mellanox Technologies 87

RC

The best choice when the amount of procs is not big.

The Rendezvous protocol is based on RDMA (READ / WRITE – use MXM_RC_RNDV_MODE param) capabilities.

Some defaults:

MXM_RC_MSS = 4224B

MXM_RC_HARD_ZCOPY_THRESH = 16k

MXM_RC_RX_QUEUE_LEN = 16000

MXM_RC_TX_MAX_BUFS = -1 i.e. infinite value, it’s strongly recommended to not change this param.

Receive queue resizing:

MXM_RC_RX_SRQ_FILL_SIZE – receive buffers to pre-post, the value will be increased after each

async SRQ limit event up to MXM_RC_RX_QUEUE_LEN,

the default is 2048.

MXM_RC_RX_SRQ_RESIZE_FACTOR - For each SRQ watermark event it will be resized by this factor,

the default is “4.0”.

© 2016 Mellanox Technologies 88

EAGER RDMA protocol

Use the next set of parameters for managing:

MXM_RC_USE_EAGER_RDMA - Use RDMA WRITE for small messages (y/n), the default is “y”.

MXM_RC_EAGER_RDMA_THRESHOLD - Use RDMA for short messages after this number of messages

are received from a given peer, the default is 16.

MXM_RC_MAX_RDMA_CHANNELS - Maximum number of peers allowed to use RDMA

for short messages, the default is 8.

MXM_RC_EAGER_RDMA_BUFFS_NUM - Number of RDMA buffers to allocate per rdma channel,

the default is 32.

MXM_RC_EAGER_RDMA_BUFF_LEN - Maximum size (in bytes) of eager RDMA messages,

the default is 4224 (like MSS default).

© 2016 Mellanox Technologies 89

UCX

© 2016 Mellanox Technologies 90

UCX

 Collaboration between industry, laboratories, and academia

 To create open-source production grade communication framework for data centric and HPC

applications

 To enable the highest performance through co-design of software-hardware interfaces

© 2016 Mellanox Technologies 91

A Different Model - Co-Design Effort

Applications: LAMMPS, NWCHEM, etc.

Programming models: MPI, PGAS/Gasnet, etc.

Middleware: UCX

Driver and Hardware

C
o

-D
e
s
ig

n

Co-Design Effort Between National Laboratories, Academia, and Industry

© 2016 Mellanox Technologies 92

UCX

© 2016 Mellanox Technologies 93

A Collaboration Effort

 Mellanox co-designs network interface and contributes MXM technology

• Infrastructure, transport, shared memory, protocols, integration with OpenMPI/SHMEM, MPICH

 ORNL co-designs network interface and contributes UCCS project

• InfiniBand optimizations, Cray devices, shared memory

 NVIDIA co-designs high-quality support for GPU devices

• GPUDirect, GDR copy, etc.

 IBM co-designs network interface and contributes ideas and concepts from PAMI

 UH/UTK focus on integration with their research platforms

 ANL focus on UCX CH4 support

© 2016 Mellanox Technologies 94

UCX Framework Mission

 Collaboration between industry, laboratories, and academia

 Create open-source production grade communication framework for HPC applications

 Enable the highest performance through co-design of software-hardware interfaces

 Unify industry - national laboratories - academia efforts

Performance oriented

Optimization for low-software overheads

in communication path allows near

native-level performance

Community driven

Collaboration between industry,

laboratories, and academia

Production quality

Developed, maintained, tested, and used

by industry and researcher community

API

Exposes broad semantics that target data
centric and HPC programming models

and applications

Research

The framework concepts and ideas are

driven by research in academia,

laboratories, and industry

Cross platform

Support for Infiniband, Cray, various

shared memory (x86-64 and Power),

GPUs

Co-design of Exascale Network APIs

© 2016 Mellanox Technologies 95

The UCX Framework

UC-S for Services

This framework provides basic

infrastructure for component based

programming, memory management, and

useful system utilities

Functionality:

Platform abstractions, data structures,

debug facilities.

UC-T for Transport

Low-level API that expose basic network

operations supported by underlying

hardware. Reliable, out-of-order delivery.

Functionality:

Setup and instantiation of communication

operations.

UC-P for Protocols

High-level API uses UCT framework to

construct protocols commonly found in

applications

Functionality:

Multi-rail, device selection, pending

queue, rendezvous, tag-matching,

software-atomics, etc.

© 2016 Mellanox Technologies 96

UCX High-level Overview

Unified, Light-Weight, High-Performance Communication Framework

© 2016 Mellanox Technologies 97

Differences between UCX and MXM

• Simple and consistent API

• Choosing between low-level and high-level API allows easy integration

with a wide range of applications and middleware.

• Protocols and transports are selected by capabilities and performance

estimations, rather than hard-coded definitions.

