APPLICATION AND MICROBENCHMARK STUDY USING MVAPICH2 and MVAPICH2-GDR ON SDSC COMET AND EXPANSE

MVAPICH USER GROUP MEETING August 26, 2020

MAHIDHAR TATINENI SDSC

SAN DIEGO SUPERCOMPUTER CENTER

Overview

- History of InfiniBand based clusters at SDSC
- Hardware summaries for Comet and Expanse
- Application and Software Library stack on SDSC systems
- Containerized approach Singularity on SDSC systems
- Benchmark results on Comet, Expanse development system OSU Benchmarks, NEURON, RAxML, TensorFlow, QE, and BEAST are presented.

InfiniBand and MVAPICH2 on SDSC Systems

Trestles (NSF) 2011-2014

- 324 nodes, 10,368 cores
- 4-socket AMD Magny-Cours
- QDR InfiniBand
- Fat Tree topology
- MVAPICH2

Gordon (NSF) 2012-2017 GordonS (Simons Foundation) 2017- 2020

- 1024 nodes, 16,384 cores
- 2-socket Intel Sandy Bridge
- Dual Rail QDR InfiniBand
- 3-D Torus topology
- 300TB of SSD storage via iSCSI over RDMA (iSER)
- MVAPICH2 (1.9, 2.1) with 3-D torus support

COMET (NSF) 2015-Current

- 1944 compute, 72 GPU, and 4 large memory nodes.
- 2-socket Intel Haswell
- FDR InfiniBand
- Fat Tree topology
- MVAPICH2, MVAPICH2-X, MVAPICH2-GDR
- Leverage SRIOV for Virtual Clusters

Expanse (NSF) Production Fall 2020

- 728 compute, 52 GPU, and 4 large memory nodes.
- 2-socket AMD EPYC 7742, HDR100 InfiniBand
- GPU nodes with 4 V100 GPUs + NVLINK
- HDR200 Switches, Fat Tree topology with 3:1 oversubscription
- MVAPICH2, MVAPICH2-X, MVAPICH2-GDR

Comet: System Characteristics

- Total peak flops ~2.76 PF
- Dell primary integrator
 - Intel Haswell processors w/ AVX2
 - Mellanox FDR InfiniBand
- 1,944 standard compute nodes (46,656 cores)
 - Dual CPUs, each 12-core, 2.5 GHz
 - 128 GB DDR4 2133 MHz DRAM
 - 2*160GB GB SSDs (local disk)
- 72 GPU nodes
 - 36 nodes with two NVIDIA K80 cards, each with dual Kepler3 GPUs
 - 36 nodes with 4 P100 GPUs each
- 4 large-memory nodes
 - 1.5 TB DDR4 1866 MHz DRAM
 - Four Haswell processors/node; 64 cores/node

- Hybrid fat-tree topology
 - FDR (56 Gbps) InfiniBand
 - Rack-level (72 nodes, 1,728 cores) full bisection bandwidth
 - 4:1 oversubscription cross-rack
- Performance Storage (Aeon)
 - 7.6 PB, 200 GB/s; Lustre
 - Scratch & Persistent Storage segments
- Durable Storage (Aeon)
 - 6 PB, 100 GB/s; Lustre
- Home directory storage
- Gateway hosting nodes
- Virtual image repository
- 100 Gbps external connectivity to Internet2 & ESNet

Expanse Overview

- Category 1: Capacity System, NSF Award # 1928224
- PIs: Mike Norman (PI), Ilkay Altintas, Amit Majumdar, Mahidhar Tatineni, Shawn Strande
- Based on benchmarks we've run, we expect > 2x throughput over Comet, and 1-1.8x per-core performance over Comet's Haswell cores
- SDSC team has compiled and run many of the common software packages on AMD Rome based test clusters and verified performance.
- Expect a smooth transition from Comet and other systems

