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Moore’s law

“Before founding Intel in the 1960s, Gordon Moore made a bold prediction about 
the exponential growth in the number of components on integrated circuits, which 

has been proven remarkably accurate by subsequent history and immortalized 
under the title of Moore's Law. Intel has been doggedly upholding Moore's Law by 
roughly doubling the number of transistors in its processors every couple of years, 

but now that schedule is starting to slip.”

Should this concern us computational physicists?
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Computing paradigms

Serial  
processor Parallel processor
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Outline

• Parallelism in Molecular Dynamics (MD)  

• Parallelism in Monte Carlo (MC) 

• Strong Scaling of MD & GPUDirect RDMA  

• Applications
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Molecular dynamics

Tethered nanospheres
Langevin dynamics

Marson, R, Nano Letters 14, 4, 2014

Surfactant coated surfaces 
Dissipative particle dynamics

Pons-Siepermann, I. C., Soft matter 6 3919 (2012)

Self-propelled colloids
Non-equilibrium MD

Nguyen N., Phys Rev E 86 1, 2012

Truncated Tetrahedra
Hard particle MC

Damasceno, P. F. et al., ACS Nano 6, 609 (2012)

Arbitrary polyhedra
Hard particle MC

Damasceno, P. F. et al., Science 337, 453 (2012)

Interacting nanoplates
Hard particle MC with interactions

Hard disks - hexatic
 Hard particle MC

Engel M. et al., PRE 87, 042134 (2013)Ye X. et al., Nature Chemistry cover article (2013)

Monte Carlo

Quasicrystal growth
Molecular Dynamics

Engel M. et al., Nature Materials (in press)

slide by Joshua Anderson
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Molecular Dynamics

Iteratively solve Newton’s equations of motion  
 
 
 
 
 
 
 
 

Parallel algorithm for N particles

Lennard-Jones

~r(t+�t) =~r(t) + ~v(t)�t+
1

2
~a(t)�t2

~v(t+�t/2) =~v(t) +
1

2
~a(t)�t

~v(t+�t) =~v(t+�t/2) +
1

2
~a(t+�t)

compute accelerations a(t)

(1)

(2)

Example - Lennard-Jones

r

V

" �

~50-100 neighbors per particle

64000 particles
F = ma
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GPU Molecular Dynamics in 1 slide
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one thread/particleslide by Joshua Anderson
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Parallel domain decomposition

• Particles can leave and enter 
domains (periodic boundary 
conditions) 

• Ghost particles required for force 
computation

• Communicate positions of ghost 
particles every time step

rcut
rbuff
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Easy and flexible to use

from hoomd_script import *

context.initialize()
init.read_xml('init.xml');

lj = pair.lj(r_cut=2.5)
lj.pair_coeff.set('A', 'A', epsilon=1.0, sigma=1.0)
integrate.mode_standard(dt=0.005)
integrate.nvt(group=group.all(), T=1.2, tau=0.5)
run(1e5)

$ hoomd run.py --mode=cpu
$ hoomd run.py --mode=gpu
$ mpirun -n 256 hoomd run.py --mode=cpu
$ mpirun -n 64 hoomd run.py --mode=gpu



THE GLOTZER GROUP

Hard particle Monte Carlo

• Hard Particle Monte Carlo plugin for 
HOOMD-blue 

• 2D Shapes 
• Disk 
• Convex (Sphero)polygon 
• Concave polygon 
• Ellipse 

• 3D Shapes 
• Sphere 
• Ellipsoid 
• Convex (Sphero)polyhedon 

• NVT and NPT ensembles 
• Frenkel-Ladd free energy 
• fast AABB trees on CPU 
• Parallel execution on a single GPU 
• Domain decomposition across multiple 

nodes (CPUs or GPUs)

H

β-Mn
cP20 (A13)

#P04

[100]

Damasceno et al., Science (2012)

Engel M. et al., PRE 87, 042134 (2013)

Damasceno, P. F. et al., ACS Nano 6, 609 (2012)

Damasceno et al., Science (2012)

slide by Joshua Anderson
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Easy and flexible to use

from hoomd_script import *
from hoomd_plugins import hpmc

init.read_xml(filename=‘init.xml’)

mc = hpmc.integrate.convex_polygon(seed=10, d=0.25, a=0.3);
mc.shape_param.set('A', vertices=[(-0.5, -0.5), (0.5, -0.5),
                                  (0.5, 0.5), (-0.5, 0.5)]);

run(10e3)
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Depletion Interaction

 S. Asakura and F. Oosawa J. Chem. Phys. 1954.
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Implicit penetrable hard-sphere depletants Monte Carlo

e��⌅{~rc,i} = ezpVf��Hcc

zp depletant fugacity

Implicit depletion
Jens Glaser,

1
Andrew Karas,

1
and Sharon Glotzer

1

Chemical Engineering, University of Michigan

(Dated: 16 June 2015)

ABSTRACT

I. INTRODUCTION

II. DESCRIPTION OF THE ALGORITHM

A. NµpVT ensemble

We simulate a mixed ensemble of N colloids in a grand-
canonical bath of penetrable depletants of chemical po-
tential µp.

