
Building Brain Circuits

Experiences with shuffling terabytes of data over MPI

MUG'20 : August 26, 2020

Matthias Wolf, Nicolas Cornu, Pramod Kumbhar, James King
High Performance Computing Team, Blue Brain Project

Brain Circuits

• Reconstruction from biological data

TouchDetector

• Algorithm and implementation

Background & Motivation

• Blue Brain Project, use cases

Summary and Future Work

• Next steps, improvements

Overview

MPI Benchmarks

• Comparison of HPE-MPT, MVAPICH2

2

Ecole polytechnique fédérale de Lausanne

• University in Lausanne, Switzerland • ~11k students, ~5k academic staff• One of the two Swiss federal institutes

Blue Brain Project

Blue Brain Project

• BBP started in 2005 @ BMI • Moved to Campus Biotech ~4 years ago • CB : Hub for Life Sciences

2015

160k cells

Project Timeline and Goals

2019

10m cells

Simulate the brain

• Focus on the rat, as structural close to human

• Initial groundwork before 2010 with 10k cells

5

Point Neurons Morphologically

Detailed Neurons
Molecular Level

At Different Scales

6

Comprehensive approach to systematically create unifying models of brain circuits by

• reverse engineering biological components

• construction models of the biophysics

Biophysical

System

Conceptual

Model

Computational

Model

representation

morphologically

detailed neurons

Blue Brain Project

See source7

7

Located at CSCS in Lugano

• ~200 Skylake nodes

• ~800 Cascade Lake nodes

• 100Gbit EDR InfiniBand, fat tree

• Auxiliary GPU nodes

• 6 Pb storage in GPFS

• Burst Buffer (IME)

• Vendor provides HPE-MPI

• We also provide MVAPICH2
(faster IME support)

• Want improve performance,

avoid lock-in morphologically

detailed neurons

Blue Brain 5

See source7

8

Brain Circuits
From in-vitro to in-silico

9

Obtaining input data from lab experiments...

10

Data Driven Reconstruction Workflow

• Create variations of neuron types

• Populate volume according to biological type distribution

• Establish connectivity
11

An example of morphologically detailed Neocortex circuit

• #Cells : ~9.3 million

• #Compartments : ~3.5 billion

• #Synapses : ~145.8 billion

• #Channel types : ~18

• Total memory requirement for
simulation: ~169 TB

12

TouchDetector
Assembling circuits using distributed computing

13

Neurons, Morphologies and Synapses

• Neuron: nerve cell

• Morphology: physical shape of a neuron

• Central part (soma) can be represented as a sphere

• Branches (axon, dendrite) are simplified to sequences of

cylinders

• Touch: region of physical proximity between neurons

• Synapse: punctual chemical or electrical connection

between neurons

source: https://bit.ly/3gqau6V

14

https://bit.ly/3gqau6V

Building the Neural Connectome

Connections between the branches of neurons:

• Model the branches of neurons as sequences of cylinders

• Some branches have only outgoing connections

• Some branches have only incoming connections

Every connection is based on cylinder overlap and saved as the

projection on the cylinder axis.

15

Building the Neural Connectome

Cylinders can be very uneven in size:

• Can result in dense clusters based only on

representation

• Post-process connections between two branches

• Re-distribute connections to match biological spacing

Requires collecting all touches between two neurons

16

Scaling up: Distributed Spatial Index

• Load neuron metadata

• Load shape information

• Shift and rotate shapes

• Sort branches, assign to ranks

• Transfer data to ranks

17

Scaling up: Neuron Overlap

• Process batches

• Every rank does the same

• Overlapping communication 1 rank

1 rank

n ranks

18

Algorithm Summarized

1. Load one side of all neurons

• Create a distributed spatial index

2. Load batches of the other side of neurons

• Remote overlap detection

• Collect data

• Redistribute

• Write to disk

19

MPI Communication patterns

• MPI_Allreduce

• MPI_Allgather(v)

• MPI_Alltoall(v)

• MPI_(I)Probe

• MPI_Recv

• MPI_Isend

• MPI_File_write_at

• MPI_Win_(un)lock

• MPI_Fetch_and_op

Collective Operations

Individual Operations
(mostly async)

20

MPI Communication Challenges

Large amounts of data transferred

e.g. for 10 mio neurons:

1. ~2 TB total, ~500 Mb per rank via all-to-all

2. ~60 TB total distributed to other ranks

Average message size ~0.2 MB

3. ~100 TB total collected from other ranks

Communication pattern is not fixed after setup

• Need to send data to 10-40% of the ranks

• Partners vary depending on data loaded, spatial

index location

21

Profiling communication

• MPI calls take up a sizeable amount of time

• > 50% of time consumed within MPI

• ~ 20% just receiving data

22

Communication Volume

• Intrinsic imbalance

• Central ranks have higher volume

• No clear pattern

23

Algorithmic Abstraction
Whatever should go here?

24

MPI Communication Challenges

Extract the essential data transfer pattern

• Need to send data to 5-40% of the ranks

• Partners vary depending on data loaded, spatial

index location

Data transferred and partners vary depending on

problem size and number of ranks

25

Simplifying the Communication Pattern

Representative abstraction

• Remove input data dependence

• Remove one-sided MPI calls

• Send data, no computations

Knobs to tune

• Fraction of ranks

• Randomization

• Data size to be sent

26

First performance numbers

Fixed Partners Random Partners

• With fixed partners : >=256 nodes performance was significantly slower than vendor MPI

• With random partners : even more penalty if communication partners change every iteration

27

Why is the performance so low?

Timeline overview of all MPI processes

iteration

• Very unbalanced communication costs during runtime

• Allreduce calls showing high cost but doesn’t make sense

Why is there buffer allocation

related stuff here?

28

Performance after initial fixes / tuning

for(……….) {

std::vector<double> data(bufsize);
….
MPI_Isend(data.data(), …..);

}

std::vector<double> data(bufsize);

for(……….) {
….
MPI_Isend(data.data(), …..);

}

• New buffer registration during every iteration – performance degradation with buffer registration!

• Pre-allocation of buffer could solve the problem but in practice we need dynamic buffer sizes

• New version of MVAPICH2-X with fixes now provides consistent behaviour

After fixes

29

Improvements for collectives

• HPE-MPT uses proprietary implemetation of xpmem

• Different from Cray implementation which used by

other MPI implementations including MVAPICH2

• But same kernel module loaded on the nodes

• Can HPE’s xpmem and Cray’s xpmem active on the

same node?

• Currently activated Cray’s xpmem implementation on

subset of machine for testing

Comparison of MPI_Allreduce latency on 256 nodes

(40ppn, 10,240 ranks)

30

Summary

• Heavy reliance on MPI communications

• Problematic variance in data sizes and communication partners

• MVAPICH2 is a viable alternative to HPE-MPI

• Requires tuning via environment variables

• Setup dependent on use-case?

• Strong support for better performance

31

Future Work

• Complete benchmarking communication patterns, tuning of parameters

• Resume testing MVAPICH with the full version of TouchDetector

• Test integration with IME burst buffer in real-world scenario

32

Internships as well as full time positions in Scientific Computing!

https://go.epfl.ch/bluebrain-careers / Email Us !

https://go.epfl.ch/bluebrain-careers

Thank you!