EXPANSE COMPUTING WITHOUT BOUNDARIES 5 PETAFLOP/S HPC and DATA RESOURCE

SDSC SAN DIEGO SUPERCOMPUTER CENTER

Expanse System Summary

System Component	Configuration			
AMD EPYC (Rome) 7742 Compute Nodes				
Node count	728			
Clock speed	2.25 GHz			
Cores/node	128			
Total # cores	93,184			
DRAM/node	256 GB			
NVMe/node	1 TB			
NVIDIA V100) GPU Nodes			
Node count	52			
Total # GPUs	208			
GPUs/node	4			
GPU Type	V100 SMX2			
Memory/GPU	32 GB			
CPU cores; DRAM; clock (per node)	40; 384 GB; 2.5 GHz;			
CPU	6248 Xeon			
NVMe/node	1.6TB			
Large Men	nory Nodes			
Number of nodes	4			
Memory per node	2 TB			
CPUs	2x AMD 7742/node;			

AMD EPYC 7742 Processor Architecture

- 8 Core Complex Dies (CCDs).
- CCDs connect to memory, I/O, and each other through the I/O Die.
- 8 memory channels per socket.
- DDR4 memory at 3200MHz.
- PCI Gen4, up to 128 lanes of high speed I/O.
- Memory and I/O can be abstracted into separate quadrants each with 2 DIMM channels and 32 I/O lanes.

Reference: https://developer.amd.com/wp-content/resources/56827-1-0.pdf

AMD EPYC 7742 Processor: Core Complex Die (CCD)

- 2 Core Complexes (CCXs) per CCD
- 4 Zen2 cores in each CCX shared a 16M L3 cache. Total of 16 x 16 = 256MB L3 cache.
- Each core includes a private 512KB L2 cache.

Reference: https://developer.amd.com/wp-content/resources/56827-1-0.pdf

AMD EPYC 7742 Processor : NUMA Nodes Per Socket

- The four logical quadrants allow the processor to be partitioned into different NUMA domains. Options set in BIOS.
- Domains are designated as NUMA per socket (NPS).
- **NPS4:** Four NUMA domains per socket is the typical HPC configuration.

https://developer.amd.com/wp-content/resources/56338_1.00_pub.pdf

L2

NPS1 Configuration

- **NPS1:** the processor is a single NUMA domain.
- Memory is interleaved across all 8 memory channels.
- Can try if workload is not very well NUMA aware

https://developer.amd.com/wp-content/resources/56338_1.00_pub.pdf

NPS2 Configuration

- Processor is partitioned into two NUMA domains in NPS2 setting.
- Half the cores and half the memory channels connected to the processor are in one NUMA domain
- Memory is interleaved across the four memory channels

https://developer.amd.com/wp-content/resources/56338_1.00_pub.pdf

то

T1

TO

T1

то

T1

то

Т1

CCX1

L2

NPS4 Configuration

- The processor is partitioned into four NUMA domains.
- Each logical quadrant is a NUMA domain.
- Memory is interleaved across the two memory channels
- PCIe devices will be local to one of four NUMA domains (the IO die that has the PCIe root for the device)
- This is the typical HPC configuration as workload is NUMA aware, ranks and memory can be pinned to cores and NUMA nodes.

https://developer.amd.com/wp-content/resources/56338_1.00_pub.pdf

GPU Node Architecture

- 4 V100 32GB SMX2 GPUs
- 384 GB RAM, 1.6 TB PCIe NVMe
- 2 Intel Xeon 6248 CPUs
- Topology:

	<u>G</u>	<u>PU0 G</u>	PU1 GPU2	GPU3	<u>mlx5_0</u>	<u>CPU Affinity</u>
GPUØ		X N	/2 NV2	NV2	SYS	0-0,4-4,8-8,12-12,16-16,20-20,24-24,28-28,32-32,36-36
GPU1	N	IV2	K NV2	NV2	SYS	0-0,4-4,8-8,12-12,16-16,20-20,24-24,28-28,32-32,36-36
GPU2	N	IV2 N	/2 X	NV2	SYS	1–1,5–5,9–9,13–13,17–17,21–21,25–25,29–29,33–33,37–37
GPU3	N	IV2 N	/2 NV2	X	SYS	1-1,5-5,9-9,13-13,17-17,21-21,25-25,29-29,33-33,37-37
mlx5_	.0 S	SYS S	rs sys	SYS	X	
X		Self				
Leger						
						the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
PHE				-		the interconnect between PCIe Host Bridges within a NUMA node a PCIe Host Bridge (typically the CPU)
PAC				· •		idges (without traversing the PCIe Host Bridge)
PI						PCIe bridge
NV#			on traversin	-		

Comet advances science and engineering discovery for a broad user base => large application and software library stack

Clockwise from upper left: IceCube Neutrino Detection; Battling Influenza; Comet Surpasses 40,000 Users; Detecting Gravitational Waves; Predicting Sea Fog; Defining a New Tree of Life In just over 4 years on Comet:

- 40,000+ Unique Users
- 1,200+ Publications
- ~2,000 Research, education and startup allocations
- 400+ Institutions
- Scientific discoveries and breakthroughs

Expanse will also support a broad user base and large application stack

Applications Stack on Comet

- Comet supports a wide array of applications and libraries as detailed below.
- Additionally, SDSC staff maintain a set of Singularity container images and provide the definition files for interested users.