The partition sum is

e��⌅{~rc,i} =
1X

Np=0

e�µpNp

Np!�
3Np
p

Z
d~r

Np

p,i e
��Hcc��Hcp (1)

=
1X

Np=0

e�µpNp

Np!�
3Np
p

Z
d~r

Np

p,i e
��HccV

Np

f (2)

where Vf = Vf [~rc,i] is the free volume available to
depletants and �p the thermal de Broglie wavelength.
We denote the Hamiltonian of the colloids as Hcc =P

i,j2colloids Uij where Uij = 1 for two colloids that over-
lap, and Uij = 0 otherwise. The colloid-polymer Hamil-
tonian Hcp is defined analogously. Summation over the
number Np of depletants in the system results in

e��⌅{~rc,i} = ezpVf��Hcc , (3)

where zp ⌘ e�µp

�3
p

is the depletant fugacity.

B. Basic idea

Our central algorithmic result is the following Monte
Carlo scheme to integrate the colloids under the action
of the e↵ective potential He↵ ⌘ ���1zpVf [~rc,i] occurring
in Eq. (3). The basic idea of the algorithm, which we
present here, is very simple, and we describe optimized
versions of it below.

1. Propose a trial move for the colloids M ! M 0

2. Generate Np of depletant positions ~r
(p)
i randomly

in the free volume of the old configuration M ac-
cording to PzpVf (Np) ⇠ Poisson(Vfzp). One possi-
bility is to use rejection sampling in a larger volume
V0 � Vf .

3. Reject the trial move if any depletant overlaps with
new colloid configuration M 0, otherwise accept.

In other words, we have an a-priori move generation
probability

P
(Np)
trial (M ! M 0) = P coll

trial(M ! M 0)PzpVf (Np) (4)

= P coll
trial(M ! M 0)

(zpVf )Np

Np!
e�zpVf ,

where P coll
trial(M ! M 0) is symmetric in �~rc,i $ ��~rc,i.

In Eq. (4), we have used the definition of the Poisson
distribution PzpVf (Np) with average zpVf , the number of
depletants in the free volume. We impose the following
acceptance probability

P (Np)
acc (M ! M 0) = min(1, e���Hcc)e��H

0(Np)
cp . (5)

Figure 1 contains a graphical summary of the algo-
rithm. A colloid, here, a square, is moved from con-
figuration M to configuration M 0, by some translation
and/or rotation, and depletants are placed in the free
volume. As we detail below in Sec. II C, the sampling
can be restricted to the circle (or sphere, in three dimen-
sions) containing the colloid in the new colloid position.
By using rejection sampling, any depletants falling in to
the excluded volume at the old position are ignored. De-
pletants that overlap only in the new configuration lead
to a rejection of the colloid move.
Next, we show that the above scheme obeys detailed

balance, which is required for correctly sampling the en-
semble defined by Eq. (3) in the statistical sense.

Theorem 1. The integration scheme in Sec. II B obeys

detailed balance.

Proof. The transition probability ⇡ from the old config-
uration M to the new configuration M 0 obeys

⇡M!M 0 = e��⌅
{~rc,i}P

(Np)

trial(M ! M 0)P (Np)
acc (M ! M 0)(6)

= e��Hcc+zpVf P
(Np)

trial(M ! M 0)
(zpVf )Np

Np!

e�zpVf min(1, e���Hcc)e��H
0(Np)
cp

The condition of super-detailed balance would require
⇡M!M 0 = ⇡M 0!M , separately for each transition M $
M 0. (cite?) We only require detailed balance, and there-

fore average over all realizations
⇣
Np, {~rNp

p,i }
⌘

of deple-

tants, in the free volume Vf .

overlapping

non-overlapping

ignored 

M

M 0

Vf

parallel depletant insertion
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Validation: equation of state of hard spheres
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Summary - algorithms

• MD is the perfect parallel algorithm  

• Hard Particle Monte Carlo is serial, but 
can be parallelized using checkerboard 
decomposition  

• Simulations of large and small particles 
can be further parallelized
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Scaling bottlenecks in spatial domain decomposition

6 GB/s
CPU CPU

GPU GPU

6 GB/s

1000’s of cores

4-12 cores

Network 
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Weak scaling up to 108,000,000 particles

32,000 particles/GPU
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Strong Scaling of a LJ Liquid (N=10,976,000)
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Polymer Brush Scaling

Jaime Millan
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Dissipative Particle Dynamics on Blue Waters and Titan
106 J. Glaser et al. / Computer Physics Communications 192 (2015) 97–107

Fig. 14. Strong scaling performance of a DPD benchmark of N = 2000,000
particles, comparing HOOMD-blue, LAMMPS USER-MESO and LAMMPS-GPU.
Shown is the number of time steps per second, vs. number of GPUs, for P =
1 . . . 1024 GPUs.

drag term in theDPD force. Hence, twice the amount of data is com-
municated per time step. Moreover, to correctly seed per-particle-
pair random number generators [41], global particle IDs of ghost
particles additionally need to be communicated with every ghost
exchange. Recently, Tang and Karniadakis [6] presented a GPU-
optimized implementation of DPD, validated and benchmarked on
the Titan supercomputer. They demonstrate excellent strong scal-
ing properties. The software is available within LAMMPS as the
USER-MESO package [55].

