
How to Boost the Performance of Your HPC/AI Applications with
MVAPICH2 Libraries?

A Tutorial at MUG’20

by

The MVAPICH Team

The Ohio State University

http://mvapich.cse.ohio-state.edu/

Latest version of the slides available at

http://cse.osu.edu/~subramon/mug20-mvapich2-tutorial.pdf

http://mvapich.cse.ohio-state.edu/
http://cse.osu.edu/~subramon/mug20-mvapich2-tutorial.pdf

MUG’20 2Network Based Computing Laboratory

Overview of the MVAPICH2 Project

• High Performance open-source MPI Library

• Support for multiple interconnects

– InfiniBand, Omni-Path, Ethernet/iWARP, RDMA over Converged Ethernet (RoCE), and AWS EFA

• Support for multiple platforms

– x86, OpenPOWER, ARM, Xeon-Phi, GPGPUs (NVIDIA and AMD (upcoming))

• Started in 2001, first open-source version demonstrated at SC ‘02

• Supports the latest MPI-3.1 standard

• http://mvapich.cse.ohio-state.edu

• Additional optimized versions for different systems/environments:

– MVAPICH2-X (Advanced MPI + PGAS), since 2011

– MVAPICH2-GDR with support for NVIDIA GPGPUs, since 2014

– MVAPICH2-MIC with support for Intel Xeon-Phi, since 2014

– MVAPICH2-Virt with virtualization support, since 2015

– MVAPICH2-EA with support for Energy-Awareness, since 2015

– MVAPICH2-Azure for Azure HPC IB instances, since 2019

– MVAPICH2-X-AWS for AWS HPC+EFA instances, since 2019

• Tools:

– OSU MPI Micro-Benchmarks (OMB), since 2003

– OSU InfiniBand Network Analysis and Monitoring (INAM), since 2015

• Used by more than 3,100 organizations in 89 countries

• More than 820,000 (> 0.8 million) downloads from the

OSU site directly

• Empowering many TOP500 clusters (June ‘20 ranking)

– 4th , 10,649,600-core (Sunway TaihuLight) at NSC, Wuxi, China

– 8th, 448, 448 cores (Frontera) at TACC

– 12th, 391,680 cores (ABCI) in Japan

– 18th, 570,020 cores (Nurion) in South Korea and many others

• Available with software stacks of many vendors and Linux

Distros (RedHat, SuSE, OpenHPC, and Spack)

• Partner in the 8th ranked TACC Frontera system

• Empowering Top500 systems for more than 15 years

http://mvapich.cse.ohio-state.edu/

MUG’20 3Network Based Computing Laboratory

Architecture of MVAPICH2 Software Family (for HPC and DL)

High Performance Parallel Programming Models

Message Passing Interface
(MPI)

PGAS
(UPC, OpenSHMEM, CAF, UPC++)

Hybrid --- MPI + X
(MPI + PGAS + OpenMP/Cilk)

High Performance and Scalable Communication Runtime
Diverse APIs and Mechanisms

Point-to-

point

Primitives

Collectives

Algorithms

Energy-

Awareness

Remote

Memory

Access

I/O and

File Systems

Fault

Tolerance
Virtualization

Active

Messages
Job Startup

Introspectio

n & Analysis

Support for Modern Networking Technology
(InfiniBand, iWARP, RoCE, Omni-Path)

Support for Modern Multi-/Many-core Architectures
(Intel-Xeon, OpenPower, Xeon-Phi, ARM, NVIDIA GPGPU)

Transport Protocols Modern Features

RC XRC UD DC SHARP2* ODP
SR-

IOV

Multi

Rail

Transport Mechanisms

Shared

Memory
CMA IVSHMEM

Modern Features

MCDRAM* NVLink CAPI*

* Upcoming

XPMEM

MUG’20 4Network Based Computing Laboratory

• Rigorous Q&A procedure before making a release

– Exhaustive unit testing

– Various test procedures on diverse range of platforms and interconnects

– Test 19 different benchmarks and applications including, but not limited to

• OMB, IMB, MPICH Test Suite, Intel Test Suite, NAS, Scalapak, and SPEC

– Spend about 18,000 core hours per commit

– Performance regression and tuning

– Applications-based evaluation

– Evaluation on large-scale systems

• All versions (alpha, beta, RC1 and RC2) go through the above testing

Production Quality Software Design, Development and Release

MUG’20 5Network Based Computing Laboratory

• Test OMB, IMB, MPICH Test Suite, Intel Test Suite, NAS, Scalapak, and SPEC

• Tests done for each build done build “buildbot”

• Test done for various different combinations of environment variables meant to

trigger different communication paths in MVAPICH2

Automated Procedure for Testing Functionality

Summary of an individual test Details of individual combinations in

one test

Summary of all tests for one commit

MUG’20 6Network Based Computing Laboratory

• Automated method to identify

performance regression between

different commits

• Tests different MPI primitives

– Point-to-point; Collectives; RMA

• Works with different

– Job Launchers/Schedulers

• SLURM, PBS/Torque, JSM

– Works with different interconnects

• Works on multiple HPC systems

• Works on CPU-based and GPU-based

systems

Scripts to Determine Performance Regression

MUG’20 7Network Based Computing Laboratory

Designing (MPI+X) for Exascale
• Scalability for million to billion processors

– Support for highly-efficient inter-node and intra-node communication (both two-sided and one-sided)

• Scalable Collective communication
– Offloaded

– Non-blocking

– Topology-aware

• Balancing intra-node and inter-node communication for next generation multi-/many-core
(128-1024 cores/node)

– Multiple end-points per node

• Support for efficient multi-threading

• Integrated Support for GPGPUs and Accelerators

• Fault-tolerance/resiliency

• QoS support for communication and I/O

• Support for Hybrid MPI+PGAS programming

• MPI + OpenMP, MPI + UPC, MPI + OpenSHMEM, CAF, MPI + UPC++…

• Virtualization

• Energy-Awareness

MUG’20 8Network Based Computing Laboratory

MVAPICH2 Software Family

Requirements Library

MPI with Support for InfiniBand, Omni-Path, Ethernet/iWARP and, RoCE (v1/v2) MVAPICH2

Optimized Support for Microsoft Azure Platform with InfiniBand MVAPICH2-Azure

Advanced MPI features/support (UMR, ODP, DC, Core-Direct, SHArP, XPMEM),
OSU INAM (InfiniBand Network Monitoring and Analysis),

MVAPICH2-X

Advanced MPI features (SRD and XPMEM) with support for Amazon Elastic Fabric
Adapter (EFA)

MVAPICH2-X-AWS

Optimized MPI for clusters with NVIDIA GPUs and for GPU-enabled Deep Learning
Applications

MVAPICH2-GDR

Energy-aware MPI with Support for InfiniBand, Omni-Path, Ethernet/iWARP and,
RoCE (v1/v2)

MVAPICH2-EA

MPI Energy Monitoring Tool OEMT

InfiniBand Network Analysis and Monitoring OSU INAM

Microbenchmarks for Measuring MPI and PGAS Performance OMB

MUG’20 9Network Based Computing Laboratory

• Job start-up

• Transport Type Selection

• Process Mapping and Point-to-point Intra-node Protocols

• Collectives

Overview of MVAPICH2 Features

MUG’20 10Network Based Computing Laboratory

• Near-constant MPI and OpenSHMEM

initialization time at any process count

• 10x and 30x improvement in startup time

of MPI and OpenSHMEM respectively at

16,384 processes

• Memory consumption reduced for remote

endpoint information by O(processes per

node)

• 1GB Memory saved per node with 1M

processes and 16 processes per node

Towards High Performance and Scalable Startup at Exascale

P M

O

Job Startup Performance

M
em

o
ry

 R
eq

u
ir

ed
 t

o
 S

to
re

En

d
p

o
in

t
In

fo
rm

at
io

n

a b c d

eP

M

PGAS – State of the art

MPI – State of the art

O PGAS/MPI – Optimized

PMIX_Ring

PMIX_Ibarrier

PMIX_Iallgather

Shmem based PMI

b

c

d

e

a
On-demand
Connection

On-demand Connection Management for OpenSHMEM and OpenSHMEM+MPI. S. Chakraborty, H. Subramoni, J. Perkins, A. A. Awan, and D K

Panda, 20th International Workshop on High-level Parallel Programming Models and Supportive Environments (HIPS ’15)