Domain	Software	Domain	Software
Biochemistry	APBS, Rosetta	Computational Fluid Dynamics	OpenFOAM
	BamTools, Bali-Phy, BCFtools, BEAGLE, BEAST, BEAST 2, bedtools, bioperl, Biopython, Bismark, BLAST, BLAT, Bowtie, Bowtie 2, BWA, Celera, Cufflinks,	MPI libraries	MPICH2, MVAPICH2, Open MPI, IntelMPI
Bioinformatics	dDocent, DendroPy, Diamond, DPPDiv, Edena, FastQC, FastTree, FASTX- Toolkit, FSA, GARLI, GATK, GMAP-GSNAP, IDBA-UD, jModelTest2, MAFFT, Migrate, miRDeep2, MrBayes, PhyloBayes, Picard, PLINK, Pysam, QIIME,	Numerical libraries	ATLAS, FFTW, FSL, GDAL, GSL, JAGS, LAPACK, MKL , ParMETIS, PETSc, ScaLAPACK, SPRNG, Sundials, SuperLU, Trilinos
	RAxML, RSeQC, SAMtools, SOAPdenovo2, SOAPsnp, SPAdes, Stacks, TopHat, Trimmomatic, Trinity, Velvet, ViennaRNA	Predictive analytics	KNIME, Mahout, Weka
Compilers	GNU, Intel, Mono, PGI	Machine Learning/Deep Learning	TensorFlow, Caffe, Torch, PyTorch, Deep-Torch
File format libraries	HDF4, HDF5, NetCDF	Profiling and debugging	DDT, IDB, IPM, mpiP, PAPI, TAU, Valgrind
Interpreted languages	MATLAB, Octave, R, RStudio	Quantum chemistry	CPMD, CP2K, GAMESS, Gaussian, MOPAC, NWChem, Q-Chem, VASP,
Large-scale data-analysis	Hadoop 1, Hadoop 2 (with YARN), Spark, RDMA-Hadoop, RDMA-Spark	Quantum chemistry	VASPsol, ORCA
frameworks		Structural mechanics	Abaqus
Molecular dynamics	Amber, Gromacs, LAMMPS, NAMD	Visualization	IDL, ENVI, VisIt, VMD

Libraries and Applications Software Current Approach on SDSC systems

- Users can manage environment via modules.
- Applications packaged into "Rocks Rolls" that can built and deployed on any of the SDSC systems. Benefits wider community deploying software on their Rocks clusters.
- Efficient system administration pooling software install/testing efforts from different projects/machines – Comet benefits from work done for Trestles, Gordon, and Triton Shared Computing Cluster (TSCC).
- Users benefit from a familiar applications environment across SDSC systems => can easily transition to Comet, TSCC from older systems.
- Rolls available for Rocks community (<u>https://github.com/sdsc</u>)

Motivation for Spack based approach

- SDSC supports many systems, with thousands of users, and a broad software stack with a small user support team. The motivation is to support a large, diverse software environment as efficiently as possible.
- Leverage work of the wider Spack community for installs.
- SDSC clusters feature a broad range of CPU and GPU architectures. Helps to have ability to have multiple installs – customizing and optimizing for specific targets.
- Easier for users to do customizations chained Spack installs, environments.
- Systems like Expanse feature cloud integration, composable options. Spack based approach can help simplify the software management.

