Pacific Northwest NATIONAL LABORATORIA

A Case for High Performance MVAPICH2 for Machine Learning on Extreme Scale (MaTEx)

ABHINAV VISHNU

MUG' 15 August 19-21, 2015

A Case for Machine Learning in Science and High Performance Computing

- Data Driven Science can lead to better discovery
 - Higgs ML challenge
- "Searching for Exotic Particles" Using Deep Learning", Nature Communications, 2014
- Machine Learning and its applications to Biology", PLOS, 2007
- Solve HPC problems
 - Performance Modeling
 - Resilience
 - Energy Modeling and Optimization

Elements of Data Driven Science

Pacific I

Prou

Clustering- Unsupervised Learning

Classification – Supervised Learning

Regression – Supervised Learning

The V's in Data Driven Science

Pacific Norther Point Provide 1

CERN > 100 PB overall ARM > 1 PB overall HPC Performance Counters

CERN produces 20 GB/s, ARM produces 1 TB/day HPC Performance Counters

What are the benefits of designing native compute ML algorithms? What is the role of interconnects (and MPI) in Machine Learning?

MaTEx – Machine Learning Toolkit on Extreme Scale

Pacific Nation Nation Proudly2 Proudly2

- MaTEx is a library of ML and DM algorithms using MPI + X
 - Supervised: SVM, KNN
 - Unsupervised: Spectral, Kmeans
 - Frequent Pattern Mining (FPM): FP-Growth
- Specifically geared for supercomputers
 - Readily applicable to cloud systems
 - Leverage MPI portability
- Supports parallel incremental Support Vector Machine algorithm
 - Use case: Streaming data in several science and other domains
- 0.1 released earlier
 - 0.2-alpha currently released
- Libsvm-openmp is planned to be included
 - Enhances the highly popular libsvm to use multi-core systems

URL: <u>http://hpc.pnl.gov/matex</u>

MaTEx SVM on Higgs Boson Dataset

- Objective
 - To learn the model on the UCI Higgs Boson dataset
 - Classify Signal from Noise
 - 11 M Samples
 - MaTEx Support Vector Machines
 - Sequential Minimal Optimization (SMO) algorithm
 - Most widely used algorithm
- We used 6144 cores for 2 days on PIC Constance using MVAPICH2
- We could only complete two experiments
- The objective is to improve the model from the published paper
 - We needed more experiments
- Larger scale (and time) access is critical!

Argonne Director's Discretionary Award

- Applied for ALCF Director's discretionary time award
 - Scalable Machine Learning on Blue Gene/Q supercomputer
- Granted 2M core hours!
- Initial results are encouraging
- Expecting to write INCITE for next year
 - Requested extension for the rest of the year

Can we improve model time without reducing accuracy?

Observation1: A small fraction of Samples define the boundary

Observation2: No parallel algorithm Considers adaptive elimination (shrinking)

Observation3: Reducing accuracy at cost Of time improvement is not attractive (as Opposed to CA-SVM (IPDPS'15 – You et al.))

Pacific

Enhance libsvm (default SVM library) To use OpenMP for baseline comparison --- planned to be released with MaTEx

Performance Modeling of MaTEx SVM Pacific **Algorithm** Till Convergence: 1.2 Fraction of Active Samples **MPI** Bcast 1 (I + mG).log(p)0.8 N/p. 2 . Kernel. e^{-i+} (I+ mG).log(p) 0.6 Compute (Kernel) 0.4 N/p * 2 * Time for each calculation (~1us) 0.2 0 Iterations MPI_Allreduce (I).log(p)

Shrinking algorithm converts a compute intensive SVM to communication Intensive ---- contrary to common belief!

Addressing the Data Velocity

Pacific Nortenary NATIC Proudly: Proudly: Norte Nortenary 1965-2015 165

CERN produces 20 GB/s, ARM produces 1 TB/day HPC Performance Counters

Parallel Incremental SFE Algorithms

- Parallel incremental algorithms are critical
 - Address data volume and velocity

Pacific

- Incremental algorithms
 - Create a new model using output of previous iteration + data of current window
- We use scikit (python ML)
 - Popular ML software
 - Currently non-incremental and sequential
- We have built a parallel incremental SVM on scikit

Solving HPC Problems using Machine Learning

- Fault tolerance is critical for Extreme Scale systems
- Systems suffer from several fault types in memory hierarchy
- However, fault != error
- Application fault modeling to minimize recovery

Pacific

On-going and Future Work

- Extreme Scale Deep Learning
 - Communication avoiding algorithms for DNN
 - Deep Belief Networks (Unsupervised)
 - Convolutional Neural Networks (Images)
- Fault Tolerant ML algorithms evaluation using MVAPICH2
 - Support Vector Machines (O(1) data movement for check-pointing)
 - Frequent Pattern Mining (O(1) space and O(n/p.log(p)) recovery
- SVM and Deep Learning for Accelerators
 - APUs, GPUs and MICs
- Applications to HPC
 - HPC is a "big data" producer
 - Can modeling with machine learning provide new insights?

Pacific

Machine Learning Toolkit for Extreme Scale (MaTEx) <u>http://hpc.pnl.gov/matex</u>

Thanks!

Contact: abhinav.vishnu@pnnl.gov