
Di Zhao
zhao.1029@osu.edu

Ohio State University
MVAPICH User Group (MUG) Meeting, August 26-27 2013, Columbus Ohio

Nvidia Kepler K20X Intel Xeon Phi 7120
Launch Date November 2012 Q2 2013

Processor 14 Streaming
Multiprocessors

61 Pentium x86
cores

Per-processor
Concurrency

192 CUDA cores
(SIMT)

4 hyperthreads
×8(512 bit)× SIMD

units
Total Nominal
Concurrency

2688 (14×192) 1952 (61×4×8)

Acceleration
Techniques

Vectorization,
Shared memory,

OpenACC

Vectorization

Mark Sabahi, et al., A Guidance to Vectorization with Intel C++ Compilers, P. 1, Intel Corporation.

}  loop vectorization: independent loop, loop
with if conditions, etc.;

}  matrix tile: element tile, row/column tile,
matrix tile, etc.;

}  index operations: idx2val, val2idx, find, fetch/
write by index, etc.;

}  element-wise binary operation;
}  logical operation: all, any, logical, etc.;
}  etc.;

Application: all fields
•  high-performance optimizer;
•  high-performance integration;
•  high-performance sampler;
•  high-performance tri-diagonal solver, halo

exchange;
•  high-dimensional look-up table;
•  etc.;

•  Building blocks for high-level fields such as machine
learning and artificial intelligence, computer
graphics, computer vision, simulation, etc.;

•  Usually defined on single GPU, research needed for
multi-GPU and GPU cluster;

for i = 1:I
 operation (i);
end

operation(I)

Computational
Cost

Memory Cost

for-loop I 1
vectorization 1 I

SIMD

for i1 = 1:I1
 for i2 = 1:I2
 operation (i1,i2);
 end
end

operation(I1*I2)

Computational
Cost

Memory
Cost

for-loop I1*I2 1
vectorization 1 I1*I2

vectorization of 2-nested loop applications: find (for data compression), bin locating, etc.;

for i1 = 1:I1
 for i2 = 1:I2
 ●●●
 for ik = 1:Ik
 operation (i1,i2,···ik);
 end
 ●●●
 end
end

operation(I1*I2···Ik)

Computational
Cost

Memory
Cost

for-loop I1*I2▪▪▪Ik 1
vectorization 1 I1*I2▪▪▪Ik

vectorization of k-nested loop applications: building high-dimensional look-up table

}  For nested for-loop, memory cost increases
Exponentially!

}  For applications such as high-dimensional
approximation, large I1*I2▪▪▪Ik is needed for
high accuracy;

}  For applications such as two-dimensional
approximation, even two-dimensional I1*I2 is
too big to fit in GPU’s global memory;

}  Best performance of kernel execution comes
from suitable setting the number of blocks and
the number of threads per block, operation on
full memory usually leads to bad performance;

for i1 = 1:I1
 for i2 = 1:I2
 operation (i1,i2);
 end
end

for i2 = 1:I2
 operation (i1,I2);
end

operation (I1,I2);

op(i1,I2)

op(I1,I2)

op(I1,I2’)

The Problem: vector size
exceeds GPU’s memory

capacity

The Solution: GPU-cluster Vectorization

op(I1,I2’) op(I1,I2’)

}  Step 1: In master GPU, separation of the array (I1, I2);
}  Step 2: Send the separated array (I1, I2’) by MPI_SCATTER;
}  Step 3: Vectorized operation op (I1, I2’) in each GPU;
}  Step 4: Collect the partial results to master GPU by MPI_GATHER;
}  Step 5: In master GPU, assembly the partial results back to the array (I1,

I2);

}  In GPU-cluster vectorization, Step 1, Step 3 and Step 5 is done in single
GPU;

}  In GPU-cluster vectorization, the size of (I1, I2’) usually hundreds of kb,
since the number of GPU is limited;

}  The performance of GPU-cluster vectorization is decided by the two
collective communications: MPI_SCATTER and MPI_GATHER,
especially while GPU-cluster vectorization locates in iteration or time
step;

}  MVAPICH2;
}  Vectorization of k-nested loop is more complicated in communication;

High-performance Optimizer: an example of
vectorization on GPU Cluster by MVAPICH2

Bin Locating

Iterative Discrete Approximation

High-performance Optimizer

MVAPICH2

} Bin Locating: Two arrays S and D: the
array S is a sequence, the array D is data.
For a element di in D, find the range si <=
dj < si+1 in array S;

} Implementation: comparing element di
in D against the sequence S one by one;

}  2-nested for-loop: inner loop and outer loop.
Computational Cost: I × J; memory cost: 1;

for i = 1:I
 for j = 1:J
 if (s(j) <= d(i) & d(j) < s(i+1))
 bin(i) = j;
 break;
 end
end