PMI Extensions for Scalable MPI Startup. S. Chakraborty, H. Subramoni, A. Moody, J. Perkins, M. Arnold, and D K Panda, Proceedings of the 21st

European MPI Users' Group Meeting (EuroMPI/Asia ’14)

Non-blocking PMI Extensions for Fast MPI Startup. S. Chakraborty, H. Subramoni, A. Moody, A. Venkatesh, J. Perkins, and D K Panda, 15th

IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid ’15)

SHMEMPMI – Shared Memory based PMI for Improved Performance and Scalability. S. Chakraborty, H. Subramoni, J. Perkins, and D K Panda,

16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid ’16)

a

b

c d

e

MUG’20 11Network Based Computing Laboratory

Startup Performance on TACC Frontera

• MPI_Init takes 3.9 seconds on 57,344 processes on 1,024 nodes
• All numbers reported with 56 processes per node

4.5s

3.9s

New designs available since MVAPICH2-2.3.2

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

56 112 224 448 896 1792 3584 7168 14336 28672 57344

Ti
m

e
 T

ak
e

n
 (

M
il

lis
e

co
n

d
s)

Number of Processes

MPI_Init on Frontera

Intel MPI 2019

MVAPICH2 2.3.2

MUG’20 12Network Based Computing Laboratory

Using SLURM as launcher

• Use PMI2

– ./configure --with-pm=slurm --with-pmi=pmi2

– srun --mpi=pmi2 ./a.out

• Use PMI Extensions

– Patch for SLURM available at

http://mvapich.cse.ohio-state.edu/download/

– Patches available for SLURM 15, 16, and 17

– PMI Extensions are automatically detected by

MVAPICH2

Using mpirun_rsh as launcher

• MV2_MT_DEGREE

– degree of the hierarchical tree used by

mpirun_rsh

• MV2_FASTSSH_THRESHOLD

– #nodes beyond which hierarchical-ssh scheme is

used

• MV2_NPROCS_THRESHOLD

– #nodes beyond which file-based communication

is used for hierarchical-ssh during start up

How to Get the Best Startup Performance with MVAPICH2?

• MV2_HOMOGENEOUS_CLUSTER=1 //Set for homogenous clusters

• MV2_ON_DEMAND_UD_INFO_EXCHANGE=1 //Enable UD based address exchange

http://mvapich.cse.ohio-state.edu/download/

MUG’20 13Network Based Computing Laboratory

Transport Protocol Selection in MVAPICH2

• Both UD and RC/XRC have benefits

• Hybrid for the best of both

• Enabled by configuring MVAPICH2 with the

–enable-hybrid

• Available since MVAPICH2 1.7 as integrated

interface

0

2

4

6

128 256 512 1024

Ti
m

e
 (

u
s)

Number of Processes

UD Hybrid RC

26% 40% 30%38%

• Refer to Running with Hybrid UD-RC/XRC section of MVAPICH2 user guide for more information

• http://mvapich.cse.ohio-state.edu/static/media/mvapich/mvapich2-2.3a-userguide.html#x1-690006.11

Parameter Significance Default Notes

MV2_USE_UD_HYBRID • Enable / Disable use of UD transport
in Hybrid mode

Enabled • Always Enable

MV2_HYBRID_ENABLE_THRESHOLD_SIZE • Job size in number of processes beyond which
hybrid mode will be enabled

1024 • Uses RC/XRC connection until
job size < threshold

MV2_HYBRID_MAX_RC_CONN • Maximum number of RC or XRC
connections created per process
• Limits the amount of connection memory

64 • Prevents HCA QP cache
thrashing

Performance with HPCC Random Ring

MUG’20 14Network Based Computing Laboratory

Process Mapping support in MVAPICH2

Process-Mapping support in

MVAPICH2

(available since v1.4)

bunch

(Default)
scatter

core

(Default)
socket numanode

Preset Binding Policies User-defined binding

MPI rank-to-core binding

MVAPICH2 detects processor architecture at job-launch

Policy

Granularity

hybrid

MUG’20 15Network Based Computing Laboratory

Preset Process-binding Policies – Bunch

• “Core” level “Bunch” mapping (Default)

– MV2_CPU_BINDING_POLICY=bunch

• “Socket/Numanode” level “Bunch” mapping

– MV2_CPU_BINDING_LEVEL=socket MV2_CPU_BINDING_POLICY=bunch

MUG’20 16Network Based Computing Laboratory

Preset Process-binding Policies – Scatter

• “Core” level “Scatter” mapping

– MV2_CPU_BINDING_POLICY=scatter

• “Socket/Numanode” level “Scatter” mapping

– MV2_CPU_BINDING_LEVEL=socket MV2_CPU_BINDING_POLICY=scatter

MUG’20 17Network Based Computing Laboratory

• A new process binding policy – “hybrid”

– MV2_CPU_BINDING_POLICY = hybrid

• A new environment variable for co-locating Threads with MPI Processes

– MV2_THREADS_PER_PROCESS = k

– Automatically set to OMP_NUM_THREADS if OpenMP is being used

– Provides a hint to the MPI runtime to spare resources for application threads.

• New variable for threads bindings with respect to parent process and architecture

– MV2_HYBRID_BINDING_POLICY= {bunch|scatter|linear|compact|spread|numa}

• Linear – binds MPI ranks and OpenMP threads sequentially (one after the other)

– Recommended to be used on non-hyper threaded systems with MPI+OpenMP

• Compact – binds MPI rank to physical-core and locates respective OpenMP threads on hardware threads

– Recommended to be used on multi-/many-cores e.g., KNL, POWER8, and hyper-threaded Xeon, etc.

Process and thread binding policies in hybrid MPI+Threads

MUG’20 18Network Based Computing Laboratory

Binding Example in Hybrid (MPI+Threads)

• MPI Processes = 4, OpenMP Threads per Process = 4

• MV2_CPU_BINDING_POLICY = hybrid

• MV2_THREADS_PER_PROCESS = 4

• MV2_THREADS_BINDING_POLICY = compact

Core0

HWT HWT

HWT

Core2

HWT HWT

HWT

Core1

HWT HWT

HWT

Core3

HWT HWT

HWT

Core0

HWT HWT

HWT

HWT HWT

HWT

Core1

HWT HWT

HWT

Core3

HWT HWT

HWT

Rank0 Rank1

Rank2 Rank3

Core2

• Detects hardware-threads support in architecture

• Assigns MPI ranks to physical cores and respective OpenMP Threads to HW threads

MUG’20 19Network Based Computing Laboratory

Binding Example in Hybrid (MPI+Threads) ---- Cont’d

• MPI Processes = 4, OpenMP Threads per Process = 4

• MV2_CPU_BINDING_POLICY = hybrid

• MV2_THREADS_PER_PROCESS = 4

• MV2_THREADS_BINDING_POLICY = linear

Core0

Core2 Core3

Core1

Core8

Core10 Core11

Core9

Core4

Core6 Core7

Core5

Core12

Core14 Core15

Core13

• MPI Rank-0 with its 4-OpenMP threads gets bound on Core-0 through Core-3, and so on

Core0

Core2 Core3

Core1

Core8

Core10 Core11

Core9

Core4

Core6 Core7

Core5

Core12

Core14 Core15

Core13

Rank0 Rank1

Rank3Rank2

MUG’20 20Network Based Computing Laboratory

Core0

Core2 Core3

Core1

Core8

Core10 Core11

Core9

Core4

Core6 Core7

Core5

Core12

Core14 Core15

Core13

Core0

Core2 Core3

Core1

Core10 Core11

Core9

Core4

Core6 Core7

Core5

Core12

Core14 Core15

Core13

rank1

numa node 0

numa node 1

rank0

numa node 0

numa node 1

NUMA

numa node 3, 4, …, 7 numa node 3, 4, …, 7
rank2 rank10

…

rank8

rank9

Core8

Binding Example in Hybrid (MPI+Threads) ---- Cont’d

• MPI Processes = 16

• Example: AMD EPYC 7551 processor with 8 NUMA domains

• MV2_CPU_BINDING_POLICY = hybrid

• MV2_HYBRID_BINDING_POLICY = numa

MUG’20 21Network Based Computing Laboratory

User-Defined Process Mapping

• User has complete-control over process-mapping

• To run 4 processes on cores 0, 1, 4, 5:

– $ mpirun_rsh -np 4 -hostfile hosts MV2_CPU_MAPPING=0:1:4:5 ./a.out

• Use ‘,’ or ‘-’ to bind to a set of cores:

– $mpirun_rsh -np 64 -hostfile hosts MV2_CPU_MAPPING=0,2-4:1:5:6 ./a.out

• Is process binding working as expected?