Here, we compare HOOMD-blue performance on the Cray XK7
to the benchmark numbers reported in Ref. [6] (Fig. 14 therein),
for the same benchmark of N = 2000,000 particles. We also com-
pare to LAMMPS-GPU performance [56]. The simulation details
are: �t = 0.005 at number density ⇢ = 3, and with DPD param-
eters A = 25, � = 4.5. HOOMD-blue and LAMMPS-GPU use full
double precision, the USER-MESO package is run in mixed preci-
sion: communication is performed in double precision, but node
local force evaluations are performed in single precision. As in the
previous benchmarks, HOOMD-blue performance was optimized
by tuning the value rbuff and the distance check period. The number
of time steps per second was measured after an additional warm-
up of 30,000 time steps, averaged over 50,000 steps. LAMMPS-GPU
and USER-MESO benchmarks were performed on Titan, HOOMD-
blue benchmarks were performed on the Blue Waters machine at
the National Center for Supercomputing Applications. Even though
this machine has the same architecture as Titan (Cray XK7), we
expect slight differences in performance, from differences in sys-
tem software and network configuration. Fig. 14 shows the num-
ber of time steps per second as a function of the number of GPUs in
strong scaling, on up to 1,024 GPUs. Performance values are max-
ima from several runs (up to 10% variability was observed for large
runs). Remarkably, the performance of HOOMD-blue parallels that
of the USER-MESO package over the whole range of numbers of
GPUs and appears to be only slightly superior (15%), but outper-
forms LAMMPS-GPU for small (.32) numbers of GPUs. However,
for larger numbers of nodes the performance between the codes is
comparable, which we attribute to the difference in communica-
tion patterns of DPD vs. LJ, where for DPD in double precision, an
amount of data four times larger is communicated than for LJ in sin-
gle precision. The DPD benchmark is therefore less sensitive to the
latency optimizations we focus on in this contribution, and given
that it is likely bandwidth-bound, further underscores that with
GPUs the communication bandwidth of current system architec-
tures, along with various sources of latency, has become the main
limiting factor of MD performance.

10. Conclusion and outlook

We gave a detailed account of how we ported HOOMD-blue
to a distributed memory model (MPI). Because HOOMD-blue is a
fully GPU-enabled code, a particular challenge was presented by
the latency of device-to-device communication.We addressed this
challenge using a highly optimized communication algorithm. Our
communication routines are implemented on the GPU to reduce
the amount of data transferred over PCIe and allow us to take
advantage of CUDA-aware MPI libraries. We also optimized for
strong scaling on thousands of GPUs, which we achieved using a
design for the neighbor list and force computation kernels based
on cooperative thread arrays and an auto-tuning algorithm.

We evaluate the performance of our code in terms of both
weak and strong scaling benchmarks, for which we compared it to
similarly optimized implementations of GPU-enabledMD, and find
HOOMD-blue performance to be equivalent or superior. HOOMD-
blue exhibits qualitatively similar scaling behavior to these other
codes, indicating that our optimizations are successful, and that
the scaling limits inherent to the underlying architecture have
been reached. We note that the GPU-centric design of HOOMD-
blue is different from othermore traditionalMD codes, which have
started as CPU-only codes.

In the case of GPUDirect RDMA, we find superior performance
in double precision benchmarks, demonstrating the usefulness of
the technology, especially in strong scaling situations, however
also its current limitations. To further improve strong scaling
performance, latency and bandwidth bottlenecks will have to
be reduced. Moreover, a closer integration of the GPU into the
communication path seems realistic, such as to provide the
capability of GPU kernel call-backs from MPI calls. In general,
we anticipate that future designs will tightly couple GPUs as
throughput-optimized and CPUs as latency-optimized compute
components, and optimal code performance will depend on
high-bandwidth links and unified memory space between the
processors [57], to achieve greater concurrency.

In this first 1.0 release of HOOMD-blue with MPI, we
did not enable multi-GPU support for electrostatics calculations,
rigid bodies or anisotropic particles, available only in single-
GPU simulations. We expect to implement these capabilities in
future versions. The current implementation exclusively relies on
spatial domain decomposition as a work distribution technique
and thus applies to mostly homogeneous systems, whereas
sophisticated load-balancing schemes have been implemented for
more inhomogeneous or biomolecular systems [58,59,31] on CPUs,
and they should additionally benefit from GPU acceleration.