Compile and run time considerations

- Tested with AOCC, gnu, and Intel compilers. MPI versions include MVAPICH2, OpenMPI, and Intel MPI.
- Specific optimization flags:
 - AOCC, gnu: -march=znver2
 - Intel : -march=core-avx2
- Runtime considerations:
 - MPI: Use binding options such as --map-by core (OpenMPI); I_MPI_PIN, I_MPI_PIN_DOMAIN (Intel MPI); MVAPICH2 MAPPING/AFFINITY flags
 - Open MP: Use affinity options like GOMP_AFFINITY, KMP_AFFINITY
 - Hybrid MPI/OpenMP, MPI/Pthreads: Keep threads on same NUMA domain (or CCX) as parent MPI task using affinity flags or wrapped with taskset (in case of MPI/Pthreads; used in RAxML runs for example)

Singularity on SDSC systems

- Singularity has been available on Comet since 2016 and has become very popular on Comet. Expanse will also support Singularity based containers.
- Typically used for applications with newer library OS requirements than available on the HPC system – e.g. TensorFlow, PyTorch, Caffe2 (SDSC staff maintain optimal versions for Comet).
- Commercial application binaries with specific OS requirements.
- Importing singularity and docker images to enable use in a shared HPC environment. Usually this is entire workflows with a large set of tools bundled in one image.
- Training encapsulate all the requirements in an image for workshops and SDSC summer institute. Also makes it easy for users to try out outside of the training accounts on Comet.

MVAPICH2-GDR via Singularity Containers

- Installed in Singularity Container
 - NVIDIA driver, CUDA 9.2 (this can alternately be pulled in via the --nv flag)
 - Mellanox OFED stack
 - gdrcopy library *kernel module is on the host system*.
 - MVAPICH2-GDR (w/o slurm)
 - TensorFlow (conda install)
 - Horovod (pip installed)
- Other modifications:
 - Wrap ssh binary in Singularity container to run remote commands via image environment (more on this next slide)

MVAPICH2-GDR Job Launch w/ Singularity Containers

- Use mpirun/mpirun_rsh on the host (external to the image) and wrap the executable/script in Singularity "exec" command.
- Launch using mpirun_rsh within the Singularity image.
 - Needs ssh to be wrapped so that the remote command is launching in ssh environment
 - ssh binary was moved in container, and then wrapped ssh is used (to point to ssh + singularity command).

Applications and Microbenchmarks

- Typical microbenchmarks include OSU Benchmarks, IOR, STREAM, FIO, and DGEMM.
- CPU applications include GROMACS, NAMD, NEURON, OpenFOAM, Quantum Espresso, RAxML, and WRF. These applications are among the most commonly used on Comet.
- GPU benchmarks include AMBER, NAMD, BEAST, GROMACS, MXNET, PyTorch, and TensorFlow.
- **Preliminary results** for some of the benchmarks from the Expanse development system are presented. Some prior results from Comet are presented for comparison.

Comet OSU Latency Results from prior testing: MVAPICH2-GDR (v2.3.2) using Containerized Approach

TensorFlow Benchmark (tf_cnn_benchmarks)

- Interactive access to resources using "srun"
- Get an interactive shell in Singularity image environment singularity shell ./centos7mv2gdr.img
- Run benchmark using hosts (get list from Slurm)

export MV2_PATH=/opt/mvapich2/gdr/2.3.2/mcast/no-openacc/cuda9.2/mofed4.5/mpirun/gnu4.8.5 export MV2_USE_CUDA=1 export MV2_USE_MCAST=0 export MV2_GPUDIRECT_GDRCOPY_LIB=/opt/gdrcopy/lib64/libgdrapi.so export CUDA_VISIBLE_DEVICES=0,1

export MV2_SUPPORT_TENSOR_FLOW=1

\$MV2_PATH/bin/mpirun_rsh -export -np 4 comet-34-16 comet-34-16 comet-34-17 comet-34-17 python tf_cnn_benchmarks.py --model=resnet50 --variable_update=horovod > TF_2NODE_4GPU.txt

TensorFlow Benchmark Results from prior testing on Comet (GPU 0,1 on each P100 node)

Results for ResNet-50 Benchmark

TensorFlow with MVAPICH2-GDR (v2.3.2) on Popeye

• Resource for Simons Foundation hosted at SDSC

FP16, Batch Size: 256

- 360 compute nodes and 16 GPU nodes with EDR InfiniBand
- GPU Nodes: 4 NVIDIA V100 GPUs along with Intel Skylake processors.
- Expanse GPU nodes are projected to show similar performance

