
LLNL-PRES-688119
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

������: A Simple and Efficient Fault-Tolerance
Model for MPI Applications

Ignacio Laguna
Center for Applied Scientific Computing (CASC)

4th Annual MVAPICH User Group (MUG) Meeting, Aug 15-17, 2016, Columbus, Ohio, USA

In collaboration with:

Sourav Chakraborty, Khaled Hamidouche,
Hari Subramoni, Dhabaleswar K. (DK) Panda

Murali Emani, Tanzima Islam, Kathryn Mohror,
Adam Moody, Kento Sato, Martin Schulz

LLNL-PRES-688119
2	

Fault-Tolerance Solutions for HPC Applications

Hardware

System

Application

Examples: Hardware replication, parity, ECC
+ don’t require code changes, system/app agnostic
− can be very expensive (power, performance)

Examples: System-level checkpoints, message logging
+ don’t require code changes, application agnostic
− overhead can be high, know little about applications

Examples: MPI FT programming models, ABFT, C/R
+ better view of what needs to be protected/recovered
− can be hard to integrate in large codes

Our focus

LLNL-PRES-688119
3	

Several FT Programming Models for MPI have been
Proposed…

1999 2000 2011 2013 2014 20142002

Global Recovery

Shrinking
Recovery

Non-shrinking
Recovery

Local Recovery

Backward
Recovery

Forward
Recovery

Use of PMPI
interface

Support for
libraries

There are many paradigms & features

How do we group or classify them all?

LLNL-PRES-688119
4	

Classification of Existing FT Programming Models

err = MPI_Operation1();
if (err) {
 recovery();
}

Error Code
Checking

A

TRY {
 MPI_Operation1();
 MPI_Operation2();
}
TRY {
 MPI_Operation3();
 MPI_Operation4();
}

Try Blocks

B

main () {
 restart_from_here();

 MPI_Operation1();

 MPI_Operation2();

 MPI_Operation3();

 MPI_Operation4();
 return 0;
}

Full Restart

C

Granularity of
control / detection

Fine Medium Coarse

LLNL-PRES-688119
5	

Programmability and Usability can be Major Concerns

Questions programmers ask before adopting an FT programming model

How many (and what) changes I have to do in my application?

How much time will it take me to adopt this model in my code?

Will this be better than traditional checkpoint/restart?

LLNL-PRES-688119
6	

§  Lines of code

§  Number of files modified (or functions, …)

§  Time spent modifying the code

§  …

§  …

§  …

§  Cyclomatic complexity
—  McCabe ’76, ‘89, Gill et al. ‘91, Lanning et al. ’94, Kozlov et al. ‘08

But....How to Measure Programmability or Usability?

LLNL-PRES-688119
7	

§  Programs with high complexity have higher rates of bugs

§  Programs with high complexity are more difficult to
maintain and test
—  Lanning et al., Computer (1994)
—  Kozlov et al., Journal of Software Maintenance and Evolution (2008)

§  CC is adopted by the NIST Structured Testing Methodology
—  A. H. Watson, T. J. McCabe, and D. R. Wallace. Structured testing: A testing methodology

using the cyclomatic complexity metric (1996).

Cyclomatic Complexity in Software Engineering

LLNL-PRES-688119
8	

Cyclomatic complexity (CC) measures number of decisions in a program

Cyclomatic Complexity Metric

1 a	=	…
2 b	=	…
3 c	=	…
4 …
5 …
6 …
7 …
8 …
9 …
10 j	=	…

Code with 10 assignments

One execution path More than 1,000 execution paths!