More broadly, our study further establishes GPUs as extremely
fast engines for MD simulation compared to traditional CPU cores.
GPUs not only realize an order of magnitude speed-up over
current-generation CPUs, but they also scale verywell using spatial
domain decomposition. Hence, our and comparable codes there-
fore both greatly benefit from the unprecedented performance of-
fered by these fast processors, and at the same time they push the
envelope of current systemdesigns. Since the speed-ups presented
here rely chiefly on exploiting parallelism at various levels, i.e. by
using GPUs on the node-level, and by scaling the code up to many
nodes, we provide a very clear case for how parallelism can be the
main enabling strategy in computational physics discovery.
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GPUDirect RDMA on Wilkes

J. Glaser et al. / Computer Physics Communications 192 (2015) 97–107 105

Fig. 11. Strong scaling benchmark for a GPUDirect RDMA benchmark of N =
64,000 particles LJ liquid benchmark on the Wilkes GPU cluster, comparing default
host-memory MPI, CUDA-aware MPI, and CUDA-aware MPI with GPUDirect RDMA
(GDR) using MVAPICH 2.0 GDR (experimental). Shown is the performance in
number of time steps per second vs. number of GPUs, for single precision (top) and
double-precision (bottom) runs.

Fig. 12. Distribution of message sizes for the benchmark of Fig. 11 (lower
panel). Shown is the cumulative relative frequency of message sizes in neighbor
communication (MPI_Isend/recv) in double-precision runs, for different numbers
of GPUs, obtained with the IPM tool [54]. Inset: Maximum message size in kB
as function of the number P of GPUs, in single (light shaded/yellow) and double
precision (dark shaded/blue).

benchmark, for which data is shown in Fig. 11 (bottom panel).
The distribution has multiple ‘knees’, which are characteristic
of the communication pattern described in Section 4.3.1. The
precise location of these knees depends on the details of the
domain decomposition, however the maximum message size
affects performance through various internal thresholds of the
MPI library. In the case of GPUDirect RDMA, we were able to
use maximum optimal thresholds of 32 KB, above which the MPI
library switches to default pipelined communication. Interestingly,
this limit is reached with at least eight GPUs in single precision, or
16 GPUs in double precision, for the N = 64,000 LJ benchmark,
as shown in Fig. 12, inset. We confirm that for these minimum

Fig. 13. Strong scaling of a double-precision LJ liquid benchmark of N = 2097,152
particles comparing the performance of HOOMD-blue performance (with GDR or
with host memory MPI) and of LAMMPS-Kokkos (with GDR), on P = 1 . . . 8 GPUs.
Shown is performance in time steps per second vs. number of GPUs.

numbers of GPUs the GPUDirect RDMA enabled benchmarks
indeedperform superior to CUDA-awareMPI (Fig. 11), however the
effective performance is in the range of the optimizedhostmemory
implementation.

8.3. Performance comparison to a CUDA-aware MPI enabled port of
LAMMPS

To assess whether HOOMD-blue makes optimal use of the
CUDA-aware MPI based communication protocols, we compare
against another port of LAMMPS on GPUs, LAMMPS-Kokkos, a
recent alternative to LAMMPS-GPU. The Kokkos package inside
LAMMPS is a forward looking capability with support for other
accelerators (Intel Xeon Phi), but with very limited feature support
at themoment. The package supersedes a previous port of LAMMPS
onGPUs, LAMMPS-CUDA [4]. It also offers support for CUDA-aware
MPI implementations, which makes it interesting to compare to
HOOMD-blue performance here.

As a benchmark system we choose the double precision LJ
system benchmark supplied with the Kokkos package (NVE, N =
2097,152, �t = 0.005, rbuff = 0.3, rcut = 2.5, ✏ = � = 1.0),
with the only change that we increase the neighbor list build
frequency to every six time steps, to ensure correct computation
of forces. The corresponding HOOMD-blue simulations start from
the same fcc lattice initial configuration (thermalized at T =
1.44), additionally equilibrated over 30,000 time steps. For the
HOOMD-blue simulations we choose the optimal value of rbuff
and the distance check interval by prior tuning. Fig. 13 shows
the performance of the Kokkos package, where LAMMPS is
run in device communication mode and with GPUDirect RDMA
enabled, and for different build and runtime settings of HOOMD-
blue. The agreement of single-node performance emphasizes that
both Kokkos and HOOMD-blue are essentially fully optimized
for simulations at this particle number, where they are mostly
limited by device memory bandwidth. On the other hand, on eight
nodes the GDR version of HOOMD-blue performs better than the
Kokkos package by a factor of about 1.4, which we attribute to
the optimizations of the communication algorithm described in
Section 4.3.