• Support thread contexts and dedicated resources, as well as fine-grained

and coarse-grained locking.

• Accelerators are represented as a transport, driven by a generic “glue”

layer, which will work with all communication networks.

 Usage: add --mca pml ucx to your OMPI run command line

© 2016 Mellanox Technologies 98

HPC-X UCX Performance

© 2016 Mellanox Technologies 99

UCX API Overview: UCT Objects

- uct_worker_h
A context for separate progress engine and communication resources. Can be either thread-

dedicated or shared.

- uct_pd_h (will be renamed to uct_md_h)

Memory registration domain. Can register user buffers and allocate registered memory.

- uct_iface_h
Communication interface, created on a specific memory domain and worker. Handles incoming

active messages and spawns connections to remote interfaces.

- uct_ep_h
Connection to a remote interface. Used to initiate communications.

- uct_mem_h
Registered memory handle.

- uct_rkey_t
Remote memory access key.

© 2016 Mellanox Technologies 100

Out-of-band

Address

Exchange

Entity A

Memory

Domain
Worker

Interface

Endpoint

Connect

Entity B

Memory

Domain
Worker

Interface

Endpoint

Connect

UCT initialization

© 2016 Mellanox Technologies 101

UCT memory primitives

- Register memory within the domain

- Can potentially use a cache to speedup registration

- Allocate registered memory.

- Pack memory region handle to a remote-key-buffer
- Can be sent to another entity.

- Unpack a remote-key-buffer into a remote-key
- Can be used for remote memory access.

© 2016 Mellanox Technologies 102

UCT communication primitives

- Not everything has to be supported.
- Interface reports the set of supported primitives.

- UCP uses this info to construct protocols.

- Send active message (active message id)

- Put data to remote memory (virtual address, remote key)

- Get data from remote memory (virtual address, remote key)

- Perform an atomic operation on remote memory:
- Add

- Fetch-and-add

- Swap

- Compare-and-swap

- Insert a fence

- Flush pending communications

© 2016 Mellanox Technologies 103

UCT data

- UCT communications have a size limit
- Interface reports max. allowed size for every operation.

- Fragmentation, if required, should be handled by user / UCP.

- Several data “classes” are supported:
- “short” – small buffer.

- “bcopy” – a user callback which generates data (in many cases,

“memcpy” can be used as the callback).

- “zcopy” – a buffer and it’s memory region handle. Usually large buffers

are supported.

- Atomic operations use a 32 or 64 bit immediate values.

© 2016 Mellanox Technologies 104

UCT completion semantics

- All operations are non-blocking

- Return value indicates the status:
- OK – operation is completed.

- INPROGRESS – operation has started, but not completed yet.

- NO_RESOURCE – cannot initiate the operation right now. The user

might want to put this on a pending queue, or retry in a tight loop.

- ERR_xx – other errors.

- Operations which may return INPROGRESS (get/atomics/zcopy)

can get a completion handle.
- User initializes the completion handle with a counter and a callback.

- Each completion decrements the counter by 1, when it reaches 0 – the

callback is called.

© 2016 Mellanox Technologies 105

UCT API

© 2016 Mellanox Technologies 106

UCX API Overview: UCP objects

- ucp_context_h
A global context for the application. For example, hybrid MPI/SHMEM library may create on context

for MPI, and another for SHMEM.

- ucp_worker_h
Communication resources and progress engine context. One possible usage is to create one

worker per thread. Contains the uct_iface_h’s of all selected transports.

- ucp_ep_h
Connection to a remote worker. Used to initiate communications. Contains the uct_ep_h’s of

currently active transports.

- ucp_mem_h
Handle to memory allocated or registered in the local process. Contains an array of

uct_mem_h’s for currently active transports.

- ucp_rkey_h
Remote key handle, contains an array of uct_rkey_t’s.

© 2016 Mellanox Technologies 107

Out-of-band

Address

Exchange

Entity A

Context

Worker

Endpoint

Entity B

Context

Worker

UCP initialization

© 2016 Mellanox Technologies 108

UCP communications

- Tag-matched send/receive
- Blocking / Non-blocking

- Standard / Synchronous / Buffered

- Remote memory operations
- Blocking put, get, atomics

- Non-blocking – TBD

- Data is specified as buffer and length
- No size limit

- May register the buffer and use zero copy

© 2016 Mellanox Technologies 109

UCP API

© 2016 Mellanox Technologies 110

UCX: upcoming features

• Datatype engine

• Multi-threading

• HW tag matching

• UMR

• GPU support

© 2016 Mellanox Technologies 111

OpenSHMEM Support

© 2016 Mellanox Technologies 112

Strong interest and investment amongst National Labs and other
Government agencies in OpenSHMEM.
Currently, there exists little support for SHMEM over IB.
One route to take: implement OpenSHMEM by leveraging existing and

mature technologies (e.g. OMPI, MVAPICHX.)
Open MPI is an one of the ideal platform given its MCA architecture

and strong IB support in the BTL’s as well as support for vendor
provided libraries (MXM, FCA)