•  Vectorization of inner-loop. Computational
Cost: I ; memory cost: 1;

for i = 1:I
 bin = sum(d(i) – S);
end

This element is tiled to
array with size J

•  Vectorization of outer-loop. Computational
Cost: 1; memory cost: I × J;

bin = sumrow (tile(D, J’) − tile(S, I));
•  Splitting the array tile(D, J’) and tile(S, I) across

multi-GPUs by MPI_Scatter;
•  The computation of comparison is done in each

GPU;
•  Reduction sumrow is implemented by CUDA

thrust;
•  Partial results are gathered by MPI_Gather;
•  The Master-Slave Paradigm: master node and

master GPU;

}  Iterative Discrete Approximation
approximates complicated continuous
distributions by discrete random
numbers;

} Large portion of computation of
Iterative Discrete Approximation is
spent on bin locating;

Methods
Iterative Discrete Approximation

f(x)

Iterative Discrete
Approximation

Methods
Iterative Discrete Approximation

}  Generate random
numbers of uniform
distribution;

}  Estimation the shape of
the function f(x);

}  Take advantage of the
estimated shape,
discretely approximate
the function f(x) by
iterations;

}  Implemented by GPU
cluster;

vectorization

vectorization

x1 x2 x3 x4

f(x1)

f(x2)

f(x3)
f(x4)

Bin 1 = f(x1) Bin 2 = f(x2) Bin 3 = f(x3) Bin 4 = f(x4)

Bin 1 Bin 2 Bin 3 Bin 4
1 2 3 4 5

Methods
High-Performance Optimizer

Domain Decomposition of Search Space: understanding
vectorized bin locating in the language of optimization

For large-scale and complicated search space, single
Iterative Discrete Approximation is efficient, parallelization
techniques are applied to make multiple Iterative Discrete

Approximation work together.

}  The search space is equally separated into
multiple sub-space, and sent to each GPU by
MPI_SCATTER;

}  The search space keeps changing in each
iteration;

}  Each GPU is responsible for a sub-space;
}  Each GPU generates local optimum;
}  Local optima is collected by

MPI_ALLREDUCE to calculate global
optimum for next iteration;

Methods
High-Performance Optimizer

Methods
High-Performance Optimizer

Random Number
Generation

Random Number
Generation

Estimation of f(x), Sort,
Normalization, Bin

Construction

Estimation of f(x), Sort,
Normalization, Bin

Construction

Sub-bin i Random
Number

Sub-bin j Random
Number

Local Optimum, Iterative
Discrete Approximation

Local Optimum, Iterative
Discrete Approximation

Collective
Communication

Computational Results
The problem: Finding the maximum peak from all peaks

() ()⎟
⎠

⎞
⎜
⎝

⎛ +××= yx
b
y

a
xabsyxf sin,

OSC Oakley cluster: 16 NVIDIA Tesla M2070, Mellanox IB QDR MT26428 Adapter

Time Cost of the Fourth Iteration by
MVAPICH2 v.s. MPICH2

0
1
2
3
4
5
6

10 100 1000 10000

tim
e

co
st

array size

MVAPICH2
MPICH2

array size: the size of multiple arrays, not completely equal to message size

Time Cost along with Iterations by
MVAPICH2 v.s. MPICH2

OSC Oakley cluster: 16 NVIDIA Tesla M2070, Mellanox IB QDR MT26428 Adapter

0

5

10

15

20

25

30

4 6 8 10

tim
e

co
st

iteration with array size = 10000

MPICH2
MVAPICH2

Dimension Numbers of
Peaks

Accuracy

Single GPU 1D 232 10-8

Multi-GPU 1D 241,717 10-8

GPU-Cluster 2D 317,038 10-6

The Performance of Optimizer on GPU
Clusters by MVAPICH2

16 16

16 16

12 12

12 12

8 8

8

8

4 4

4

4

1 1 1 1
0

5

10

15

-8 -7 -6 -5
Accuracy (log10)

C
ou

nt

16

16 16 16

12

12 12 12

8

8
8 8

4

4
4 4

1 1 1 1
0

5

10

15

-6 -5 -4 -3
Accuracy (log10)

Co
un

t

16

16

16 16

12

12

12 12

8 8

8

8

4 4

4

4

1 1 1 1
0

5

10

15

-6 -5 -4 -3
Accuracy (log10)

C
ou

nt

16

16

16 16

12 12

12
12

8 8

8

8

4 4 4

4

1 1 1 1
0

5

10

15

-6 -5 -4 -3
Accuracy (log10)

C
ou

nt

Accuracy along with Number of GPUs (i) left up array size = 10000 (ii) right up
array size = 1000 (iii) left down array size = 100 (iv) right down array size = 10

}  MVAPICH2 significantly improves the
performance of vectorization, leading to a
high-efficiency applications such as optimizer;

}  MVAPICH2 based GPU cluster is the platform
to improve parallel programming techniques
such as vectorization;

}  More research of MVAPICH2 should be
applied to more vectorization techniques;