9. Strong scaling of a DPD benchmark

We also compare dissipative particle dynamics (DPD) perfor-
mance between HOOMD-blue and two other codes. The commu-
nication pattern differs from that of LJ in two ways. Velocities of
ghost particles need to be communicated, in order to compute the

J. Glaser et al. / Computer Physics Communications 192 (2015) 97–107 105
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against another port of LAMMPS on GPUs, LAMMPS-Kokkos, a
recent alternative to LAMMPS-GPU. The Kokkos package inside
LAMMPS is a forward looking capability with support for other
accelerators (Intel Xeon Phi), but with very limited feature support
at themoment. The package supersedes a previous port of LAMMPS
onGPUs, LAMMPS-CUDA [4]. It also offers support for CUDA-aware
MPI implementations, which makes it interesting to compare to
HOOMD-blue performance here.

As a benchmark system we choose the double precision LJ
system benchmark supplied with the Kokkos package (NVE, N =
2097,152, �t = 0.005, rbuff = 0.3, rcut = 2.5, ✏ = � = 1.0),
with the only change that we increase the neighbor list build
frequency to every six time steps, to ensure correct computation
of forces. The corresponding HOOMD-blue simulations start from
the same fcc lattice initial configuration (thermalized at T =
1.44), additionally equilibrated over 30,000 time steps. For the
HOOMD-blue simulations we choose the optimal value of rbuff
and the distance check interval by prior tuning. Fig. 13 shows
the performance of the Kokkos package, where LAMMPS is
run in device communication mode and with GPUDirect RDMA
enabled, and for different build and runtime settings of HOOMD-
blue. The agreement of single-node performance emphasizes that
both Kokkos and HOOMD-blue are essentially fully optimized
for simulations at this particle number, where they are mostly
limited by device memory bandwidth. On the other hand, on eight
nodes the GDR version of HOOMD-blue performs better than the
Kokkos package by a factor of about 1.4, which we attribute to
the optimizations of the communication algorithm described in
Section 4.3.

9. Strong scaling of a DPD benchmark

We also compare dissipative particle dynamics (DPD) perfor-
mance between HOOMD-blue and two other codes. The commu-
nication pattern differs from that of LJ in two ways. Velocities of
ghost particles need to be communicated, in order to compute the
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Fig. 11. Strong scaling benchmark for a GPUDirect RDMA benchmark of N =
64,000 particles LJ liquid benchmark on the Wilkes GPU cluster, comparing default
host-memory MPI, CUDA-aware MPI, and CUDA-aware MPI with GPUDirect RDMA
(GDR) using MVAPICH 2.0 GDR (experimental). Shown is the performance in
number of time steps per second vs. number of GPUs, for single precision (top) and
double-precision (bottom) runs.

Fig. 12. Distribution of message sizes for the benchmark of Fig. 11 (lower
panel). Shown is the cumulative relative frequency of message sizes in neighbor
communication (MPI_Isend/recv) in double-precision runs, for different numbers
of GPUs, obtained with the IPM tool [54]. Inset: Maximum message size in kB
as function of the number P of GPUs, in single (light shaded/yellow) and double
precision (dark shaded/blue).

benchmark, for which data is shown in Fig. 11 (bottom panel).
The distribution has multiple ‘knees’, which are characteristic
of the communication pattern described in Section 4.3.1. The
precise location of these knees depends on the details of the
domain decomposition, however the maximum message size
affects performance through various internal thresholds of the
MPI library. In the case of GPUDirect RDMA, we were able to
use maximum optimal thresholds of 32 KB, above which the MPI
library switches to default pipelined communication. Interestingly,
this limit is reached with at least eight GPUs in single precision, or
16 GPUs in double precision, for the N = 64,000 LJ benchmark,
as shown in Fig. 12, inset. We confirm that for these minimum

Fig. 13. Strong scaling of a double-precision LJ liquid benchmark of N = 2097,152
particles comparing the performance of HOOMD-blue performance (with GDR or
with host memory MPI) and of LAMMPS-Kokkos (with GDR), on P = 1 . . . 8 GPUs.
Shown is performance in time steps per second vs. number of GPUs.

numbers of GPUs the GPUDirect RDMA enabled benchmarks
indeedperform superior to CUDA-awareMPI (Fig. 11), however the
effective performance is in the range of the optimizedhostmemory
implementation.

8.3. Performance comparison to a CUDA-aware MPI enabled port of
LAMMPS

To assess whether HOOMD-blue makes optimal use of the
CUDA-aware MPI based communication protocols, we compare
against another port of LAMMPS on GPUs, LAMMPS-Kokkos, a
recent alternative to LAMMPS-GPU. The Kokkos package inside
LAMMPS is a forward looking capability with support for other
accelerators (Intel Xeon Phi), but with very limited feature support
at themoment. The package supersedes a previous port of LAMMPS
onGPUs, LAMMPS-CUDA [4]. It also offers support for CUDA-aware
MPI implementations, which makes it interesting to compare to
HOOMD-blue performance here.

