High-Performance
Vectorization on GPU

Cluster by MVAPICH2

Di Zhao
zhao.1029@osu.edu
Ohio State University

Introduction

Accelerator
_ Nvidia Kepler K20X | Intel Xeon Phi 7120
Launch Date November 2012
Processor 14 Streaming
Multiprocessors
Per-processor 192 CUDA cores
Concurrency (SIMT)
Total Nominal 2688 (14%x192)
Concurrency
Acceleration Vectorization,

Techniques Shared memory,

OpenACC

Q22013

61 Pentium x86
cores

4 hyperthreads
x8(512 bit)x SIMD
units

1952 (61x4x8)

Vectorization

Introduction

Vectorization: a data-level
parallelism, vectorization is the
process of converting an algorithm
from a scalar implementation, which
does an operation one pair of operands
a time, to a vector process, where a
single instruction can refer to a vector
eries of adjacent values.)

‘;\\\Qg " 10 Vectorization with Intel C++ Compilers, P. 1, Intel Corporation.

Introduction

Vectorization
» loop vectorization: independent loop, loop

with 1f conditions, etc.;

» matrix tile: element tile, row/column tile,
matrix tile, etc.;

» index operations: 1dx2val, val21dx, find, fetch/
write by index, etc.;

» element-wise binary operation;

» logical operation: all, any, logical, etc.;

» elc.,

Application: all fields

* high-performance optimizer;
* high-performance integration;

* high-performance sampler;

* high-performance tri-diagonal solver, halo
exchange;

* high-dimensional look-up table;

¢ elc.;
* Building blocks for high-level fields such as machine
learning and artificial intelligence, computer
graphics, computer vision, simulation, etc.;

Introduction
Vectorization: for-loop

fori=1:1
operation (i);
end

operation(/)

for-loop I

I vectorization |

Introduction
Vectorization: 2-nested for-loop

for i, =1:1I;
fori,=1 I
operatlon (;505); operation(/,*1,)
end
end

Computational Memory
Cost
Cost

for-loop [,*1,]

vectorization] [,*1,
ed loop applications: find (for data compression), bin locating, efc.;

Introduction
Vectorization: k-nested for-loop

fori,=1:1,
fori,=1:1,
000
fori, =1:1,
ogeration Epszsig); operation(Z,*1,I,)
en
000
end
end

Computational| Memory
Cost Cost

for-loop [*],mme],]

vectorization] [*,mmn],
op applications: building high-dimensional look-up table

Introduction
Vectorization: k-nested for-loop

» For nested for-loop, memory cost increases
Exponentially!

» For applications such as high-dimensional
approximation, large /,*/,===/ is needed for
high accuracy;

» For applications such as two-dimensional
approximation, even two-dimensional /,*/,is
too big to fit in GPU’s global memory;

» Best performance of kernel execution comes
from suitable setting the number of blocks and
the number of threads per block, operation on
Il memory usually leads to bad performance;

3 R
W \

Introduction
GPU-cluster Vectorization: 2-nested loop

fori, =1:1,
fori,=1:1,
operation (i,,i,);
end
end

The Problem: vector size
exceeds GPU’s memory
capacity

fori,=1:1,
operation (i,,/,);
end

operation (/,,1,);

The Solution: GPU-cluster Vectorization

Qm“m-

RN .\L;iii:SQ\\\\J‘\

Introduction
GPU-cluster Vectorization: 2-nested loop

Step 1: In master GPU, separation of the array (/,, 7,);

Step 2: Send the separated array (/,, 1,”) by MPI_SCATTER;

Step 3: Vectorized operation op (/,, /,”) in each GPU;

Step 4: Collect the partial results to master GPU by MPI GATHER;

Step 5: In master GPU, assembly the partial results back to the array (7,,
15);

» In GPU-cluster vectorization, Step 1, Step 3 and Step 5 is done in single
GPU;

» In GPU-cluster vectorization, the size of (/;, 1,’) usually hundreds of kb,
since the number of GPU is limited;

v v Vv v v

» The performance of GPU-cluster vectorization is decided by the two
collective communications: MPI_SCATTER and MPI_GATHER,
especially while GPU-cluster vectorization locates in iteration or time
step;

MVAPICH2;
\\\’ ign of k-nested loop is more complicated in communication;

Methods

High-performance Optimizer: an example of
vectorization on GPU Cluster by MVAPICH?2

Bin Locating

b

Iterative Discrete Approximation

ot

High-performance Optimizer

E\\\‘ R

Methods
Bin Locating

» Bin Locating: Two arrays S and D: the
array S 1s a sequence, the array D 1s data.
For a element d; in D, find the range s, <=
d; <s;.;1n array S;

» Implementation: comparing element d,
in D against the sequence S one by one;

Methods

Bin Locating
» 2-nested for-loop: inner loop and outer loop.