– MV2_SHOW_CPU_BINDING=1

• Display CPU binding information

• Launcher independent

• Example

– MV2_SHOW_CPU_BINDING=1 MV2_CPU_BINDING_POLICY=scatter

-------------CPU AFFINITY-------------

RANK:0 CPU_SET: 0

RANK:1 CPU_SET: 8

• Refer to Running with Efficient CPU (Core) Mapping section of MVAPICH2 user guide for more information

• http://mvapich.cse.ohio-state.edu/static/media/mvapich/mvapich2-2.3rc1-userguide.html#x1-600006.5

http://mvapich.cse.ohio-state.edu/static/media/mvapich/mvapich2-2.3a-userguide.html

MUG’20 22Network Based Computing Laboratory

Collective Communication in MVAPICH2

Run-time flags:
All shared-memory based collectives : MV2_USE_SHMEM_COLL (Default: ON)
Hardware Mcast-based collectives : MV2_USE_MCAST (Default : OFF)
CMA and XPMEM-based collectives are in MVAPICH2-X

Multi/Many-Core
Aware Designs

Blocking and Non-Blocking
Collective Algorithms in MV2

Conventional
(Flat)

Inter-Node
Communication

Intra-Node
Communication

Point to Point
(SHMEM,

LiMIC, CMA*,
XPMEM*)

Direct Shared
Memory

Direct Kernel
Assisted
(CMA*,

XPMEM*, LiMIC)

Point to
Point

Hardware
Multicast

SHARP RDMA

Designed for Performance & Overlap

MUG’20 23Network Based Computing Laboratory

Hardware Multicast-aware MPI_Bcast on TACC Stampede

0
5

10
15
20
25
30
35
40

2 8 32 128 512

La
te

n
cy

 (
u

s)

Message Size (Bytes)

Small Messages (102,400 Cores)

Default

Multicast

0
50

100
150
200
250
300
350
400
450

2K 8K 32K 128K

La
te

n
cy

 (
u

s)

Message Size (Bytes)

Large Messages (102,400 Cores)

Default

Multicast

0

5

10

15

20

25

30

La
te

n
cy

 (u
s)

Number of Nodes

16 Byte Message

Default

Multicast

0

50

100

150

200

La
te

n
cy

 (u
s)

Number of Nodes

32 KByte Message

Default

Multicast

• MCAST-based designs improve latency of MPI_Bcast by up to 85%

• Use MV2_USE_MCAST=1 to enable MCAST-based designs

80%

85%

MUG’20 24Network Based Computing Laboratory

MPI_Scatter - Benefits of using Hardware-Mcast

0
2
4
6
8

10
12
14
16
18
20

1 2 4 8 16

La
te

n
cy

 (
u

se
c)

Message Length (Bytes)

512 Processes

Scatter-Default Scatter-Mcast

0

5

10

15

20

25

30

1 2 4 8 16

La
te

n
cy

 (
u

se
c)

Message Length (Bytes)

1,024 Processes

• Enabling MCAST-based designs for MPI_Scatter improves small message up to 75%

57%
75%

Parameter Description Default

MV2_USE_MCAST = 1 Enables hardware Multicast features Disabled

--enable-mcast Configure flag to enable Enabled

MUG’20 25Network Based Computing Laboratory

▪ Management and execution of MPI operations in the network

by using SHArP

▪ Manipulation of data while it is being transferred in the switch

network

▪ SHArP provides an abstraction to realize the reduction

operation

▪ Defines Aggregation Nodes (AN), Aggregation Tree, and

Aggregation Groups

▪ AN logic is implemented as an InfiniBand Target Channel Adapter

(TCA) integrated into the switch ASIC *

▪ Uses RC for communication between ANs and between AN and

hosts in the Aggregation Tree *

Offloading with Scalable Hierarchical Aggregation Protocol (SHArP)

Physical Network Topology*

Logical SHArP Tree** Bloch et al. Scalable Hierarchical Aggregation Protocol (SHArP): A Hardware Architecture for Efficient Data Reduction

More details in the tutorial "SHARPv2: In-Network Scalable Streaming Hierarchical

Aggregation and Reduction Protocol" by Devendar Bureddy (NVIDIA/Mellanox)

mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu

MUG’20 26Network Based Computing Laboratory

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(4,28) (8,28) (16,28)

La
te

n
cy

 (s
ec

o
n

d
s)

(Number of Nodes, PPN)

MVAPICH2

MVAPICH2-SHArP

Benefits of SHARP Allreduce at Application Level

12%

Avg DDOT Allreduce time of HPCG

SHARP support available since MVAPICH2 2.3a

Parameter Description Default

MV2_ENABLE_SHARP=1 Enables SHARP-based collectives Disabled

--enable-sharp Configure flag to enable SHARP Disabled

• Refer to Running Collectives with Hardware based SHARP support section of MVAPICH2 user guide for more information

• http://mvapich.cse.ohio-state.edu/static/media/mvapich/mvapich2-2.3-userguide.html#x1-990006.26

More details in the talk "Impact of SHARP and Adaptive Routing on

Applications on Frontera" by John Cazes (TACC) on Wednesday

(08/26/2020) from 12:00 PM - 12:30 PM EDT

http://mvapich.cse.ohio-state.edu/static/media/mvapich/mvapich2-2.3-userguide.html

MUG’20 27Network Based Computing Laboratory

MVAPICH2 Software Family

Requirements Library

MPI with Support for InfiniBand, Omni-Path, Ethernet/iWARP and, RoCE (v1/v2) MVAPICH2

Optimized Support for Microsoft Azure Platform with InfiniBand MVAPICH2-Azure

Advanced MPI features/support (UMR, ODP, DC, Core-Direct, SHArP, XPMEM),
OSU INAM (InfiniBand Network Monitoring and Analysis),

MVAPICH2-X

Advanced MPI features (SRD and XPMEM) with support for Amazon Elastic Fabric
Adapter (EFA)

MVAPICH2-X-AWS

Optimized MPI for clusters with NVIDIA GPUs and for GPU-enabled Deep Learning
Applications

MVAPICH2-GDR

Energy-aware MPI with Support for InfiniBand, Omni-Path, Ethernet/iWARP and,
RoCE (v1/v2)

MVAPICH2-EA

MPI Energy Monitoring Tool OEMT

InfiniBand Network Analysis and Monitoring OSU INAM

Microbenchmarks for Measuring MPI and PGAS Performance OMB

MUG’20 28Network Based Computing Laboratory

MVAPICH2-X for MPI and Hybrid MPI + PGAS Applications

• Current Model – Separate Runtimes for OpenSHMEM/UPC/UPC++/CAF and MPI
– Possible deadlock if both runtimes are not progressed

– Consumes more network resource

• Unified communication runtime for MPI, UPC, UPC++, OpenSHMEM, CAF

– Available with since 2012 (starting with MVAPICH2-X 1.9)

– http://mvapich.cse.ohio-state.edu

http://mvapich.cse.ohio-state.edu/overview/mvapich2x

MUG’20 29Network Based Computing Laboratory

• Released on 06/08/2020

• Major Features and Enhancements

– MPI Features

• Based on MVAPICH2 2.3.4

– OFA-IB-CH3, OFA-IB-RoCE, PSM-CH3, and PSM2-CH3 interfaces

• Enhanced point-to-point and collective tunings for AMD EPYC,

Catalyst@EPCC, Mayer@Sandia, Auzre@Microsoft, AWS, and

Frontera@TACC

– MPI (Advanced) Features

• Optimized support for large message MPI_Allreduce and MPI_Reduce

– OFA-IB-CH3 and OFA-IB-RoCE interfaces

• Improved performance for communication using DC transport

– OFA-IB-CH3 interface

• Enhanced support for AWS EFA adapter and SRD transport protocol

– OFA-IB-CH3 interface

• Enhanced point-to-point and collective tuning for AWS EFA adapter and SRD

transport protocol

– OFA-IB-CH3 interface

• Add multiple MPI_T PVARs and CVARs for point-to-point and collective

operations

MVAPICH2-X 2.3

• Tuning for MPI collective operations for Intel Broadwell, Intel

CascadeLake, Azure HB (AMD EPYC), and Azure HC (Intel Skylake)

systems

– OFA-IB-CH3, OFA-IB-RoCE, PSM-CH3, and PSM2-CH3 interface

– Support for OSU InfiniBand Network Analysis and Management

(OSU INAM) Tool v0.9.6

– Unified Runtime Features

• Based on MVAPICH2 2.3.4 (OFA-IB-CH3 interface). All the runtime

features enabled by default in OFA-IB-CH3 and OFA-IB-RoCE interface

of MVAPICH2 2.3.4 are available in MVAPICH2-X 2.3

MUG’20 30Network Based Computing Laboratory

MVAPICH2-X Feature Table

• * indicates disabled by default at runtime. Must use appropriate environment variable in MVAPICH2-X user guide to enable it.
• + indicates features only tested with InfiniBand network