As a benchmark system we choose the double precision LJ
system benchmark supplied with the Kokkos package (NVE, N =
2097,152, �t = 0.005, rbuff = 0.3, rcut = 2.5, ✏ = � = 1.0),
with the only change that we increase the neighbor list build
frequency to every six time steps, to ensure correct computation
of forces. The corresponding HOOMD-blue simulations start from
the same fcc lattice initial configuration (thermalized at T =
1.44), additionally equilibrated over 30,000 time steps. For the
HOOMD-blue simulations we choose the optimal value of rbuff
and the distance check interval by prior tuning. Fig. 13 shows
the performance of the Kokkos package, where LAMMPS is
run in device communication mode and with GPUDirect RDMA
enabled, and for different build and runtime settings of HOOMD-
blue. The agreement of single-node performance emphasizes that
both Kokkos and HOOMD-blue are essentially fully optimized
for simulations at this particle number, where they are mostly
limited by device memory bandwidth. On the other hand, on eight
nodes the GDR version of HOOMD-blue performs better than the
Kokkos package by a factor of about 1.4, which we attribute to
the optimizations of the communication algorithm described in
Section 4.3.

9. Strong scaling of a DPD benchmark

We also compare dissipative particle dynamics (DPD) perfor-
mance between HOOMD-blue and two other codes. The commu-
nication pattern differs from that of LJ in two ways. Velocities of
ghost particles need to be communicated, in order to compute the
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Strong scaling - squares

GPU: Tesla K20X, CPU: Xeon E5-2680 (XSEDE Stampede)
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Summary - strong scaling

• For MD on GPUs, communication 
latency is the scaling bottleneck  

• Strong scaling extends to 1000’s of 
GPUs 

• With Hard Particle Monte Carlo, CPU 
cores have higher scalability
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Self-assembly of diblock copolymers

191 There is a small but measurable discontinuity Δg0 in g0

192 across the ODT in Fig. 1, as expected for a first-order
193 transition. The smallness of the discontinuity (Δg0 ≃ 0.008,
194 or 7%) indicates that the degree of AB contact is similar in
195 the disordered and ordered phases near the ODT. This
196 suggests that the disordered phase has a local structure
197 rather similar to that of the ordered phase, with well-defined
198 A and B domains and a similar AB interfacial area per
199 volume, but without long-range order. The SCFT predic-
200 tion for g0ðχeNÞ (dashed line) is given by the spatial average
201 of the product ϕAðrÞϕBðrÞ of the predicted local volume
202 fractions of A and Bmonomers. This yields g0 ¼ 0.25 in the
203 disordered phase, at χeN < 10.495. Interestingly, SCFT
204 predictions for g0 are poor in the disordered phase near the
205 ODT but show excellent agreement with simulations in the
206 ordered phase. SCFT thus accurately predicts the extent of
207 AB contact within the ordered phase but is intrinsically
208 incapable of handling the strong short-range correlations in
209 the disordered phase.
210 Figure 2 shows the free energy per chain g vs χeN for four
211 values of N̄. These were calculated by numerically integrat-
212 ing simulation results for ∂g=∂α within each phase, setting
213 g ¼ 0 at α ¼ 0 by convention, and equating values of g in
214 the two phases at the observed ODT. Three of the plots show
215 overlapping results for pairs of simulations with matched
216 values of N̄, again demonstrating universality. In the range
217 10.495 < χeN < ðχeNÞODT in which the disordered phase
218 develops strong correlations, simulation results fall well
219 below the SCFT prediction for a homogeneous phase
220 (the straight line) and actually lie much closer to SCFT
221 predictions for the ordered phase. Interestingly, SCFT
222 predictions for g are rather accurate within the ordered
223 phase for all but the lowest value of N̄ shown here and seem
224 to become more so with increasing N̄. This agreement does
225 not follow trivially from the observed accuracy of SCFT
226 predictions for g0 in the ordered phase, since the value of g at

227the ODT has been calculated by integrating ∂g=∂α through
228the disordered phase, in which SCFT predictions for g0 are
229poor. Physically, the main components of g are free energies
230arising from AB contact and chain stretching. Only the
231extent of AB contact is directly reflected by the value of g0.
232Our results thus imply that SCFT accurately describes both
233main components of g in the ordered phase, although not in
234the disordered phase near the ODT.
235The main plot of Fig. 3 shows a compilation of results for
236ðχeNÞODT from all simulations plotted vs N̄, using our
237nonlinear fits for χeðαÞ. The inset shows a corresponding
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AB Diblock copolymer melt

