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Introduction

Accelerator
_ Nvidia Kepler K20X | Intel Xeon Phi 7120
Launch Date November 2012
Processor 14 Streaming
Multiprocessors
Per-processor 192 CUDA cores
Concurrency (SIMT)
Total Nominal 2688 (14%x192)
Concurrency
Acceleration Vectorization,

Techniques Shared memory,

OpenACC

Q22013

61 Pentium x86
cores

4 hyperthreads
x8(512 bit)x SIMD
units

1952 (61x4x8)

Vectorization



Introduction

Vectorization: a data-level
parallelism, vectorization is the
process of converting an algorithm
from a scalar implementation, which
does an operation one pair of operands
a time, to a vector process, where a
single instruction can refer to a vector
eries of adjacent values.)

‘;\\\Qg " 10 Vectorization with Intel C++ Compilers, P. 1, Intel Corporation.




Introduction

Vectorization
» loop vectorization: independent loop, loop

with 1f conditions, etc.;

» matrix tile: element tile, row/column tile,
matrix tile, etc.;

» index operations: 1dx2val, val21dx, find, fetch/
write by index, etc.;

» element-wise binary operation;

» logical operation: all, any, logical, etc.;

» elc.,



Application: all fields

* high-performance optimizer;
* high-performance integration;

* high-performance sampler;

* high-performance tri-diagonal solver, halo
exchange;

* high-dimensional look-up table;

¢ elc.;
* Building blocks for high-level fields such as machine
learning and artificial intelligence, computer
graphics, computer vision, simulation, etc.;




Introduction
Vectorization: for-loop

fori=1:1
operation (i);
end

operation(/)

for-loop I

I vectorization |



Introduction
Vectorization: 2-nested for-loop

for i, =1:1I;
fori,=1 I
operatlon (;505); operation(/,*1,)
end
end

Computational Memory
Cost
Cost

for-loop [,*1, ]

vectorization ] [,*1,
ed loop applications: find (for data compression), bin locating, efc.;



Introduction
Vectorization: k-nested for-loop

fori,=1:1,
fori,=1:1,
000
fori, =1:1,
ogeration Epszsig); operation(Z,*1,I,)
en
000
end
end

Computational| Memory
Cost Cost

for-loop [*],mme], ]

vectorization ] [*,mmn],
op applications: building high-dimensional look-up table



Introduction
Vectorization: k-nested for-loop

» For nested for-loop, memory cost increases
Exponentially!

» For applications such as high-dimensional
approximation, large /,*/,===/ is needed for
high accuracy;

» For applications such as two-dimensional
approximation, even two-dimensional /,*/,is
too big to fit in GPU’s global memory;

» Best performance of kernel execution comes
from suitable setting the number of blocks and
the number of threads per block, operation on
Il memory usually leads to bad performance;
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Introduction
GPU-cluster Vectorization: 2-nested loop

fori, =1:1,
fori,=1:1,
operation (i,,i,);
end
end

The Problem: vector size
exceeds GPU’s memory
capacity

fori,=1:1,
operation (i,,/,);
end

operation (/,,1,);

The Solution: GPU-cluster Vectorization
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Introduction
GPU-cluster Vectorization: 2-nested loop

Step 1: In master GPU, separation of the array (/,, 7,);

Step 2: Send the separated array (/,, 1,”) by MPI_SCATTER;

Step 3: Vectorized operation op (/,, /,”) in each GPU;

Step 4: Collect the partial results to master GPU by MPI GATHER;

Step 5: In master GPU, assembly the partial results back to the array (7,,
15);

» In GPU-cluster vectorization, Step 1, Step 3 and Step 5 is done in single
GPU;

» In GPU-cluster vectorization, the size of (/;, 1,’) usually hundreds of kb,
since the number of GPU is limited;

v v Vv v v

» The performance of GPU-cluster vectorization is decided by the two
collective communications: MPI_SCATTER and MPI_GATHER,
especially while GPU-cluster vectorization locates in iteration or time
step;

MVAPICH2;
\\\’ ign of k-nested loop is more complicated in communication;




Methods

High-performance Optimizer: an example of
vectorization on GPU Cluster by MVAPICH?2

Bin Locating

b

Iterative Discrete Approximation

ot

High-performance Optimizer
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Methods
Bin Locating

» Bin Locating: Two arrays S and D: the
array S 1s a sequence, the array D 1s data.
For a element d; in D, find the range s, <=
d; <s;.;1n array S;

» Implementation: comparing element d,
in D against the sequence S one by one;




Methods

Bin Locating
» 2-nested for-loop: inner loop and outer loop.