Features for InfiniBand (OFA-IB-CH3) and RoCE (OFA-RoCE-CH3) Basic Basic-XPMEM Intermediate Advanced

Architecture Specific Point-to-point and Collective Optimizations
for x86, OpenPOWER, and ARM

Optimized Support for PGAS models
(UPC, UPC++, OpenSHMEM, CAF) and Hybrid
MPI+PGAS models

CMA-Aware Collectives

Optimized Asynchronous Progress*

InfiniBand Hardware Multicast-based MPI_Bcast*+

OSU InfiniBand Network Analysis and Monitoring (INAM)*+

XPMEM-based Point-to-Point and Collectives

Direct Connected (DC) Transport Protocol*+

User mode Memory Registration (UMR)*+

On Demand Paging (ODP)*+

Core-direct based Collective Offload*+

SHARP-based Collective Offload*+

MUG’20 31Network Based Computing Laboratory

• Direct Connect (DC) Transport
– Available from MVAPICH2-X 2.3rc1 onwards

• CMA-based Collectives
– Available from MVAPICH2-X 2.3rc1 onwards

• Asynchronous Progress
– Available from MVAPICH2-X 2.3rc1 onwards

• XPMEM-based Reduction Collectives
– Available from MVAPICH2-X 2.3rc1 onw ards

• XPMEM-based Non-reduction Collectives
– Available from MVAPICH2-X 2.3rc2 onw ards

Overview of MVAPICH2-X Features

MUG’20 32Network Based Computing Laboratory

Impact of DC Transport Protocol on Neuron

• Up to 76% benefits over MVAPICH2 for Neuron
using Direct Connected transport protocol at
scale

– VERSION 7.6.2 master (f5a1284) 2018-08-15

• Numbers taken on bbpv2.epfl.ch
– Knights Landing nodes with 64 ppn

– ./x86_64/special -mpi -c stop_time=2000 -c is_split=1 parinit.hoc

– Used “runtime” reported by execution to measure performance

• Environment variables used
– MV2_USE_DC=1

– MV2_NUM_DC_TGT=64

– MV2_SMALL_MSG_DC_POOL=96

– MV2_LARGE_MSG_DC_POOL=96

– MV2_USE_RDMA_CM=0

0

200

400

600

800

1000

1200

1400

1600

512 1024 2048 4096

Ex
ec

u
ti

o
n

 T
im

e
(s

)

No. of Processes

MVAPICH2 MVAPICH2-X

Neuron with YuEtAl2012

10%

76%

39%

Overhead of RC protocol for

connection establishment and

communication

Available from MVAPICH2-X 2.3rc2 onwards

More details in talk "Building Brain Circuits: Experiences with shuffling

terabytes of data over MPI" by Matthias Wolf, Blue Brain Project, EPFL,

Switzerland on Wednesday (08/26/2020) from 1:30 PM - 2:00 PM EDT.

MUG’20 33Network Based Computing Laboratory

Optimized CMA-based Collectives for Large Messages

1

10

100

1000

10000

100000

1000000
1K 2K 4K 8K 16

K

32
K

64
K

12
8K

25
6K

51
2K 1M 2M 4M

Message Size

KNL (2 Nodes, 128 Procs)

MVAPICH2-2.3a

Intel MPI 2017

OpenMPI 2.1.0

Tuned CMA

La
te

nc
y

(u
s)

1

10

100

1000

10000

100000

1000000

Message Size

KNL (4 Nodes, 256 Procs)

MVAPICH2-2.3a

Intel MPI 2017

OpenMPI 2.1.0

Tuned CMA
1

10

100

1000

10000

100000

1000000

Message Size

KNL (8 Nodes, 512 Procs)

MVAPICH2-2.3a

Intel MPI 2017

OpenMPI 2.1.0

Tuned CMA

• Significant improvement over existing implementation for Scatter/Gather with
1MB messages (up to 4x on KNL, 2x on Broadwell, 14x on OpenPower)

• New two-level algorithms for better scalability
• Improved performance for other collectives (Bcast, Allgather, and Alltoall)

~ 2.5x
Better

~ 3.2x
Better

~ 4x
Better

~ 17x
Better

S. Chakraborty, H. Subramoni, and D. K. Panda, Contention Aware Kernel-Assisted MPI

Collectives for Multi/Many-core Systems, IEEE Cluster ’17, BEST Paper Finalist

Performance of MPI_Gather on KNL nodes (64PPN)

Available since MVAPICH2-X 2.3b

MUG’20 34Network Based Computing Laboratory

0

5000

10000

15000

20000

25000

30000

224 448 896

P
er

fo
rm

an
ce

 in
 G

FL
O

P
S

Number of Processes

MVAPICH2 Async MVAPICH2 Default IMPI 2019 Default

0

1

2

3

4

5

6

7

8

9

112 224 448

Ti
m

e
 p

er
 lo

o
p

 in
 s

ec
o

n
d

s

Number of Processes

MVAPICH2 Async MVAPICH2 Default IMPI 2019 Default IMPI 2019 Async

Benefits of the New Asynchronous Progress Design: Broadwell +
InfiniBand

Up to 33% performance improvement in P3DFFT application with 448 processes
Up to 29% performance improvement in HPL application with 896 processes

Memory Consumption = 69%

P3DFFT High Performance Linpack (HPL)

26%

27% Lower is better Higher is better

A. Ruhela, H. Subramoni, S. Chakraborty, M. Bayatpour, P. Kousha, and D.K. Panda,
“Efficient design for MPI Asynchronous Progress without Dedicated Resources”, Parallel Computing 2019

Available since MVAPICH2-X 2.3rc1

PPN=28

33%

29%

12%

PPN=28

8%

mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu

MUG’20 35Network Based Computing Laboratory

Shared Address Space (XPMEM)-based Collectives Design

1

10

100

1000

10000

100000

16K 32K 64K 128K 256K 512K 1M 2M 4M

La
te

n
cy

 (
u

s)

Message Size

MVAPICH2-2.3b

IMPI-2017v1.132

MVAPICH2-X-2.3rc1

OSU_Allreduce (Broadwell 256 procs)

• “Shared Address Space”-based true zero-copy Reduction collective designs in MVAPICH2

• Offloaded computation/communication to peers ranks in reduction collective operation

• Up to 4X improvement for 4MB Reduce and up to 1.8X improvement for 4M AllReduce

73.2

1.8X

1

10

100

1000

10000

100000

16K 32K 64K 128K 256K 512K 1M 2M 4M

Message Size

MVAPICH2-2.3b

IMPI-2017v1.132

MVAPICH2-2.3rc1

OSU_Reduce (Broadwell 256 procs)

4X

36.1

37.9

16.8

J. Hashmi, S. Chakraborty, M. Bayatpour, H. Subramoni, and D. Panda, Designing Efficient Shared Address Space Reduction

Collectives for Multi-/Many-cores, International Parallel & Distributed Processing Symposium (IPDPS '18), May 2018.
Available since MVAPICH2-X 2.3rc1

MUG’20 36Network Based Computing Laboratory

Performance of Non-Reduction Collectives with XPMEM

• 28 MPI Processes on single dual-socket Broadwell E5-2680v4, 2x14 core processor

• Used osu_bcast from OSU Microbenchmarks v5.5

1

10

100

1000

10000

4
K

8
K

1
6

K

3
2

K

6
4

K

1
2

8K

2
5

6K

5
1

2K 1
M

2
M

4
M

La
te

n
cy

 (
u

s)