Glaser, J., Medapuram, P., Beardsley, 
T. M., Matsen, M. W., & Morse, D. C. 
PRL, 113, 068302 (2014)

in which ∑j is a sum over all particles in a system, rj is the
position of particle j, and ϵj = ±1 is a prefactor of +1 for A
particles and −1 for B particles. The choice of the cutoff
function f(q) is somewhat arbitrary. We took f(q) to be a
modified Fermi function f(q) = {1+ exp[12(q − qc)/qc]}

−1 with
a cutoff wavenumber qc slightly larger than the peak
wavenumber q*.
Equation 16 defines a generalized norm for composition

fluctuations. Choosing n = 2 yields a Euclidean norm. This
choice was found to not yield adequate discrimination between
the ordered and disordered phases. Increasing n tends to
increase the difference between the values of Ψ characteristic of
the ordered and disordered phases. Taking n → ∞ yields the
maximum value of |ψ(q)|, which maximizes discrimination
between the ordered and disordered phases, but is not usable
because it does not yield a differentiable function of the particle
positions. We chose an exponent n = 4 because it was the
lowest even value of n that provided adequate discrimination
between the ordered and disordered phases.
Because metadynamics simulations sample both ordered and

disordered configurations, these simulations were carried out
using a cubic L × L × L unit cell. To minimize artifacts arising
from incommensurability, the number of molecules M used for
these simulations was chosen so as to yield a commensurate cell
for a 3-layer system ordered in the {300} orientation, using our
best estimate of the true equilibrium layer spacing and
monomer concentration in the ordered phase at the ODT
from tetragonal NPT simulations conducted very near the
ODT. For this choice of unit cell dimensions, ordered
configurations oriented with primary wavevectors in the
{300} or {221} families all yielding a layer spacing d = L/3
nearly equal to the preferred spacing. In our WTM simulations,
ordered configurations were found to spontaneously orient
along both of these families of Miller planes, with no obvious
preference for either family of orientations.
Well-tempered metadynamics in an NPT ensemble provides

an estimate of the free energy G(Ψ) of a system with a
constrained value of the collective variable Ψ. The value αODT
of α at the phase transition was identified for each system using
an equal area construction, by requiring that regions near the
ordered and disordered minima in G(ψ) yield equal
contributions to the integral ∫ dΨe−G(Ψ,α)/kT, corresponding to
equal probabilities in an unbiased simulation. Figure 3 shows an
example of the converged free energy G(Ψ) and equilibrium
probability distribution P(Ψ) for system S1-32 at the ODT.

Efficient calculation of the forces that arise from this choice
of collective variable required the implementation of a particle-
mesh Ewald method to evaluate Fourier components. To
reduce the number of values of α at which we needed to carry
out metadynamics calculations, we used perturbation theory to
extrapolate results for G(Ψ,α) over a narrow range of values of
α centered around the value used in the simulation (see the
Supporting Information of ref 8). These and other details of
our metadynamics algorithm will be discussed in a separate
article that is now in preparation.

D. Estimating χe(α). The perturbative linear approximation
yields an approximation χe

(1)(α) = zα/kBT in which the
coefficient z for each model is obtained from simulations of
homopolymer (α = 0) liquids of varying chain length, as
described in detail elsewhere.7,65

The nonlinear approximation for χe(α) that we use here was
obtained for each model from a simultaneous fit of the ROL
theory to results for peak structure factor S(q*) in the
disordered phase from simulations of several chain lengths,
exactly as done in ref 7. The data for each model was fit using
an assumed functional form

χ α α α
α α

= ̂ + ̂
+ ̂ + ̂
z a

d d
( )

1e
2

2

1 2
2

(18)

where α̂ ≡ α/kBT, in which the coefficient d2 was set to zero for
models S1, S2, and S3 but is nonzero for model H. The
coefficient z has the value obtained from the perturbative linear
approximation, in order to constrain the fit to agree with results
of perturbation theory in the limit α̂ → 0. The fit thus involved
two adjustable parameters for models S1, S2, and S3 (a2 and
d1) and three adjustable parameters for model H (a2, d1, and
d2). The reason for the choice of different functional forms for
model H than for the soft models is discussed in ref 7.
All simulations used for this purpose were NPT simulations

of the disordered phase in a cubic simulation cell. These
included systems with chains of lengths N = 16, 32, 64, and 128
for all models and N = 12 for models S1, S2, and S3.
Simulations of the shortest chains, with N = 12 for models S1,
S2, and S3 and N = 16 and 32 for model H, were used here
only for the purposes of determining χe(α) over a wider range
of values of α than would otherwise be possible and were not
used in our studies of the ODT and other properties. We note
that this fitting procedure is not particularly sensitive to the
behavior of S(q) very near the ODT, or the accuracy of the
ROL theory in this regime, because the vast majority of the data
used in the fit was obtained far from the ODT, where the ROL
theory is most accurate and where the fit is most strongly
constrained by our use of perturbation theory. To avoid
artifacts arising from finite size effects, results for S(q) obtained
very near the ODT were also excluded from the fit, as discussed
in ref 7.
Examples of the quality of the fit to results for the quantity

cNS−1(q*) are shown for NVT simulations of models H and S1
in ref 7. Plots of the resulting estimates of χe(α) are shown in
Figure 4. Values of the parameters z, a2, d1, and (for model H)
d2 that appear in eq 18, and further details of the calibration and
fitting of each model are given in the Supporting Information of
ref 8. Slightly different values for the coefficients for models H
and S1 were obtained from the NPT simulations reported here
and in ref 8 than those reported in ref 7 for corresponding
NVT simulations. This is because the actual monomer
concentration in each NPT simulation is slightly different