Computational Cost: I x J; memory cost: 1;

fori=1:1
forj=1:J
it (s() <=d(@) & d(j) <s(i+1))
bin(i) = j;
break;
end
end

* Vectorization of mnner-loop. Cc

T . 1. | This element is tiled to
Cost: [ ; memory cost: 1; amay withsie
fori=1:1 -

bin = sum( d(l) S),
end




Methods

Bin Locating |
* Vectorization of outer-loop. Computational

Cost: 1; memory cost: [ X J,;
bin = sumrow ( tile(D, J’) — tile(S, 1) );
* Splitting the array tile(D, J’) and tile(S, ) across
multi-GPUs by MPI Scatter;

* The computation of comparison 1s done 1n each
GPU;

* Reduction sumrow 1s implemented by CUDA
thrust;

* Partial results are gathered by MPI Gather;
Master-Slave Paradigm: master node and

] .




Method

Iterative Discrete Approximation

» Iterative Discrete Approximation
approximates complicated continuous
distributions by discrete random
numbers;

» Large portion of computation of
[terative Discrete Approximation 1s

spent on bin locating;




Methods

Iterative Discrete Approximation

Iterative Discrete
Approximation



Methods

Iterative Discrete Approximation

) » Generate random
numbers of uniform
distribution;

e : » Estimation the shape of
the function f(x);

» Take advantage of the

%rization estimated shape,
. discretely approximate
Bin1=£x,) Bin 2 =f(x,) Bin3=f(x;) Bin4=£(x,) th e fun Cti on f()C) by
%rizaﬁon ‘ iterations;
9

I B B > Implemented by GPU
Bin 3 Bin 4 CluSter;




Methods

High-Performance Optimizer

For large-scale and complicated search space, single
Iterative Discrete Approximation is efficient, parallelization
techniques are applied to make multiple Iterative Discrete
Approximation work together.
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Methods

High-Performance Optimizer

» The search space 1s equally separated into
multiple sub-space, and sent to each GPU by
MPI SCATTER;

» The search space keeps changing 1in each
1iteration;

» Each GPU 1s responsible for a sub-space;

» Each GPU generates local optimum,;

» Local optima 1s collected by
MPI ~ALLREDUCE to calculate global
pt or next 1teration;




Methods

High-Performance Optimizer

Random Number
Generation

A

Estimation of f{x), Sort,
Normalization, Bin
Construction

Random
Number

Discrete Approximation

Local Optimum, Iterative

Collective
Communication

Random Number
Generation

A 4
Estimation of f{x), Sort,
Normalization, Bin
Construction

Random
Number

Local Optimum, Iterative
Discrete Approximation




Computational Results
The problem: Finding the maximum peak from all peaks
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max f(x) =a X x X abs(sin(bx)°) f(x,y) = abS(z X % X sin(x + y))
a




Computational Results
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array size: the size of multiple arrays, not completely equal to message size

Time Cost of the Fourth Iteration by
MVAPICH2 v.s. MPICH2
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Computational Results
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Computational Results

Numbers of | Accuracy

Single GPU 1D 232 108
Multi-GPU 1D 241,717 108
GPU-Cluster 2D 317,038 10

The Performance of Optimizer on GPU
Bl ors by MvaPICH?



Computational Results
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Conclusions

» MVAPICH2 significantly improves the
performance of vectorization, leading to a
high-efficiency applications such as optimizer;

» MVAPICH2 based GPU cluster 1s the platform
to improve parallel programming techniques
such as vectorization;

» More research of MVAPICH2 should be
applied to more vectorization techniques;




Thanks !