Message Size (Bytes)

Broadcast

Intel MPI 2018

OpenMPI 3.0.1

MV2X-2.3rc1 (CMA Coll)

MV2X-2.3rc2 (XPMEM Coll)

5X over
OpenMPI

1

10

100

1000

10000

100000

4
K

8
K

1
6

K

3
2

K

6
4

K

1
2

8K

2
5

6K

5
1

2K 1
M

2
M

4
M

La
te

n
cy

 (u
s)

Message Size (Bytes)

Gather

Intel MPI 2018

OpenMPI 3.0.1

MV2X-2.3rc1 (CMA Coll)

MV2X-2.3rc2 (XPMEM Coll)

3X over
OpenMPI

MUG’20 37Network Based Computing Laboratory

Application Level Benefits of XPMEM-based Designs

MiniAMR (dual-socket, ppn=16)

• Intel XeonCPU E5-2687W v3 @ 3.10GHz (10-core, 2-socket)

• Up to 20% benefits over IMPI for CNTK DNN training using AllReduce

• Up to 27% benefits over IMPI and up to 15% improvement over MVAPICH2 for MiniAMR application kernel

0

100

200

300

400

500

600

700

800

28 56 112 224

Ex
ec

u
ti

o
n

 T
im

e
(s

)

No. of Processes

Intel MPI

MVAPICH2

MVAPICH2-XPMEM

CNTK AlexNet Training

(B.S=default, iteration=50, ppn=28)

0

10

20

30

40

50

60

70

16 32 64 128 256

Ex
ec

u
ti

o
n

 T
im

e
(s

)

No. of Processes

Intel MPI

MVAPICH2

MVAPICH2-XPMEM
20%

9%

27%

15%

MUG’20 38Network Based Computing Laboratory

MVAPICH2 Software Family

Requirements Library

MPI with Support for InfiniBand, Omni-Path, Ethernet/iWARP and, RoCE (v1/v2) MVAPICH2

Optimized Support for Microsoft Azure Platform with InfiniBand MVAPICH2-Azure

Advanced MPI features/support (UMR, ODP, DC, Core-Direct, SHArP, XPMEM),
OSU INAM (InfiniBand Network Monitoring and Analysis),

MVAPICH2-X

Advanced MPI features (SRD and XPMEM) with support for Amazon Elastic Fabric
Adapter (EFA)

MVAPICH2-X-AWS

Optimized MPI for clusters with NVIDIA GPUs and for GPU-enabled Deep Learning
Applications

MVAPICH2-GDR

Energy-aware MPI with Support for InfiniBand, Omni-Path, Ethernet/iWARP and,
RoCE (v1/v2)

MVAPICH2-EA

MPI Energy Monitoring Tool OEMT

InfiniBand Network Analysis and Monitoring OSU INAM

Microbenchmarks for Measuring MPI and PGAS Performance OMB

MUG’20 39Network Based Computing Laboratory

PCIe

GPU

CPU

NIC

Switch

At Sender:

cudaMemcpy(s_hostbuf, s_devbuf, . . .);

MPI_Send(s_hostbuf, size, . . .);

At Receiver:

MPI_Recv(r_hostbuf, size, . . .);

cudaMemcpy(r_devbuf, r_hostbuf, . . .);

• Data movement in applications with standard MPI and CUDA interfaces

High Productivity and Low Performance

MPI + CUDA - Naive

MUG’20 40Network Based Computing Laboratory

PCIe

GPU

CPU

NIC

Switch

At Sender:
for (j = 0; j < pipeline_len; j++)

cudaMemcpyAsync(s_hostbuf + j * blk, s_devbuf + j *

blksz, …);

for (j = 0; j < pipeline_len; j++) {

while (result != cudaSucess) {

result = cudaStreamQuery(…);

if(j > 0) MPI_Test(…);

}

MPI_Isend(s_hostbuf + j * block_sz, blksz . . .);

}

MPI_Waitall();

<<Similar at receiver>>

• Pipelining at user level with non-blocking MPI and CUDA interfaces

Low Productivity and High Performance

MPI + CUDA - Advanced

MUG’20 41Network Based Computing Laboratory

At Sender:

At Receiver:

MPI_Recv(r_devbuf, size, …);

inside

MVAPICH2

• Standard MPI interfaces used for unified data movement

• Takes advantage of Unified Virtual Addressing (>= CUDA 4.0)

• Overlaps data movement from GPU with RDMA transfers

High Performance and High Productivity

MPI_Send(s_devbuf, size, …);

GPU-Aware (CUDA-Aware) MPI Library: MVAPICH2-GPU

MUG’20 42Network Based Computing Laboratory

CUDA-Aware MPI: MVAPICH2-GDR 1.8-2.3.4 Releases

• Support for MPI communication from NVIDIA GPU device memory

• High performance RDMA-based inter-node point-to-point
communication (GPU-GPU, GPU-Host and Host-GPU)

• High performance intra-node point-to-point communication for multi-
GPU adapters/node (GPU-GPU, GPU-Host and Host-GPU)

• Taking advantage of CUDA IPC (available since CUDA 4.1) in intra-node
communication for multiple GPU adapters/node

• Optimized and tuned collectives for GPU device buffers

• MPI datatype support for point-to-point and collective communication
from GPU device buffers

• Unified memory

MUG’20 43Network Based Computing Laboratory

• MVAPICH2-GDR 2.3.4 requires the following software to be installed on your system:

1. Mellanox OFED 3.2 and later

2. NVIDIA Driver 367.48 or later

3. NVIDIA CUDA Toolkit 7.5 and later

4. NVIDIA Peer Memory (nv_peer_mem) module to enable GPUDirect RDMA (GDR) support

• Strongly Recommended for Best Performance

5. GDRCOPY Library by NVIDIA: https://github.com/NVIDIA/gdrcopy

• Comprehensive Instructions can be seen from the MVAPICH2-GDR User Guide:

– http://mvapich.cse.ohio-state.edu/userguide/gdr/

MVAPICH2-GDR: Pre-requisites for OpenPOWER & x86 Systems

http://www.mellanox.com/page/products_dyn?product_family=26
http://www.nvidia.com/Download/driverResults.aspx/69372/
https://developer.nvidia.com/cuda-toolkit
http://www.mellanox.com/page/products_dyn?product_family=116
https://github.com/NVIDIA/gdrcopy
http://mvapich.cse.ohio-state.edu/userguide/gdr/

MUG’20 44Network Based Computing Laboratory

• Simple Installation steps for both systems

• Pick the right MVAPICH2-GDR RPM from Downloads page:

– http://mvapich.cse.ohio-state.edu/downloads/

– e.g. http://mvapich.cse.ohio-state.edu/download/mvapich/gdr/2.3/mofed4.5/mvapich2-gdr-

mcast.cuda10.0.mofed4.5.gnu4.8.5-2.3-1.el7.x86_64.rpm (== <mv2-gdr-rpm-name>.rpm)

$ wget http://mvapich.cse.ohio-state.edu/download/mvapich/gdr/2.3/<mv2-gdr-rpm-name>.rpm

Root Users:

$ rpm -Uvh --nodeps <mv2-gdr-rpm-name>.rpm

Non-Root Users:

$ rpm2cpio <mv2-gdr-rpm-name>.rpm | cpio – id

• Contact MVAPICH help list with any questions related to the package

mvapich-help@cse.ohio-state.edu

MVAPICH2-GDR: Download and Setup on OpenPOWER & x86 Systems

http://mvapich.cse.ohio-state.edu/downloads/
http://mvapich.cse.ohio-state.edu/download/mvapich/gdr/2.3/mofed4.5/mvapich2-gdr-mcast.cuda10.0.mofed4.5.gnu4.8.5-2.3-1.el7.x86_64.rpm
mailto:mvapich-help@cse.ohio-state.edu

MUG’20 45Network Based Computing Laboratory

• RoCE V1 and V2 support

• RDMA_CM connection support

• CUDA-Aware Collective Tuning

– Point-point Tuning (available since MVAPICH2-GDR 2.0)

• Tuned thresholds for the different communication patterns and features

• Depending on the system configuration (CPU, HCA and GPU models)

– Tuning Framework for GPU based collectives

• Select the best algorithm depending on message size, system size and system configuration