Figure 3. Constrained Gibbs free energy G/kBT as a function of the
order parameter Ψ for model S1-32 at α = αODT measured by well-
tempered metadynamics. Inset: corresponding probability distribution
P(Ψ) = exp(−G/kBT)/∫ exp(−G/kBT).
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MD on 384 GPUs
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Discoids in depletants
200,000 explicit depletants - no way!

(even with MPI) 500 colloids in implicit depletants - clustering
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Colloidal discoids

We employ Hard Particle Monte Carlo with implicit 
simulation of depletion interactions running on two 
K80 nodes using eight GPUs or on 64 Haswell 
cores, using GPU-level and MPI parallelism. We 
perform long running simulations to equilibrate the 
system over 48h, for 35 different state points.
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Hemispheres with implicit depletants
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Clustering kinetics
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Strong scaling on OLCF Cray XK7

OLCF%CAAR:%HOOMD,blue% % Joshua%A.%Anderson,%Jens%Glaser,%Sharon%C.%Glotzer%
% % University%of%Michigan%

4%/%16%

HOOMD,blue%needs% to%be%expanded%with%new%formats%and% initialization%routines% that%are%efficient%and%
scalable.%

2 Parallel+computing+strategy+

2.1 Parallel+programming+model+

We%employ%NVIDIA%CUDA%as%a%parallel%programming%language%for%all%portions%of%the%code%that%operate%
on% particle% data.% Work% is% distributed% across% GPUs% using% MPI% for% spatial% domain% decomposition.%
HOOMD,blue% supports% both% CUDA,aware% and% standard% MPI% stacks,% which% makes% its% parallel%
implementation%highly%portable,%with%the%option%to%enable%GPUDirect%RDMA%when%such%functionality%is%
supported%by% the%hardware% and%a%CUDA,aware%MPI% library.%HOOMD,blue% 1.0.x% runs%optimally%using%
one%CPU%core%per%GPU,%and% faster% than%LAMMPS,GPU%on%Titan%by%about%a% factor%of% two27.%On%single,
GPU,%hybrid%XK7%nodes%it%therefore%only%utilizes%only%a%fraction%of%the%available%16%CPU%cores.%However,%
we% anticipate% that% Summit’s% dense% GPU% nodes% will% deliver% even% better% scaling% performance% with%
HOOMD,blue.%

2.2 Scaling+benchmarks+on+Titan++

We%employ%a%standard%spatial%domain%decomposition%approach%to%achieve%scaling%across%almost%all%nodes%
of%Titan.%In%strong%scaling%benchmarks%of%MD%and%DEM,%we%fix%the%system%size%N%and%measure%particle%
steps% per% second% (N*steps% per% second)% as% function% of% the% number% of%GPUs.% For%HPMC,%we%measure% a%
number%of%attempted%trial%moves%per%second.%We%have%shown27%that,%for%simulations%with%homogeneous%
workloads,%weak%scaling%implicitly%follows.%

%
Fig. 1: Strong scaling benchmarks for all three simulation types (MD, MC, DEM) supported by HOOMD-blue, on Titan. Shown is 
simulation performance (number of particle steps trial moves per second (MD, DEM), and trial moves per second (HPMC) vs. 
compute resources (number of GPUs) for systems of size N (number of particles)=64M and 4M, in double-logarithmic 
representation. The relevant limiter of scaling is the computation/communication ratio, as indicated by the number N/P of 
particles per GPU, which has to large enough (>~ 10,000 MD and HPMC). 
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Summary

• Moore’s law is slowing - we can’t afford 
to wait a couple of years for a 
performance doubling anyways 

• By extracting parallelism from GPUs, 
threads, vector instructions and MPI we 
build high performing simulation codes 

• Parallel code = previously unsolvable 
problems become solvable
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Strong scaling: J. Glaser, T. D. Nguyen, J. A. Anderson, P. Lui, F. Spiga, J. A. Millan, D. C. Morse, 
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Monte Carlo code not yet publicly available.  
• It will eventually be released open-source as part of HOOMD-blue  
• Paper on hard disks: Anderson, J. A. et al., JCP 254, 27-38 (2013) 
• Paper on 3D, anisotropic shapes, multi-GPU: coming soon
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