			-				-			
GPUs	Images /sec	Scaling		GPUs	Images /sec	Scaling		GPUs	Images /sec	Scaling
1	775	1		1	383	1		1	360	1
2	1597	2.06		2	758	1.98		2	732	2.03
4	2833	3.66		4	1505	3.93		4	1421	3.95
8	5357	6.91		8	2995	7.82		8	2757	7.66

FP32, Batch Size: 256

FP32, Batch Size: 128

Results for ResNet-50 Benchmark

Initial Benchmarks of Applications on AMD Rome Hardware

- Benchmarked CPU Applications: GROMACS, NAMD, NEURON, OpenFOAM, Quantum Espresso, RAxML, WRF, and ASTRAL.
- MPI, Hybrid MPI/OpenMP, and Hybrid MPI/Pthreads cases. Compilers used included AOCC, gnu, and Intel.
- Early results on test clusters show performance ranges from matching on a per core basis to 1.8X faster on a per core basis compared to Comet.
- Overall throughput is expected to be easily more than 2X of Comet.
- Expanse hardware is currently being installed at SDSC more benchmarks will be performed in the near future!
- Results from Expanse development node testing are presented in the next few slides. Single socket AMD EPYC 7742 processors + HDR100 on node + HDR200 switch.

RAxML Benchmark: All-in-one analysis: 218 taxa, 2,294 DNA characters, 1,846 patterns, 100 bootstraps (MPI + Pthreads) Build: Intel Compiler + MVAPICH2/2.3.4 (Spack installed)

	Total tasks	Comet (s)	Stampede2 (s)	Expanse-Dev (s)
	10 (5 MPI x 2 Pthreads)	925	610	514
	20 (5 MPI x 4 Pthreads)	542	363	292
	30 (10 MPI x 3 Pthreads)	433	332	247
	40 (10 MPI x 4 Pthreads)	341	300	201
00000000000000000000000000000000000000	1111100.0%] 17 [1111100.0%] 33 [1111100.0%] 34 [1111100.0%] 34 [1111100.0%] 34 [1111100.0%] 34 [1111100.0%] 35 [1111100.0%] 35 [1111100.0%] 35 [1111100.0%] 36 [1111100.0%] 36 [1111100.0%] 37 [1111100.0%] 37 [1111100.0%] 37 [1111100.0%] 38 [1111100.0%] 39 [1111100.0%] 39 [1111100.0%] 23 [0.0%] 40 [1111100.0%] 25 [0.0%] 41 [1111100.0%] 26 [0.0%] 42 [1111100.0%] 42 [1111100.0%] 42 [1111100.0%] 42 [1111100.0%] 44 [1111100.0%] 44 [1111100.0%] 44 [1111100.0%] 44 [1111100.0%] 44 [1111100.0%] 44 [1111100.0%] 44 [111100.0%] 44 [1111100.0%] 44 [1111100.0%] 44 [1111100.0%] 44 [1111100.0%] 44 [1111100.0%] 44 [1111100.0%] 44 [1111100.0%] 44 [1111100.0%] 44 [1111100.0%] 44 [1111100.0%] 44 [1111100.0%	0.0% 49 [0.0%] 0.0% 50 [0.0%] 0.0% 51 [0.0%] 0.0% 51 [0.0%] 0.0% 51 [0.0%] 0.0% 52 [0.0%] 0.0% 53 [0.0%] 0.0% 54 [0.7%] 0.0% 55 [0.0%] 0.0% 55 [0.0%] 0.0% 56 [0.0%] 0.0% 57 [0.0%] 0.0% 58 [0.0%]	C ⁿ² . ^{III} [1 +[7] +[7] +[7] +[7] +[06] ,083] ^{IIII} 18 [7] +[7] +[7] +[7] +[7] +[7] +[7] +[7]	Preficience 0.0% Preficience 33 Preficience 34 Preficience 35 Preficience 36 Preficience 36 Preficience 36 Preficience 36 Preficience 36 Preficience 37 Preficience 38 Preficience 39 Preficience 36 Preficience 37 Preficience 37 Preficience 37

K4AP>++||||||**100.0%**

2e=68100

6S-TH

10

11

13

16

Mem

Swp

0.0%

0.0% 2.0% 0.0%

0.0%] 0.0%] 0.0%] 0.0%] 0.0%] 0.0%]