OSHMEM 1.3 compliant in OMPI 2.1
Goals:

• Reuse existing OFA code and infrastructure
• Expose hardware capabilities through libraries
• Allow for integration of software libraries

- MXM, UCX for p2p

- FCA for collectives

OpenSHMEM support

© 2016 Mellanox Technologies 113

SHMEM Integration with Open MPI

N

Open SHMEM

OMPIOPAL ORTE

PML B ML BTL COLL

Common

OpenIB SM tunedOB1 R2

ofacm

MPIrun

OSHMEM

SHMEMrun

SPML

Yoda

MXM UCX

HCOLL

© 2016 Mellanox Technologies 114

SHMEM Implementation Structure

Applications

SHMEM/MPI

SPML: YODA/IKRIT

One sided communication

SCOLL: BASIC/FCA

Collectives

CM
InfiniBand Connection Management

VERBS, MXM

InfiniBand Network (Hardware)

Atomic/Locks Memheap

Transport selection

UCX

UCX

© 2016 Mellanox Technologies 115

Profiler

© 2016 Mellanox Technologies 116

Profiling MPI

 To profile MPI API:

• $ export IPM_KEYFILE=$HPCX_HOME_IPM_DIR/etc/ipm_key_mpi

• $ export IPM_LOG=FULL

• $ export LD_PRELOAD=$HPCX_HOME_IPM_DIR/lib/libipm.so

• $ mpirun -x LD_PRELOAD

• $ $HPCX_HOME_IPM_DIR/bin/ipm_parse -full outfile.xml

• $ $HPCX_HOME_IPM_DIR/bin/ipm_parse -html outfile.xml

© 2016 Mellanox Technologies 117

Profiling MPI

 To troubleshoot for MPI load imbalance

• Apply blocking before MPI collective operations

• Show the effect when processes not synchronized before entering into MPI collective ops

 Instrumentation can be applied on per-collective basis

• $ export IPM_ADD_BARRIER_TO_REDUCE=1

• $ export IPM_ADD_BARRIER_TO_ALLREDUCE=1

• $ export IPM_ADD_BARRIER_TO_GATHER=1

• $ export IPM_ADD_BARRIER_TO_ALL_GATHER=1

• $ export IPM_ADD_BARRIER_TO_ALLTOALL=1

• $ export IPM_ADD_BARRIER_TO_ALLTOALLV=1

• $ export IPM_ADD_BARRIER_TO_BROADCAST=1

• $ export IPM_ADD_BARRIER_TO_SCATTER=1

• $ export IPM_ADD_BARRIER_TO_SCATTERV=1

• $ export IPM_ADD_BARRIER_TO_GATHERV=1

• $ export IPM_ADD_BARRIER_TO_ALLGATHERV=1

• $ export IPM_ADD_BARRIER_TO_REDUCE_SCATTER=1

© 2016 Mellanox Technologies 118

PMIx

© 2016 Mellanox Technologies 119

PMIx – PMI exascale

• Collaborative open source effort led by Intel, Mellanox

Technologies, IBM, Adaptive Computing, and

SchedMD…

© 2016 Mellanox Technologies 120

PMIx:Motivation

 Exascale launch times are a hot topic

• Desire: reduce from many minutes to few seconds

• Target: O(106) MPI processes on O(105) nodes thru MPI_Init in < 30 seconds

 New programming models are exploding

• Driven by need to efficiently exploit scale vs. resource constraints

• Characterized by increased app-RM integration

© 2016 Mellanox Technologies 121

PMIx:What’s been done

 Worked closely with customers, OEMs, and open source community to design a scalable API that addresses measured limitations of PMI2

• Data driven design.

 Led to the PMIx v1.0 API

 Implementation and imminent release of PMIx v1.1

 Significant architectural changes in Open MPI to support direct modex

• “Add procs” in bulk MPI_Init  “Add proc” on-demand on first use outside MPI_init.

• Available in the OMPI v2.x release.

 Integrated PMIx into Open MPI v2.x

• For native launching as well as direct launching under supported RMs.

• For mpirun launched jobs, ORTE implements PMIx callbacks.

• For srun launched jobs, SLURM implements PMIx callbacks in the PMIx plugin.

• Client side framework added to OPAL with components for

- Cray PMI

- PMI1

- PMI2

- PMIx

- backwards compatibility with PMI1 and PMI2.

 Implemented and submitted upstream SLURM PMIx plugin

• released in SLURM 16.05

 PMIx unit tests integrated into Jenkins test harness

© 2016 Mellanox Technologies 122

srun --mpi=xxx hello_world

0

1

2

3

4

5

6

7

8

0 500 1000 1500 2000 2500 3000 3500 4000

T
im

e
 (

s
e
c
.)

