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Fault-Tolerance Solutions for HPC Applications

Hardware

System

Application

Examples:    Hardware replication, parity, ECC
+  don’t require code changes, system/app agnostic
−  can be very expensive (power, performance)

Examples:    System-level checkpoints, message logging 
+  don’t require code changes, application agnostic
−  overhead can be high, know little about applications

Examples:    MPI FT programming models, ABFT, C/R 
+  better view of what needs to be protected/recovered
−  can be hard to integrate in large codes

Our focus
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Several FT Programming Models for MPI have been 
Proposed…

1999 2000 2011 2013 2014 20142002

Global Recovery

Shrinking 
Recovery

Non-shrinking 
Recovery

Local Recovery

Backward 
Recovery

Forward 
Recovery

Use of PMPI 
interface

Support for 
libraries

There are many paradigms & features

How do we group or classify them all?
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Classification of Existing FT Programming Models

err = MPI_Operation1(); 
if (err) { 
  recovery(); 
} 

Error Code 
Checking 

A 

TRY { 
  MPI_Operation1(); 
  MPI_Operation2(); 
} 
TRY { 
  MPI_Operation3(); 
  MPI_Operation4(); 
} 

Try Blocks 

B 

main () { 
  restart_from_here(); 
 
  MPI_Operation1(); 
 
  MPI_Operation2(); 
 
 MPI_Operation3(); 
 
 MPI_Operation4(); 
  return 0; 
} 

Full Restart 

C 

Granularity of 
control / detection

Fine Medium Coarse
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Programmability and Usability can be Major Concerns

Questions programmers ask before adopting an FT programming model

How many (and what) changes I have to do in my application?

How much time will it take me to adopt this model in my code?

Will this be better than traditional checkpoint/restart?
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§  Lines of code

§  Number of files modified (or functions, …) 

§  Time spent modifying the code

§  …

§  …

§  …

§  Cyclomatic complexity
—  McCabe ’76, ‘89, Gill et al. ‘91, Lanning et al. ’94, Kozlov et al. ‘08

But....How to Measure Programmability or Usability?
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§  Programs with high complexity have higher rates of bugs

§  Programs with high complexity are more difficult to 
maintain and test
—  Lanning et al., Computer (1994)
—  Kozlov et al., Journal of Software Maintenance and Evolution (2008)

§  CC is adopted by the NIST Structured Testing Methodology
—  A. H. Watson, T. J. McCabe, and D. R. Wallace. Structured testing: A testing methodology 

using the cyclomatic complexity metric (1996).

Cyclomatic Complexity in Software Engineering



LLNL-PRES-688119 
8	

Cyclomatic complexity (CC) measures number of decisions in a program

Cyclomatic Complexity Metric

1 a	=	…
2 b	=	…
3 c	=	…
4 …
5 …
6 …
7 …
8 …
9 …
10 j	=	…

Code with 10 assignments

One execution path More than 1,000 execution paths!

Which code is easier to understand and easier to test?
Code with 10 if conditions
1 if	(cond1)	{
2 if	(cond2)	{
3 if	(cond3)	{
4 …
5 …
6 …
7 …
8 …
9 …
10 if	(cond10)	{

CC = decisions + 1 

CC = 0 + 1 = 1 CC = 10 + 1 = 11 

The recommended value for CC in software engineering and industry is 10
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Example:  
Cyclomatic Complexity with the Error Code Checking Model

while(error	>	threshold)	{	
		/*	perform	computation	*/	
		MPI_Allreduce(...,	comm);	
}	

Refinement original loop

while(error	>	threshold)	{	
		rc	=	MPI_Allreduce(...,	comm);	
		if(	(FAILED_PROCESS	==	rc)	||		
						(FAILED_COMMUNICATOR	==	rc)	||	
						(error	<=	threshold)	)	{	
	
				if(FAILED_PROCESS	==	rc	)	
						MPI_Comm_revoke(comm);	
	
				allgood	=	(rc	==	MPI_SUCCESS);	
				rc	=	MPI_Comm_agree(comm,	&allgood);	
				if(	rc	==	FAILED_PROCESS	||		
								!allsucceeded	)	{	
						/*	repair	communicator	*/	
				}	
		}	
}	

Fault-tolerant loop using return 
error code checking*

Cyclomatic Complexity = 2  

Cyclomatic Complexity = 8  

*ULFM example (taken from ULFM documentation)

6 additional 
conditions
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What is the Complexity of MPI Applications?

Cyclomatic 
Complexity

10

5

FT code 
CC

Applications 
CC

?

Ideal Case
•  Low complexity in 

applications
•  Overall CC below 

suggested limit

?

Acceptable
• Moderate 

complexity in 
applications

•  Overall CC on the 
suggested limit

?