Which code is easier to understand and easier to test?
Code with 10 if conditions
1 if	(cond1)	{
2 if	(cond2)	{
3 if	(cond3)	{
4 …
5 …
6 …
7 …
8 …
9 …
10 if	(cond10)	{

CC = decisions + 1

CC = 0 + 1 = 1 CC = 10 + 1 = 11

The recommended value for CC in software engineering and industry is 10

LLNL-PRES-688119
9	

Example:  
Cyclomatic Complexity with the Error Code Checking Model

while(error	>	threshold)	{	
		/*	perform	computation	*/	
		MPI_Allreduce(...,	comm);	
}	

Refinement original loop

while(error	>	threshold)	{	
		rc	=	MPI_Allreduce(...,	comm);	
		if((FAILED_PROCESS	==	rc)	||		
						(FAILED_COMMUNICATOR	==	rc)	||	
						(error	<=	threshold))	{	
	
				if(FAILED_PROCESS	==	rc)	
						MPI_Comm_revoke(comm);	
	
				allgood	=	(rc	==	MPI_SUCCESS);	
				rc	=	MPI_Comm_agree(comm,	&allgood);	
				if(rc	==	FAILED_PROCESS	||		
								!allsucceeded)	{	
						/*	repair	communicator	*/	
				}	
		}	
}	

Fault-tolerant loop using return
error code checking*

Cyclomatic Complexity = 2

Cyclomatic Complexity = 8

*ULFM example (taken from ULFM documentation)

6 additional
conditions

LLNL-PRES-688119
10	

What is the Complexity of MPI Applications?

Cyclomatic
Complexity

10

5

FT code
CC

Applications
CC

?

Ideal Case
•  Low complexity in

applications
•  Overall CC below

suggested limit

?

Acceptable
• Moderate

complexity in
applications

•  Overall CC on the
suggested limit

?

Bad Case
•  High complexity

in applications
•  CC exceeds

suggested limit

Horrible

?

LLNL-PRES-688119
11	

§  Conducted analysis on a large number of MPI applications
§  Measured CC of functions that use MPI communication routines

—  Analyzed over 2,300 functions

Study of Cyclomatic Complexity of MPI Applications

0

10

20

30

40

50

60

70

80

Ne
kb

on
e

HA
CC

-IO

BT

M
CB

PE

TS
C

NW
Ch

em

m
in

iF
E FT

LU

M

PA
S

Sp
ho

t
dd

cM
D

m
in

iX
yc

e
GE

OS
-5

CE

SM

LA
M

M
PS

m

in
iM

D
CA

M
-S

E
HP

CC
G

M
G IS

m

in
iA

M
R

QB
OX

SP

AM

G2
01

3 CG

LU
LE

SH

Cy
clo

m
at

ic
Co

m
pl

ex
ity

Most (77%)
applications have

already a high degree
of complexity

LLNL-PRES-688119
12	

Our Solution Space: Low Programming Complexity

err = MPI_Operation1();
if (err) {
 recovery();
}

Error Code
Checking

A

TRY {
 MPI_Operation1();
 MPI_Operation2();
}
TRY {
 MPI_Operation3();
 MPI_Operation4();
}

Try Blocks

B

main () {
 restart_from_here();

 MPI_Operation1();

 MPI_Operation2();

 MPI_Operation3();

 MPI_Operation4();
 return 0;
}

Full Restart

C

Granularity of
control / detection

Fine Medium Coarse

High
programming
complexity

Low
programming
complexity

Our focus

LLNL-PRES-688119
13	

Design Goals of the Reinit Interface

1Simple to program interface
• Support current fault-tolerance programming practices
• Checkpoint/Restart

2MPI library cleans up its state (not the application)
• Provide state similar to MPI_Init
• All communicators are gone (except MPI_COMM_WORLD)

3Close interaction between MPI & resource manager
• More efficient reparation of failed resources
• Faster recovery time

4Mechanism to clean up libraries
• FIFO stack of error handlers
• Libraries and applications provide their own handlers

LLNL-PRES-688119
14	

Description of the Reinit Interface

/* Initialization routines */ !
typedef enum { !
 MPI_START_NEW, // Fresh process !
 MPI_START_RESTARTED, // Restarted after fault !
 MPI_START_ADDED // Replaced process !
} MPI_Start_state; !
!
/* Application entry point */!
typedef void (*MPI_Restart_point) !
 (int argc, char **argv, MPI_Start_state state); !
!
int MPI_Reinit!
 (int argc, char **argv, MPI_Restart_point point); !