MPI/OSHMEM Processes

MPI_Init / Shmem_init

PMIx async

PMIx

PMI2

Open MPI Trunk

SLURM 16.05 prerelease with PMIx plugin

PMIx v1.1

BTLs openib,self,vader

Source: RalphH, sc15

© 2016 Mellanox Technologies 123

PMIx:Conclusions

 API is implemented and performing well in a variety of settings
• Server integrated in OMPI for native launching and in SLURM as PMIx plugin for direct launching.

 PMIx shows improvement over other state-of-the-art PMI2 implementations when doing a full

modex
• Data blobs versus encoded metakeys

• Data scoping to reduce the modex size (local, remote, global)

• Persistence for data.

• Shared memory for in node copy

 PMIx supported direct modex significantly outperforms full modex operations for BTL/MTLs that can

support this feature

 Direct modex still scales as O(N)

 Efforts and energy should be focused on daemon bootstrap problem

 Instant-on capabilities could be used to further reduce daemon bootstrap time

© 2016 Mellanox Technologies 124

Application Case Studies with HPCX

© 2016 Mellanox Technologies 125

OpenFOAM Performance – FCA

 FCA enables nearly 51% performance gain at 16 nodes / 256 cores

• Bigger advantage expected at higher node count / core count

51%

31%

© 2016 Mellanox Technologies 126

LS-DYNA Performance – MPI Optimization

• FCA and MXM enhance LS-DYNA performance at scale for HPC-X
– Open MPI and HPC-X are based on the Open MPI distribution
– The “yalla” PML, UD transport and memory optimization in HPC-X reduce overhead
– MXM provides a speedup of 38% over un-tuned baseline run at 32 nodes (768 cores)

• MCA parameters for MXM:
– For enabling MXM:
-mca btl_sm_use_knem 1 -mca pml yalla -x MXM_TLS=ud,shm,self -x MXM_SHM_RNDV_THRESH=32768 -x
MXM_RDMA_PORTS=mlx5_0:1

38%

© 2016 Mellanox Technologies 127

Mellanox Delivers Highest Applications Performance (HPC-X)

Enabling Highest

Applications

Scalability and

Performance

© 2016 Mellanox Technologies 128

Best Practices (HPC-X vs Other MPIs)

 ANSYS Fluent

• HPC-X provides 19% higher performance than Intel MPI on 32 nodes

• http://www.hpcadvisorycouncil.com/pdf/Fluent_Analysis_and_Profiling_Intel_E5_2680v2.pdf

 CD-adapco STAR-CCM+

• Up to 21% higher than Intel MPI and Platform MPI, at 32 nodes

• http://www.hpcadvisorycouncil.com/pdf/STAR-CCM_Analysis_Intel_E5_2680_V2.pdf

 OpenFOAM

• HPC-X delivers 13% gain over Intel MPI on 32 nodes

• HPC-X demonstrates 24% improvement over Open MPI

• http://www.hpcadvisorycouncil.com/pdf/OpenFOAMConf2015_PakLui.pdf

 QuantumESPRESSO

• HPC-X delivers 103% gain over Intel MPI on 32 nodes

• http://www.hpcadvisorycouncil.com/pdf/QuantumEspresso_Performance_Analysis_Intel_Haswell.pdf

 WRF

• HPC-X delivers 13% performance improvement over Platfrom MPI on 32 nodes

• http://www.hpcadvisorycouncil.com/pdf/WRF_Analysis_and_Profiling_Intel_E5-2680v2.pdf

http://www.hpcadvisorycouncil.com/pdf/Fluent_Analysis_and_Profiling_Intel_E5_2680v2.pdf
http://www.hpcadvisorycouncil.com/pdf/STAR-CCM_Analysis_Intel_E5_2680_V2.pdf
http://www.hpcadvisorycouncil.com/pdf/OpenFOAMConf2015_PakLui.pdf
http://www.hpcadvisorycouncil.com/pdf/QuantumEspresso_Performance_Analysis_Intel_Haswell.pdf
http://www.hpcadvisorycouncil.com/pdf/WRF_Analysis_and_Profiling_Intel_E5-2680v2.pdf

© 2016 Mellanox Technologies 129

Summary

 Mellanox solutions provide a proven, scalable and high performance end-to-end connectivity

 Flexible, support all compute architectures: x86, ARM, GPU, FPGA etc.

 Standards-based (InfiniBand, Ethernet), supported by large eco-system

 Higher performance: 100Gb/s, 0.7usec latency, 150 million messages/sec

 HPC-X software provides leading performance for MPI, OpenSHMEM/PGAS and UPC

 Superiors applications offloads: RDMA, Collectives, scalable transport

 Backward and future compatible

Thank You