• Support for Bcast and Gather operations for different GDR-enabled systems

• Available since MVAPICH2-GDR 2.2RC1 release

ROCE and Optimized Collectives Support

MUG’20 46Network Based Computing Laboratory

• Released on 06/04/2020

• Major Features and Enhancements

– Based on MVAPICH2 2.3.4

– Enhanced MPI_Allreduce performance on DGX-2 systems

– Enhanced MPI_Allreduce performance on POWER9 systems

– Reduced the CUDA interception overhead for non-CUDA symbols

– Enhanced performance for point-to-point and collective operations on Frontera's RTX nodes

– Add new runtime variable 'MV2_SUPPORT_DL' to replace 'MV2_SUPPORT_TENSOR_FLOW'

– Added compilation and runtime methods for checking CUDA support

– Enhanced GDR output for runtime variable MV2_SHOW_ENV_INFO

– Tested with Horovod and common DL Frameworks (TensorFlow, PyTorch, and MXNet)

– Tested with PyTorch Distributed

– Support for CUDA 10.1

– Support for PGI 20.x

– Enhanced GPU communication support in MPI_THREAD_MULTIPLE mode

– Enhanced performance of datatype support for GPU-resident data

• Zero-copy transfer when P2P access is available between GPUs through NVLink/PCIe

– Enhanced GPU-based point-to-point and collective tuning

• OpenPOWER systems such as ORNL Summit and LLNL Sierra ABCI system @AIST, Owens and Pitzer systems @Ohio Supercomputer Center

– Scaled Allreduce to 24,576 Volta GPUs on Summit

MVAPICH2-GDR 2.3.4

MUG’20 47Network Based Computing Laboratory

Tuning GDRCOPY Designs in MVAPICH2-GDR

Parameter Significance Default Notes

MV2_USE_GDRCOPY • Enable / Disable GDRCOPY-
based designs

1
(Enabled)

• Always enable

MV2_GDRCOPY_LIMIT • Controls messages size until
which GDRCOPY is
used

8 KByte • Tune for your system
• GPU type, host architecture.
Impacts the eager performance

MV2_GPUDIRECT_GDR
COPY_LIB

• Path to the GDRCOPY
library

Unset • Always set

MV2_USE_GPUDIRECT_
D2H_GDRCOPY_LIMIT

• Controls messages size until
which GDRCOPY is used at

sender

16Bytes • Tune for your systems
• CPU and GPU type

• Refer to Tuning and Usage Parameters section of MVAPICH2-GDR user guide for more information

• http://mvapich.cse.ohio-state.edu/userguide/gdr/#_tuning_and_usage_parameters

MUG’20 48Network Based Computing Laboratory

Tuning Loopback Designs in MVAPICH2-GDR

Parameter Significance Default Notes

MV2_USE_GPUDIRECT_
LOOPBACK

• Enable / Disable
LOOPBACK-based designs

1
(Enabled)

• Always enable

MV2_GPUDIRECT_LOO
PBACK_LIMIT

• Controls messages size until
which LOOPBACK is
used

8 KByte • Tune for your system
• GPU type, host architecture and
HCA. Impacts the eager
performance
•Sensitive to the P2P issue

• Refer to Tuning and Usage Parameters section of MVAPICH2-GDR user guide for more information

• http://mvapich.cse.ohio-state.edu/userguide/gdr/#_tuning_and_usage_parameters

MUG’20 49Network Based Computing Laboratory

Tuning GPUDirect RDMA (GDR) Designs in MVAPICH2-GDR

Parameter Significance Default Notes

MV2_USE_GPUDIRECT • Enable / Disable GDR-based
designs

1
(Enabled)

• Always enable

MV2_GPUDIRECT_LIMIT • Controls messages size until
which GPUDirect RDMA is
used

8 KByte • Tune for your system
• GPU type, host architecture
and
CUDA version: impact pipelining
overheads and P2P bandwidth
bottlenecks

MV2_USE_GPUDIRECT_
RECEIVE_LIMIT

• Controls messages size until
which 1 hop design is used

(GDR Write at the receiver)

256KBytes • Tune for your system
• GPU type, HCA type and
configuration

• Refer to Tuning and Usage Parameters section of MVAPICH2-GDR user guide for more information

• http://mvapich.cse.ohio-state.edu/userguide/gdr/#_tuning_and_usage_parameters

MUG’20 50Network Based Computing Laboratory

• Platform: Wilkes (Intel Ivy Bridge + NVIDIA Tesla K20c + Mellanox Connect-IB)

• HoomDBlue Version 1.0.5

• GDRCOPY enabled: MV2_USE_CUDA=1 MV2_IBA_HCA=mlx5_0 MV2_IBA_EAGER_THRESHOLD=32768

MV2_VBUF_TOTAL_SIZE=32768 MV2_USE_GPUDIRECT_LOOPBACK_LIMIT=32768

MV2_USE_GPUDIRECT_GDRCOPY=1 MV2_USE_GPUDIRECT_GDRCOPY_LIMIT=16384

Application-Level Evaluation (HOOMD-blue)

0

500

1000

1500

2000

2500

4 8 16 32

A
ve

ra
ge

 T
im

e
St

ep
s

p
er

 s
ec

o
n

d
 (

TP
S)

Number of Processes

MV2 MV2+GDR

0

500

1000

1500

2000

2500

3000

3500

4 8 16 32A
ve

ra
ge

 T
im

e
St

ep
s

p
er

 s
ec

o
n

d

(T
P

S)

Number of Processes

64K Particles 256K Particles

2X
2X

mailto:panda@cse.ohio-state.edu
mailto:panda@cse.ohio-state.edu

MUG’20 51Network Based Computing Laboratory

MPI Datatype support in MVAPICH2

• Datatypes support in MPI

– Operate on customized datatypes to improve productivity

– Enable MPI library to optimize non-contiguous data

At Sender:
MPI_Type_vector (n_blocks, n_elements, stride, old_type, &new_type);

MPI_Type_commit(&new_type);

…

MPI_Send(s_buf, size, new_type, dest, tag, MPI_COMM_WORLD);

• Inside MVAPICH2
- Use datatype specific CUDA Kernels to pack data in chunks

- Efficiently move data between nodes using RDMA

- In progress - currently optimizes vector and hindexed datatypes

- Transparent to the user
H. Wang, S. Potluri, D. Bureddy, C. Rosales and D. K. Panda, GPU-aware MPI on RDMA-Enabled Clusters: Design, Implementation and Evaluation, IEEE Transactions on Parallel
and Distributed Systems, Accepted for Publication.

MUG’20 52Network Based Computing Laboratory

MPI Datatype Processing (Computation Optimization)

• Comprehensive support

• Targeted kernels for regular datatypes - vector, subarray, indexed_block

• Generic kernels for all other irregular datatypes

• Separate non-blocking stream for kernels launched by MPI library

• Avoids stream conflicts with application kernels

• Flexible set of parameters for users to tune kernels

• Vector

• MV2_CUDA_KERNEL_VECTOR_TIDBLK_SIZE

• MV2_CUDA_KERNEL_VECTOR_YSIZE

• Subarray

• MV2_CUDA_KERNEL_SUBARR_TIDBLK_SIZE

• MV2_CUDA_KERNEL_SUBARR_XDIM

• MV2_CUDA_KERNEL_SUBARR_YDIM

• MV2_CUDA_KERNEL_SUBARR_ZDIM

• Indexed_block

• MV2_CUDA_KERNEL_IDXBLK_XDIM

MUG’20 53Network Based Computing Laboratory

Stencil3D communication kernel on 2 GPUs
with various X, Y, Z dimensions using
MPI_Isend/Irecv

• DT: Direct Transfer, TR: Targeted Kernel

• Optimized design gains up to 15%, 15% and
22% compared to TR, and more than 86%
compared to DT on X, Y and Z respectively

0

0.5

1

1.5

2

2.5

1 2 4 8 16 32 64 128 256

La
te

n
cy

 (m
s)

Size of DimZ, [16,16,z]

Performance of Stencil3D (3D subarray)

0

0.5

1

1.5

2

2.5

1 2 4 8 16 32 64 128 256

La
te

n
cy

 (m
s)

Size of DimY, [16,y,16]

0

0.5

1

1.5

2

2.5

1 2 4 8 16 32 64 128 256

La
te

n
cy

 (m
s)

Size of DimX, [x,16,16]

DT TR Enhanced

86%

MUG’20 54Network Based Computing Laboratory

CPU

Progress

GPU

Time

In
iti

at
e

Ke
rn

el

St
ar

t
Se

nd

Isend(1)

