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Nvidia Kepler K20X Intel Xeon Phi 7120 
Launch Date November 2012 Q2 2013 

Processor 14 Streaming 
Multiprocessors 

61 Pentium x86 
cores 

Per-processor 
Concurrency 

192 CUDA cores 
(SIMT) 

4 hyperthreads 
×8(512 bit)× SIMD 

units 
Total Nominal 
Concurrency 

2688 (14×192) 1952 (61×4×8) 

Acceleration 
Techniques 

Vectorization,  
Shared memory, 

OpenACC 

Vectorization 



Mark Sabahi, et al., A Guidance to Vectorization with Intel C++ Compilers, P. 1, Intel Corporation. 



}  loop vectorization: independent loop, loop 
with if conditions, etc.; 

}  matrix tile: element tile, row/column tile, 
matrix tile, etc.; 

}  index operations: idx2val, val2idx, find, fetch/
write by index, etc.; 

}  element-wise binary operation; 
}  logical operation: all, any, logical, etc.; 
}  etc.; 



Application: all fields 
•  high-performance optimizer; 
•  high-performance integration; 
•  high-performance sampler; 
•  high-performance tri-diagonal solver, halo 

exchange; 
•  high-dimensional look-up table; 
•  etc.; 

•  Building blocks for high-level fields such as machine 
learning and artificial intelligence, computer 
graphics, computer vision, simulation, etc.; 

•  Usually defined on single GPU, research needed for 
multi-GPU and GPU cluster; 



for i = 1:I 
      operation (i); 
end 

operation(I) 

Computational 
Cost 

Memory Cost 

for-loop I 1 
vectorization 1 I 

SIMD 



for i1 = 1:I1 
  for i2 = 1:I2 
    operation (i1,i2); 
  end 
end 

operation(I1*I2) 

Computational 
Cost 

Memory 
Cost 

for-loop I1*I2 1 
vectorization 1 I1*I2 

vectorization of 2-nested loop applications: find (for data compression), bin locating, etc.; 



for i1 = 1:I1 
  for i2 = 1:I2 
    ●●● 
    for ik = 1:Ik 
      operation (i1,i2,···ik); 
    end 
    ●●● 
  end 
end 

operation(I1*I2···Ik) 

Computational 
Cost 

Memory 
Cost 

for-loop I1*I2▪▪▪Ik 1 
vectorization 1 I1*I2▪▪▪Ik 

vectorization of k-nested loop applications: building high-dimensional look-up table 



}  For nested for-loop, memory cost increases 
Exponentially! 

}  For applications such as high-dimensional 
approximation,  large I1*I2▪▪▪Ik is needed for 
high accuracy; 

}  For applications such as two-dimensional 
approximation,  even two-dimensional I1*I2 is 
too big to fit in GPU’s global memory; 

}  Best performance of kernel execution comes 
from suitable setting the number of blocks and 
the number of threads per block, operation on 
full memory usually leads to bad performance; 



for i1 = 1:I1 
  for i2 = 1:I2 
      operation (i1,i2); 
  end 
end 

for i2 = 1:I2 
  operation (i1,I2); 
end 

operation (I1,I2); 

op(i1,I2) 

op(I1,I2) 

op(I1,I2’) 

The Problem: vector size 
exceeds GPU’s memory 

capacity 

The Solution: GPU-cluster Vectorization 

op(I1,I2’) op(I1,I2’) 



}  Step 1: In master GPU, separation of the array (I1, I2); 
}  Step 2: Send the separated array (I1, I2’) by MPI_SCATTER; 
}  Step 3: Vectorized operation op (I1, I2’) in each GPU; 
}  Step 4: Collect the partial results to master GPU by MPI_GATHER; 
}  Step 5: In master GPU, assembly the partial results back to the array (I1, 

I2); 

}  In GPU-cluster vectorization, Step 1, Step 3 and Step 5 is done in single 
GPU; 

}  In GPU-cluster vectorization, the size of (I1, I2’) usually hundreds of kb, 
since the number of GPU is limited; 

}  The performance of GPU-cluster vectorization is decided by the two 
collective communications: MPI_SCATTER and MPI_GATHER, 
especially while GPU-cluster vectorization locates in iteration or time 
step; 

}  MVAPICH2; 
}  Vectorization of k-nested loop is more complicated in communication; 



High-performance Optimizer: an example of 
vectorization on GPU Cluster by MVAPICH2   

Bin Locating 

Iterative Discrete Approximation 

High-performance Optimizer 

MVAPICH2 



} Bin Locating: Two arrays S and D: the 
array S is a sequence, the array D is data. 
For a element di in D, find the range si <= 
dj < si+1 in array S; 