0.0%

NEURON Benchmark:

Large-scale model of olfactory bulb: 10,500 cells, 40,000 timesteps Build: Intel + Intel MPI compilers

Total #MPI Tasks	Expanse-Dev (Compact)	Expanse-Dev (Best Memory BW)
16	5004	1781
32	2336	1321
64	1130	1130

SAN DIEGO SUPERCOMPUTER CENTER

NEURON Benchmark:

Large-scale model of olfactory bulb: 10,500 cells, 40K timesteps Build: Intel + Intel MPI compilers, Results from Dell Test Cluster w/EDR IB

#MPI Tasks	Comet	Test Cluster AMD Rome, EDR IB
96	522 s	525 s
192	264 s	220 s
384	120 s	68 s
768	53 s	35 s

Quantum Espresso Benchmark

PSIWAT: gold + thiols + water 4k points, 586 atoms, 2,552 electrons, 5 iterations Build: Intel + Intel MPI compilers, Results from Dell Test Cluster w/EDR IB

#MPI Tasks	Comet	Test Cluster AMD Rome, EDR IB
96	1498 s	1263 s
192	776 s	534 s
384	437 s	318 s

BEAST v1.8.2 + BEAGLE v3.1.2 (GPU) 104 taxa, 131,706 DNA characters, 83,144 patterns, 100k steps

Build: Intel Compiler + Threads + CUDA/10.2.89 Spack based build for BEAST and BEAGLE

GPUs	Comet (P100 nodes)	Expanse Development (V100s)
1	217.9 s	153.1 s
4	88.6 s	64.4 s

Important Events/Dates

- First XRAC submissions complete. Review Aug 31, allocations start Oct 1, 2020.
- Upcoming XRAC Allocation submission period: Sept 15 Oct 15, 2020. Review of these submissions will be in early December and allocations will start January 1, 2021.
- Summer 2020: Hardware delivery, installation, application stack development, and initial testing (ongoing)
- Expanse Early Access Period: September 2020
- Expanse 101: Accessing and running jobs: Late September 2020
- Training for Comet to Expanse transition: October 2020
- Start of Expanse production period: October 2020
- Follow all things Expanse at <u>https://expanse.sdsc.edu</u>.

Allocations

- Three resources related to Expanse:
 - **Expanse**: For allocations on compute (AMD Rome) part of the system.
 - Expanse GPU: For allocations on the GPU (V100) part of the system.
 - **SDSC Expanse Projects Storage**: Allocations on Expanse projects storage space* (will be mounted on both compute and GPU part of system).
- Allocation request submission link:
 - <u>https://portal.xsede.org/submit-request</u>
 - Next allocation submission window: Sept 15 Oct 15, 2020.

*Total space available will be 5PB (The 12 PB Lustre based filesystem will be split between projects and scratch areas)

Summary

- Expanse will provide a substantial increase in the performance and throughput compared to the highly successful, NSF-funded Comet supercomputer.
- Expanse features 728, 2-socket AMD-based compute nodes (2.25 GHz EPYC; 64cores/socket) and 52 4-way GPU nodes based on V100 w/NVLINK.
- Based on benchmarks we've run, we expect > 2x throughput over Comet, and 1-1.8x per-core performance over Comet's Haswell cores.
- Big thanks to Dr. Panda and MVAPICH team for providing MPI implementations for various SDSC systems over the years – Trestles, Gordon, and Comet + *Expanse upcoming!*

NSF Award# 1341698, Gateways to Discovery: Cyberinfrastructure for the Long Tail of Science PI: Michael Norman Co-PIs: Shawn Strande, Amit Majumdar, Robert Sinkovits, Mahidhar Tatineni SDSC Project in Collaboration with Indiana University (led by Geoffrey Fox) NSF Award #1565336, SHF: Large: Collaborative Research: Next Generation Communication Mechanisms exploiting Heterogeneity, Hierarchy and Concurrency for Emerging HPC Systems Collaborative project with OSU (Lead Institution, PI: DK Panda), OSC, SDSC, TACC

NSF Award # 1928224, Category 1: Capacity System: Computing Without Boundaries: Cyberinfrastructure for the Long Tail of Science *PI: Mike Norman, CoPIs: Ilkay Altintas, Amit Majumdar, Mahidhar Tatineni, Shawn Strande*