In
iti

at
e

Ke
rn

el

St
ar

t
Se

nd

In
it

ia
te

Ke

rn
el

GPU

CPU

In
iti

at
e

Ke
rn

el

St
ar

t
Se

nd

Wait For
Kernel
(WFK)

Kernel on Stream

Isend(1)

Existing Design

Proposed Design

Kernel on Stream

Kernel on Stream

Isend(2)Isend(3)

Kernel on Stream

In
it

ia
te

Ke

rn
el

St
ar

t
Se

nd

Wait For
Kernel
(WFK)

Kernel on Stream

Isend(1)

In
it

ia
te

Ke

rn
el

St
ar

t
Se

nd

Wait For
Kernel
(WFK)

Kernel on Stream

Isend(1) Wait

W
FK

St
ar

t
Se

nd

Wait

Progress

Start Finish Proposed Finish Existing

W
FK

W
FK

Expected Benefits

MPI Datatype Processing (Communication Optimization)

Waste of computing resources on CPU and GPUCommon Scenario

*A, B…contain non-contiguous MPI Datatype

MPI_Isend (A,.. Datatype,…)
MPI_Isend (B,.. Datatype,…)
MPI_Isend (C,.. Datatype,…)
MPI_Isend (D,.. Datatype,…)
…

MPI_Waitall (…);

MUG’20 55Network Based Computing Laboratory

Application-Level Evaluation (Cosmo) and Weather Forecasting in Switzerland

0

0.2

0.4

0.6

0.8

1

1.2

16 32 64 96
N

o
rm

al
iz

ed
 E

xe
cu

ti
o

n
 T

im
e

Number of GPUs

CSCS GPU cluster

Default Callback-based Event-based

0

0.2

0.4

0.6

0.8

1

1.2

4 8 16 32

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

Number of GPUs

Wilkes GPU Cluster

Default Callback-based Event-based

• 2X improvement on 32 GPUs nodes
• 30% improvement on 96 GPU nodes (8 GPUs/node)

C. Chu, K. Hamidouche, A. Venkatesh, D. Banerjee , H. Subramoni, and D. K. Panda, Exploiting Maximal Overlap for Non-Contiguous Data

Movement Processing on Modern GPU-enabled Systems, IPDPS’16

On-going collaboration with CSCS and MeteoSwiss (Switzerland) in co-designing MV2-GDR and Cosmo Application

Cosmo model: http://www2.cosmo-model.org/content

/tasks/operational/meteoSwiss/

mailto:panda@cse.ohio-state.edu
http://www2.cosmo-model.org/content
mailto:panda@cse.ohio-state.edu

MUG’20 56Network Based Computing Laboratory

MVAPICH2-GDR: Enhanced Derived Datatype

• Kernel-based and GDRCOPY-based one-shot packing for inter-socket and inter-node communication

• Zero-copy (packing-free) for GPUs with peer-to-peer direct access over PCIe/NVLink

0

5

10

15

20

25

[6, 8,8,8,8] [6, 8,8,8,16] [6, 8,8,16,16] [6, 16,16,16,16]

MILC

Sp
ee

d
u

p

Problem size

GPU-based DDTBench mimics MILC
communication kernel

OpenMPI 4.0.0 MVAPICH2-GDR 2.3.1 MVAPICH2-GDR-Next

Platform: Nvidia DGX-2 system

(NVIDIA Volta GPUs connected with NVSwitch), CUDA 9.2

0

5

10

15

20

25

16 32 64

Ex
ec

u
ti

o
n

 T
im

e
(s

)

Number of GPUs

Communication Kernel of COSMO Model

MVAPICH2-GDR 2.3.1 MVAPICH2-GDR-Next

Platform: Cray CS-Storm

(16 NVIDIA Tesla K80 GPUs per node), CUDA 8.0

Improved 3.4X

(https://github.com/cosunae/HaloExchangeBenchmarks)

Improved 15X

https://github.com/cosunae/HaloExchangeBenchmarks

MUG’20 57Network Based Computing Laboratory

• Scale-up: Intra-node Communication

– Many improvements like:

• NVIDIA cuDNN, cuBLAS, NCCL, etc.

• CUDA 9 Co-operative Groups

• Scale-out: Inter-node Communication

– DL Frameworks – most are optimized for single-

node only

– Distributed (Parallel) Training is an emerging

trend

• OSU-Caffe – MPI-based

• Microsoft CNTK – MPI/NCCL2

• Google TensorFlow – gRPC-based/MPI/NCCL2

• Facebook Caffe2 – Hybrid (NCCL2/Gloo/MPI)

• PyTorch

Deep Learning: New Challenges for Runtimes

Sc
al

e
-u

p
 P

e
rf

o
rm

an
ce

Scale-out Performance

cuDNN

gRPC

Hadoop

MPI

MKL-DNN

Desired

NCCL2

MUG’20 58Network Based Computing Laboratory

MVAPICH2 (MPI)-driven Infrastructure for ML/DL Training

MVAPICH2-X for

CPU-Based Training

MVAPICH2-GDR for

GPU-Based Training

Horovod

TensorFlow PyTorch MXNet

ML/DL Applications

MUG’20 59Network Based Computing Laboratory

MVAPICH2-GDR vs. NCCL2 – Allreduce Operation (DGX-2)

• Optimized designs in MVAPICH2-GDR offer better/comparable performance for most cases

• MPI_Allreduce (MVAPICH2-GDR) vs. ncclAllreduce (NCCL2) on 1 DGX-2 node (16 Volta GPUs)

1

10

100

1000

10000

256K 512K 1M 2M 4M 8M 16M 32M 64M 128M 256M

La
te

nc
y

(u
s)

Message Size (Bytes)

MVAPICH2-GDR-2.3.4 NCCL-2.6

~2.5X better

Platform: Nvidia DGX-2 system (16 Nvidia Volta GPUs connected with NVSwitch), CUDA 10.1

0

5

10

15

20

25

30

35

40

45

50

8 16 32 64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K

La
te

n
cy

 (u
s)

Message Size (Bytes)

MVAPICH2-GDR-2.3.4 NCCL-2.6

~4.7X better

C.-H. Chu, P. Kousha, A. Awan, K. S. Khorassani, H. Subramoni and D. K. Panda, "NV-Group: Link-Efficient Reductions for Distributed Deep Learning on Modern Dense GPU
Systems, " ICS-2020, June-July 2020.

MUG’20 60Network Based Computing Laboratory

MVAPICH2-GDR: MPI_Allreduce at Scale (ORNL Summit)

• Optimized designs in MVAPICH2-GDR offer better performance for most cases

• MPI_Allreduce (MVAPICH2-GDR) vs. ncclAllreduce (NCCL2) up to 1,536 GPUs

0

1

2

3

4

5

6

32M 64M 128M 256M

B
a

n
d

w
id

th
 (

G
B

/s
)

Message Size (Bytes)

Bandwidth on 1,536 GPUs

MVAPICH2-GDR-2.3.4 NCCL 2.6

1.7X better

0

50

100

150

200

250

300

350

400

450

4 8

1
6

3
2

6
4

12
8

25
6

51
2

1K 2K 4K 8K

1
6

K

La
te

n
cy

 (u
s)

Message Size (Bytes)

Latency on 1,536 GPUs

MVAPICH2-GDR-2.3.4 NCCL 2.6

1.6X better

Platform: Dual-socket IBM POWER9 CPU, 6 NVIDIA Volta V100 GPUs, and 2-port InfiniBand EDR Interconnect

0

1

2

3

4

5

6

7

8

9

10

24 48 96 192 384 768 1536

B
an

dw
id

th
 (

G
B

/s
)

Number of GPUs

128MB Message

SpectrumMPI 10.3 OpenMPI 4.0.1 NCCL 2.6 MVAPICH2-GDR-2.3.4

1.7X better

C.-H. Chu, P. Kousha, A. Awan, K. S. Khorassani, H. Subramoni and D. K. Panda, "NV-Group: Link-Efficient Reductions for Distributed Deep Learning on Modern Dense GPU
Systems, " ICS-2020, June-July 2020.

