High-Performance Vectorization on GPU Cluster by MVAPICH2

Di Zhao zhao.1029@osu.edu Ohio State University

MVAPICH User Group (MUG) Meeting, August 26-27 2013, Columbus Ohio

Introduction Accelerator

	Nvidia Kepler K20X	Intel Xeon Phi 7120
Launch Date	November 2012	Q2 2013
Processor	14 Streaming Multiprocessors	61 Pentium x86 cores
Per-processor Concurrency	192 CUDA cores (SIMT)	4 hyperthreads ×8(512 bit)× SIMD units
Total Nominal Concurrency	2688 (14×192)	1952 (61×4×8)
Acceleration Techniques	Vectorization, Shared memory, OpenACC	Vectorization

Introduction **Vectorization:** a data-level parallelism, vectorization is the process of converting an algorithm from a scalar implementation, which does an operation one pair of operands a time, to a vector process, where a single instruction can refer to a vector (series of adjacent values.)

Mark Sabahi, et al., A o., hence to Vectorization with Intel C++ Compilers, P. 1, Intel Corporation.

Introduction

Vectorization

etc.;

- loop vectorization: independent loop, loop with if conditions, *etc.*;
- matrix tile: element tile, row/column tile, matrix tile, *etc*.;
- index operations: idx2val, val2idx, find, fetch/ write by index, *etc.*;
- element-wise binary operation;
- Iogical operation: all, any, logical, etc.;

Application: all fields

- high-performance optimizer;
- high-performance integration;
- high-performance sampler;
- high-performance tri-diagonal solver, halo exchange;
- high-dimensional look-up table;
- *etc.*;
- Building blocks for high-level fields such as machine learning and artificial intelligence, computer graphics, computer vision, simulation, *etc*.;
- Usually defined on single GPU, research needed for multi-GPU and GPU cluster;

Introduction Vectorization: *for-loop*

for i = 1:I
 operation (i);
end

operation(I)

Introduction Vectorization: 2-nested for-loop

for $i_1 = 1:I_1$	
for $i_2 = 1:I_2$	2 .
operation (<i>i</i> ₁ , <i>i</i> end	2) ;
end	

operation($I_1 * I_2$)

	Computational Cost	Memory Cost
for-loop	$I_1 * I_2$	1
vectorization	1	$I_1 * I_2$

vectorization of 2-nested loop applications: find (for data compression), bin locating, etc.;

Introduction

Vectorization: k-nested for-loop

- For nested for-loop, memory cost increases Exponentially!
- For applications such as high-dimensional approximation, large I₁*I₂····I_k is needed for high accuracy;
- For applications such as two-dimensional approximation, even two-dimensional I₁*I₂ is too big to fit in GPU's global memory;
- Best performance of kernel execution comes from suitable setting the number of blocks and the number of threads per block, operation on full memory usually leads to bad performance;

Introduction GPU-cluster Vectorization: 2-nested loop

Introduction GPU-cluster Vectorization: *2-nested loop*

- Step 1: In master GPU, separation of the array (I_1, I_2) ;
- Step 2: Send the separated array (I_1, I_2) by MPI_SCATTER;
- Step 3: Vectorized operation op (I_1, I_2) in each GPU;
- Step 4: Collect the partial results to master GPU by MPI_GATHER;
- Step 5: In master GPU, assembly the partial results back to the array (I_1, I_2) ;
- In GPU-cluster vectorization, Step 1, Step 3 and Step 5 is done in single GPU;
- In GPU-cluster vectorization, the size of (I_1, I_2) usually hundreds of kb, since the number of GPU is limited;
- The performance of GPU-cluster vectorization is decided by the two collective communications: MPI_SCATTER and MPI_GATHER, especially while GPU-cluster vectorization locates in iteration or time step;

MVAPICH2;

Vectorization of *k*-nested loop is more complicated in communication;

Methods

High-performance Optimizer: an example of vectorization on GPU Cluster by MVAPICH2

Methods Bin Locating

- Bin Locating: Two arrays S and D: the array S is a sequence, the array D is data.
 For a element d_i in D, find the range s_i <= d_i < s_{i+1} in array S;
- Implementation: comparing element d_i in D against the sequence S one by one;

Methods Bin Locating 2-nested for-loop: inner loop and outer loop. Computational Cost: $I \times J$; memory cost: 1; for i = 1:Ifor j = 1:Jif $(s(j) \le d(i) \& d(j) \le s(i+1))$ bin(i) = j;break; end end

• Vectorization of inner-loop. Computational Cost: I; memory cost: 1; for i = 1:Ibin = sum(d(i) - S);

end

Methods

Bin Locating

 Vectorization of outer-loop. Computational Cost: 1; memory cost: *I* × *J*;

bin = sumrow (tile(D, J') - tile(S, I));

- Splitting the array tile(*D*, *J*') and tile(*S*, *I*) across multi-GPUs by MPI_Scatter;
- The computation of comparison is done in each GPU;
- Reduction *sumrow* is implemented by CUDA thrust;
- Partial results are gathered by MPI_Gather;
 The Master-Slave Paradigm: master node and master SPU:

Method Iterative Discrete Approximation

 Iterative Discrete Approximation approximates complicated continuous distributions by discrete random numbers;

 Large portion of computation of Iterative Discrete Approximation is spent on bin locating;

Methods Iterative Discrete Approximation

Methods Iterative Discrete Approximation

- Generate random numbers of uniform distribution;
- Estimation the shape of the function *f*(*x*);
- Take advantage of the estimated shape, discretely approximate the function *f*(*x*) by iterations;
 Implemented by GPU cluster;

Methods High-Performance Optimizer

For large-scale and complicated search space, single Iterative Discrete Approximation is efficient, parallelization techniques are applied to make multiple Iterative Discrete Approximation work together.

Domain Decomposition of Search Space: understanding vectorized bin locating in the language of optimization

Methods High-Performance Optimizer

- The search space is equally separated into multiple sub-space, and sent to each GPU by MPI_SCATTER;
- The search space keeps changing in each iteration;
- Each GPU is responsible for a sub-space;
- Each GPU generates local optimum;
- Local optima is collected by MPI_ALLREDUCE to calculate global optimum for next iteration;

Methods High-Performance Optimizer

Computational Results The problem: Finding the maximum peak from all peaks

 $\max_{x} f(x) = a \times x \times abs(\sin(bx)^{c})$

 $f(x, y) = abs\left(\frac{x}{a} \times \frac{y}{b} \times \sin(x + y)\right)$

array size: the size of multiple arrays, not completely equal to message size

Time Cost of the Fourth Iteration by MVAPICH2 v.s. MPICH2

Time Cost along with Iterations by MVAPICH2 *v.s.* MPICH2

OSC Oakley cr. - 16 NVIDIA Tesla M2070, Mellanox IB QDR MT26428 Adapter

	Dimension	Numbers of Peaks	Accuracy
Single GPU	1D	232	10-8
Multi-GPU	1D	241,717	10-8
GPU-Cluster	2D	317,038	10-6

The Performance of Optimizer on GPU Clusters by MVAPICH2

Accuracy along with Number of GPUs (i) left up array size = 10000 (ii) right up array size = 1000 (iii) left down array size = 100 (iv) right down array size = 10

Conclusions

- MVAPICH2 significantly improves the performance of vectorization, leading to a high-efficiency applications such as optimizer;
- MVAPICH2 based GPU cluster is the platform to improve parallel programming techniques such as vectorization;
- More research of MVAPICH2 should be applied to more vectorization techniques;

Thanks !