Computational Cost: I x J; memory cost: 1;

fori=1:1
forj=1:J
it (s() <=d(@) & d(j) <s(i+1))
bin(i) = j;
break;
end
end

* Vectorization of mnner-loop. Cc

T . 1. | This element is tiled to
Cost: [; memory cost: 1; amay withsie
fori=1:1 -

bin = sum(d(l) S),
end

Methods

Bin Locating |
* Vectorization of outer-loop. Computational

Cost: 1; memory cost: [X J,;
bin = sumrow (tile(D, J’) — tile(S, 1));
* Splitting the array tile(D, J’) and tile(S,) across
multi-GPUs by MPI Scatter;

* The computation of comparison 1s done 1n each
GPU;

* Reduction sumrow 1s implemented by CUDA
thrust;

* Partial results are gathered by MPI Gather;
Master-Slave Paradigm: master node and

] .

Method

Iterative Discrete Approximation

» Iterative Discrete Approximation
approximates complicated continuous
distributions by discrete random
numbers;

» Large portion of computation of
[terative Discrete Approximation 1s

spent on bin locating;

Methods

Iterative Discrete Approximation

Iterative Discrete
Approximation

Methods

Iterative Discrete Approximation

) » Generate random
numbers of uniform
distribution;

e : » Estimation the shape of
the function f(x);

» Take advantage of the

%rization estimated shape,
. discretely approximate
Bin1=£x,) Bin 2 =f(x,) Bin3=f(x;) Bin4=£(x,) th e fun Cti on f()C) by
%rizaﬁon ‘ iterations;
9

I B B > Implemented by GPU
Bin 3 Bin 4 CluSter;

Methods

High-Performance Optimizer

For large-scale and complicated search space, single
Iterative Discrete Approximation is efficient, parallelization
techniques are applied to make multiple Iterative Discrete
Approximation work together.

~_¢ .7

<—> <—>

Methods

High-Performance Optimizer

» The search space 1s equally separated into
multiple sub-space, and sent to each GPU by
MPI SCATTER;

» The search space keeps changing 1in each
1iteration;

» Each GPU 1s responsible for a sub-space;

» Each GPU generates local optimum,;

» Local optima 1s collected by
MPI ~ALLREDUCE to calculate global
pt or next 1teration;

Methods

High-Performance Optimizer

Random Number
Generation

A

Estimation of f{x), Sort,
Normalization, Bin
Construction

Random
Number

Discrete Approximation

Local Optimum, Iterative

Collective
Communication

Random Number
Generation

A 4
Estimation of f{x), Sort,
Normalization, Bin
Construction

Random
Number

Local Optimum, Iterative
Discrete Approximation

Computational Results
The problem: Finding the maximum peak from all peaks

-

2 R +

| IWI.I‘ ‘

-w..__llllm IM)
LU 490 A4S 490 40K 10 a0 ¢

max f(x) =a X x X abs(sin(bx)°) f(x,y) = abS(z X % X sin(x + y))
a

Computational Results

6
S <-MVAPICH?2
4 *MPICH2
g3
v 2
=
= 1
0

10 100 1000 10000

array size
array size: the size of multiple arrays, not completely equal to message size

Time Cost of the Fourth Iteration by
MVAPICH2 v.s. MPICH2

~~~~~ alO NVIDIA Tesla M2070, Mellanox IB QDR MT26428 Adapter




Computational Results

30
25 - “=MPICH2
-
220 MVAPICH2
)
) |
£ 15
H w /././.
5 -
0
4 6 8 10

iteration with array size = 10000

Time Cost along with Iterations by
MVAPICH2 v.s. MPICH2

~~~~~ alO NVIDIA Tesla M2070, Mellanox IB QDR MT26428 Adapter


Computational Results

Numbers of | Accuracy

Single GPU 1D 232 108
Multi-GPU 1D 241,717 108
GPU-Cluster 2D 317,038 10

The Performance of Optimizer on GPU
Bl ors by MvaPICH?

Computational Results

15 15
1612 16128 4 1612 16128 4 16128 4
=10 A =10 A 8 4
5 8 4 =
3 S
] 16 16] 161284
12841 %2841 I | ml 1 1 1
O I_I I I_I T T O I T T
-8 -7 -6 -5 -6 -5 -4 -3
Accuracy (log;) Accuracy (logo)
15 15
16 16128 16 16128
210 4 128 4 _10 4 1
% 1612 4 % 16 8
@) @)
5 A 5
16128 41 |:Ii4 1 1
0 1

-6
Accuracy (log;)

5

4
1 167841 ‘ ‘12841 41 —‘1
: : 0+ :

-6 -5 -4 -3

1CY o

-4 3
Accuracy (log;)
th Number of GPUs (i) left up array size = 10000 (ii) right u

left down array size = 100 (iv) right down array size

Conclusions

» MVAPICH2 significantly improves the
performance of vectorization, leading to a
high-efficiency applications such as optimizer;

» MVAPICH2 based GPU cluster 1s the platform
to improve parallel programming techniques
such as vectorization;

» More research of MVAPICH2 should be
applied to more vectorization techniques;

Thanks !