} Implementation: comparing element di 
in D against the sequence S one by one; 



}  2-nested for-loop: inner loop and outer loop. 
Computational Cost: I × J; memory cost: 1; 

for i = 1:I 
    for j = 1:J 
        if ( s(j) <= d(i) & d(j) < s(i+1) ) 
        bin(i) = j;  
        break;  
    end 
end 

•  Vectorization of inner-loop. Computational 
Cost: I ; memory cost: 1; 

for i = 1:I    
        bin = sum( d(i) – S); 
end 

This element is tiled to 
array with size J 



•  Vectorization of outer-loop. Computational 
Cost: 1; memory cost: I × J; 

bin = sumrow ( tile(D, J’) − tile(S, I) ); 
•  Splitting the array tile(D, J’) and tile(S, I) across 

multi-GPUs by MPI_Scatter; 
•  The computation of comparison is done in each 

GPU; 
•  Reduction sumrow is implemented by CUDA 

thrust; 
•   Partial results are gathered by MPI_Gather; 
•  The Master-Slave Paradigm: master node and 

master GPU; 



}  Iterative Discrete Approximation 
approximates complicated continuous 
distributions by discrete random 
numbers; 

} Large portion of computation of 
Iterative Discrete Approximation is 
spent on bin locating; 



Methods 
Iterative Discrete Approximation 

f(x) 

Iterative Discrete 
Approximation 



Methods 
Iterative Discrete Approximation 

}  Generate random 
numbers of uniform 
distribution; 

}  Estimation the shape of 
the function f(x); 

}  Take advantage of the 
estimated shape, 
discretely approximate 
the function f(x) by 
iterations; 

}  Implemented by GPU 
cluster; 

vectorization 

vectorization 

x1 x2 x3 x4 

f(x1) 

f(x2) 

f(x3) 
f(x4) 

Bin 1 = f(x1) Bin 2 = f(x2) Bin 3 = f(x3) Bin 4 = f(x4) 

Bin 1 Bin 2 Bin 3 Bin 4 
1 2 3 4 5 



Methods 
High-Performance Optimizer 

Domain Decomposition of Search Space: understanding 
vectorized bin locating in the language of optimization 

For large-scale and complicated search space, single 
Iterative Discrete Approximation is efficient, parallelization 
techniques are applied to make multiple Iterative Discrete 

Approximation work together.  



}  The search space is equally separated into 
multiple sub-space, and sent to each GPU by 
MPI_SCATTER; 

}  The search space keeps changing in each 
iteration; 

}  Each GPU is responsible for a sub-space; 
}  Each GPU generates local optimum; 
}  Local optima is collected by 

MPI_ALLREDUCE to calculate global 
optimum for next iteration; 

Methods 
High-Performance Optimizer 



Methods 
High-Performance Optimizer 

Random Number 
Generation 

Random Number 
Generation 

Estimation of f(x), Sort, 
Normalization, Bin 

Construction 

Estimation of f(x), Sort, 
Normalization, Bin 

Construction 

Sub-bin i Random 
Number 

Sub-bin j Random 
Number 

Local Optimum, Iterative 
Discrete Approximation 

Local Optimum, Iterative 
Discrete Approximation 

Collective 
Communication 



Computational Results 
The problem: Finding the maximum peak from all peaks 
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OSC Oakley cluster: 16 NVIDIA Tesla M2070, Mellanox IB QDR MT26428 Adapter 

Time Cost of the Fourth Iteration by 
MVAPICH2 v.s. MPICH2 
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array size 

MVAPICH2 
MPICH2 

array size: the size of multiple arrays, not completely equal to message size 



Time Cost along with Iterations by 
MVAPICH2 v.s. MPICH2 

OSC Oakley cluster: 16 NVIDIA Tesla M2070, Mellanox IB QDR MT26428 Adapter 
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iteration with array size = 10000 

MPICH2 
MVAPICH2 



Dimension Numbers of 
Peaks 

Accuracy 

Single GPU 1D 232 10-8 

Multi-GPU 1D 241,717 10-8 

GPU-Cluster 2D 317,038 10-6 

The Performance of Optimizer on GPU 
Clusters by MVAPICH2 
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array size = 1000 (iii) left down array size = 100 (iv) right down array size  = 10 



}  MVAPICH2 significantly improves the 
performance of vectorization, leading to a 
high-efficiency applications such as optimizer; 

}  MVAPICH2 based GPU cluster is the platform 
to improve parallel programming techniques 
such as vectorization;  

}  More research of MVAPICH2 should be 
applied to more vectorization techniques; 