Bad Case
•  High complexity 

in applications
•  CC exceeds 

suggested limit

Horrible

?
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§  Conducted analysis on a large number of MPI applications
§  Measured CC of functions that use MPI communication routines

—  Analyzed over 2,300 functions

Study of Cyclomatic Complexity of MPI Applications
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applications have 

already a high degree 
of complexity
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Our Solution Space:  Low Programming Complexity 

err = MPI_Operation1(); 
if (err) { 
  recovery(); 
} 

Error Code 
Checking 

A 

TRY { 
  MPI_Operation1(); 
  MPI_Operation2(); 
} 
TRY { 
  MPI_Operation3(); 
  MPI_Operation4(); 
} 

Try Blocks 

B 

main () { 
  restart_from_here(); 
 
  MPI_Operation1(); 
 
  MPI_Operation2(); 
 
 MPI_Operation3(); 
 
 MPI_Operation4(); 
  return 0; 
} 

Full Restart 

C 

Granularity of 
control / detection

Fine Medium Coarse

High 
programming 
complexity

Low 
programming 
complexity

Our focus
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Design Goals of the Reinit Interface

1Simple to program interface
• Support current fault-tolerance programming practices
• Checkpoint/Restart

2MPI library cleans up its state (not the application)
• Provide state similar to MPI_Init
• All communicators are gone (except MPI_COMM_WORLD)

3Close interaction between MPI & resource manager
• More efficient reparation of failed resources
• Faster recovery time

4Mechanism to clean up libraries
• FIFO stack of error handlers
• Libraries and applications provide their own handlers
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Description of the Reinit Interface 

/* Initialization routines */ !
typedef enum { !
    MPI_START_NEW,        // Fresh process !
    MPI_START_RESTARTED,  // Restarted after fault !
    MPI_START_ADDED       // Replaced process !
} MPI_Start_state; !
!
/* Application entry point */!
typedef void (*MPI_Restart_point) !
    (int argc, char **argv, MPI_Start_state state); !
!
int MPI_Reinit!
    (int argc, char **argv, MPI_Restart_point point); !
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Cleanup Stack Mechanisms

/* Cleanup routines */ !
typedef int (*MPI_Cleanup_handler) ( !
  MPI_Start_state start, !
  void *state); !
!
int MPI_Cleanup_handler_push ( !
  MPI_Cleanup_handler handler, !
  void *state); !
!
int MPI_Cleanup_handler_pop ( !
  MPI_Cleanup_handler *handler, !
  void **state); !

Error handler 1

Error handler 2

Error handler 3

Stack of error handlers
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Example Program

int cleanup_handler (MPI_Start_state, void *); !
!
int resilient_main (int argc, char **argv, !

MPI_Start_state start_state) !
{ !
  /* Recover using checkpoint */ !
  /* Do computation */ !
  /* Store checkpoint */ !
} !
!
int main(int argc, char **argv) !
{ !
  MPI_Init(&argc, &argv); !
!
  MPI_Cleanup_handler_push(cleanup_handler);  // Register application cleanup handler!
!
  MPI_Reinit(&argc, &argv, resilient_main);   // Entry point for resilient MPI program!
!
  MPI_Finalize(); !
} !
!
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Execution Flow of Reinit

Wait for others 
Initialize 

Process 0 
state=New 

Finalize 
Initialize 

Process 1 
state=New 

Finalize 
Initialize 

Process 2 
state=New 

Finalize 
Initialize 

Process 3 
state=New 

Restart 
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M
P

I_
R

ei
ni
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Out-of-band 

Failure Notification 

state= 
Restarted 

state= 
Restarted 

state= 
Restarted 

state= 
Added 
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Failure Detection and Notification in SLURM

X 

Send failure 
notification to 

srun 

srun 

slurmd 

Local slurmd 
detects process 

failure 
Send signal to 

processes 

Broadcast 
notification to 

slurmds  

slurmd slurmd slurmd 

slurmd slurmd 

P1 P2 P3 P0 
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§  Implementation of Reinit in SLURM-2.6.5 + MVAPICH2-2.1

§  Experimental system
—  Sierra cluster @ LLNL
—  Intel Xeon 6-core EP X5660
—  12 Cores per Node

§  Single process failure scenario

Experimental Evaluation
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Recovery Time with MPI_Reinit Function
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MPI_Reinit	
Less than 4 seconds to 
recover with 1K nodes, 12K 
processes

Recovery with REINIT is 4 
times faster than Job restart
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Time to Restore a 100 MB Checkpoint
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Job restart forces each 
process to load checkpoints 
from persistent storage

Only the failed processes 
need to reload for REINIT

REINIT is 7 times faster than 
Job restart with 1K nodes, 
12K processes
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§  Programming complexity can be a major impediment in 
adopting FT programing models for MPI applications

§  We propose Reinit for low programing complexity and high 
scalability
—  Supports current FT programing practices (checkpoint/restart)
—  Close integration with resource manager (faster recovery)
—  Simple library and application cleanup

§  Current implementation in MVAPICH + SLURM
§  Future Work:

—  Support for node failures
—  Code release

Summary
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