LLNL-PRES-688119
15	

Cleanup Stack Mechanisms

/* Cleanup routines */ !
typedef int (*MPI_Cleanup_handler) (!
 MPI_Start_state start, !
 void *state); !
!
int MPI_Cleanup_handler_push (!
 MPI_Cleanup_handler handler, !
 void *state); !
!
int MPI_Cleanup_handler_pop (!
 MPI_Cleanup_handler *handler, !
 void **state); !

Error handler 1

Error handler 2

Error handler 3

Stack of error handlers

LLNL-PRES-688119
16	

Example Program

int cleanup_handler (MPI_Start_state, void *); !
!
int resilient_main (int argc, char **argv, !

MPI_Start_state start_state) !
{ !
 /* Recover using checkpoint */ !
 /* Do computation */ !
 /* Store checkpoint */ !
} !
!
int main(int argc, char **argv) !
{ !
 MPI_Init(&argc, &argv); !
!
 MPI_Cleanup_handler_push(cleanup_handler); // Register application cleanup handler!
!
 MPI_Reinit(&argc, &argv, resilient_main); // Entry point for resilient MPI program!
!
 MPI_Finalize(); !
} !
!

LLNL-PRES-688119
17	

Execution Flow of Reinit

Wait for others
Initialize

Process 0
state=New

Finalize
Initialize

Process 1
state=New

Finalize
Initialize

Process 2
state=New

Finalize
Initialize

Process 3
state=New

Restart

X

M
P

I_
R

ei
ni

t

Out-of-band

Failure Notification

state=
Restarted

state=
Restarted

state=
Restarted

state=
Added

LLNL-PRES-688119
18	

Failure Detection and Notification in SLURM

X

Send failure
notification to

srun

srun

slurmd

Local slurmd
detects process

failure
Send signal to

processes

Broadcast
notification to

slurmds

slurmd slurmd slurmd

slurmd slurmd

P1 P2 P3 P0

LLNL-PRES-688119
19	

§  Implementation of Reinit in SLURM-2.6.5 + MVAPICH2-2.1

§  Experimental system
—  Sierra cluster @ LLNL
—  Intel Xeon 6-core EP X5660
—  12 Cores per Node

§  Single process failure scenario

Experimental Evaluation

LLNL-PRES-688119
20	

Recovery Time with MPI_Reinit Function

0	

2	

4	

6	

8	

10	

12	

14	

16	

18	

2	 4	 8	 16	 32	 64	 128	256	 512	 1K	

Re
co

ve
ry
	T
im

e	
(s
ec

on
ds

)	

Number	of	Nodes	

Job	Restart	

MPI_Reinit	
Less than 4 seconds to
recover with 1K nodes, 12K
processes

Recovery with REINIT is 4
times faster than Job restart

LLNL-PRES-688119
21	

Time to Restore a 100 MB Checkpoint

0	

0.2	

0.4	

0.6	

0.8	

1	

1.2	

2	 4	 8	 16	 32	 64	 128	256	512	 1K	

Ti
m
e	
(s
ec

on
ds

)	

Number	of	Nodes	

Job	Restart	

MPI_Reinit	

Job restart forces each
process to load checkpoints
from persistent storage

Only the failed processes
need to reload for REINIT

REINIT is 7 times faster than
Job restart with 1K nodes,
12K processes

LLNL-PRES-688119
22	

§  Programming complexity can be a major impediment in
adopting FT programing models for MPI applications

§  We propose Reinit for low programing complexity and high
scalability
—  Supports current FT programing practices (checkpoint/restart)
—  Close integration with resource manager (faster recovery)
—  Simple library and application cleanup

§  Current implementation in MVAPICH + SLURM
§  Future Work:

—  Support for node failures
—  Code release

Summary

LLNL-PRES-688119
23	

Thanks to the Team Members!

LLNL

Kathryn Mohror

Martin Schulz

Kento SatoTanzima Islam

Adam MoodyMurali Emani

Ignacio Laguna

Ohio State University (OSU)
Sourav Chakraborty

Dhabaleswar K. (DK) Panda

Khaled Hamidouche

Hari Subramoni