MUG’20 61Network Based Computing Laboratory

Distributed Training with TensorFlow and MVAPICH2-GDR

• ResNet-50 Training using TensorFlow benchmark on 1 DGX-2 node (16 Volta GPUs)

0

1000

2000

3000

4000

5000

6000

7000

1 2 4 8 16

Im
ag

e
p

er
 s

ec
o

n
d

Number of GPUs

NCCL-2.4 MVAPICH2-GDR-2.3.2

9% higher

Platform: Nvidia DGX-2 system (16 Nvidia Volta GPUs connected with NVSwitch), CUDA 9.2

0

10

20

30

40

50

60

70

80

90

100

1 2 4 8 16

Sc
al

in
g

Ef
fi

ci
en

cy
 (

%
)

Number of GPUs

NCCL-2.4 MVAPICH2-GDR-2.3.2

Scaling Efficiency =
Actual throughput

Ideal throughput at scale
× 100%

MUG’20 62Network Based Computing Laboratory

Distributed Training with TensorFlow and MVAPICH2-GDR

• ResNet-50 Training using

TensorFlow benchmark on

SUMMIT -- 1536 Volta

GPUs!

• 1,281,167 (1.2 mil.) images

• Time/epoch = 3.6 seconds

• Total Time (90 epochs)

= 3.6 x 90 = 332 seconds =

5.5 minutes!

0

50

100

150

200

250

300

350

400

1 2 4 6 12 24 48 96 192 384 768 1536

Im
ag

e
p

er
 s

ec
o

n
d

 (
Th

o
u

sa
n

d
s)

Number of GPUs

NCCL-2.4 MVAPICH2-GDR-2.3.2

Platform: The Summit Supercomputer (#1 on Top500.org) – 6 NVIDIA Volta GPUs per node connected with NVLink, CUDA 9.2

*We observed errors for NCCL2 beyond 96 GPUs

MVAPICH2-GDR reaching ~0.35 million

images per second for ImageNet-1k!

ImageNet-1k has 1.2 million images

MUG’20 63Network Based Computing Laboratory

1

8

64

512

4096

32768

262144

1 2 4 8 1
6

3
2

6
4

1
28

2
56

5
12

1
02

4

2
04

8

Im
ag

es
 p

er
 s

ec

Nodes

IMPI MVAPICH2-X ideal

Distributed TensorFlow on TACC Frontera (2048 CPU nodes)

• Scaled TensorFlow to 2048 nodes on

Frontera using MVAPICH2 and IntelMPI

• MVAPICH2 and IntelMPI give similar

performance for DNN training

• Report a peak of 260,000 images/sec on

2048 nodes

• On 2048 nodes, ResNet-50 can be trained

in 7 minutes!

A. Jain, A. A. Awan, H. Subramoni, DK Panda, “Scaling TensorFlow, PyTorch, and MXNet using
MVAPICH2 for High-Performance Deep Learning on Frontera”, DLS ’19 (SC ’19 Workshop).

MUG’20 64Network Based Computing Laboratory

• MPI runtime has many parameters

• Tuning a set of parameters can help you to extract higher performance

• Compiled a list of such contributions through the MVAPICH Website
– http://mvapich.cse.ohio-state.edu/best_practices/

• Initial list of applications
– Amber

– HoomDBlue

– HPCG

– Lulesh

– MILC

– Neuron

– SMG2000

– Cloverleaf

– SPEC (LAMMPS, POP2, TERA_TF, WRF2)

• Soliciting additional contributions, send your results to mvapich-help at cse.ohio-state.edu.

• We will link these results with credits to you.

Applications-Level Tuning: Compilation of Best Practices

http://mvapich.cse.ohio-state.edu/best_practices/

MUG’20 65Network Based Computing Laboratory

Amber: Impact of Tuning Eager Threshold

0

100

200

300

400

500

64 128 256

Ex
ec

u
ti

o
n

 T
im

e
(s

)

Number of Processes

Default Tuned

19%

• Tuning the Eager threshold has a significant

impact on application performance by avoiding

the synchronization of rendezvous protocol

and thus yielding better communication

computation overlap

• 19% improvement in overall execution time at

256 processes

• Library Version: MVAPICH2 2.2

• MVAPICH Flags used

– MV2_IBA_EAGER_THRESHOLD=131072

– MV2_VBUF_TOTAL_SIZE=131072

• Input files used

– Small: MDIN

– Large: PMTOP
Data Submitted by: Dong Ju Choi @ UCSD

http://www.sdsc.edu/~dchoi/amber/mdin
http://www.sdsc.edu/~dchoi/amber/prmtop

MUG’20 66Network Based Computing Laboratory

MiniAMR: Impact of Tuning Eager Threshold

• Tuning the Eager threshold has a significant

impact on application performance by avoiding

the synchronization of rendezvous protocol

and thus yielding better communication

computation overlap

• 8% percent reduction in total communication

time

• Library Version: MVAPICH2 2.2

• MVAPICH Flags used

– MV2_IBA_EAGER_THRESHOLD=32768

– MV2_VBUF_TOTAL_SIZE=32768

175

180

185

190

195

200

205

1
28

5
12 1

K

2
K

4
K

8
K

1
6K

3
2K

6
4K

1
28

K

2
56

K

5
12

K

1
M

C
o

m
m

u
n

ic
at

io
n

 T
im

e
 (s

e
c)

Eager Threshold (Bytes)

MiniAMR

8%

Data Submitted by Karen Tomko @ OSC and Dong Ju Choi @ UCSD

MUG’20 67Network Based Computing Laboratory

• UD-based transport protocol selection

benefits the SMG2000 application

• 22% and 6% on 1,024 and 4,096 cores,

respectively

• Library Version: MVAPICH2 2.1

• MVAPICH Flags used

– MV2_USE_ONLY_UD=1

• System Details

– Stampede@ TACC

– Sandybridge architecture with dual 8-cores

nodes and ConnectX-3 FDR network

SMG2000: Impact of Tuning Transport Protocol

0

10

20

30

40

50

60

70

80

1024 2048 4096

Ex
ec

u
ti

o
n

 T
im

e
(s

)

Number of Processes

Default Tuned

22%

Data Submitted by Jerome Vienne @ TACC

MUG’20 68Network Based Computing Laboratory

• UD-based transport protocol selection

benefits the SMG2000 application

• 15% and 27% improvement is seen for 768 and

1,024 processes respectively

• Library Version: MVAPICH2 2.2

• MVAPICH Flags used

– MV2_USE_ONLY_UD=1

• Input File

– YuEtAl2012

• System Details

– Comet@SDSC

– Haswell nodes with dual 12-cores socket per

node and Mellanox FDR (56 Gbps) network.

Neuron: Impact of Tuning Transport Protocol

0

20

40

60

80

100

120

140

384 512 768 1024

Ex
ec

u
ti

o
n

 T
im

e
(s

)

Number of Processes

Default Tuned

27%

Data Submitted by Mahidhar Tatineni @ SDSC

https://senselab.med.yale.edu/modeldb/showModel.cshtml?model=144570&file=/YuEtAl2012/

MUG’20 69Network Based Computing Laboratory

0

0.2

0.4

0.6

0.8

1

1.2

HPCG

N
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e Default Tuned

• Partial subscription nature of hybrid MPI+OpenMP

programming requires a new level of collective tuning

– For PPN=2 (Processes Per Node), the tuned version of MPI_Reduce

shows 51% improvement on 2,048 cores

• 24% improvement on 512 cores

– 8 OpenMP threads per MPI processes

• Library Version: MVAPICH2 2.1

• MVAPICH Flags used

– The tuning parameters for hybrid MPI+OpenMP

programming models is on by default from MVAPICH2-2.1

onward

• System Details

– Stampede@ TACC

– Sandybridge architecture with dual 8-cores nodes and

ConnectX-3 FDR network

HPCG: Impact of Collective Tuning for MPI+OpenMP Programming Model

24%

Data Submitted by Jerome Vienne and Carlos Rosales-Fernandez @ TACC

MUG’20 70Network Based Computing Laboratory

• HOOMD-blue is a Molecular Dynamics

simulation using a custom force field.

• GPUDirect specific features selection and

tuning significantly benefit the HOOMD-blue

application. We observe a factor of 2X

improvement on 32 GPU nodes, with both 64K

and 256K particles

• Library Version: MVAPICH2-GDR 2.2

• MVAPICH-GDR Flags used

– MV2_USE_CUDA=1

– MV2_USE_GPUDIRECT=1

– MV2_GPUDIRECT_GDRCOPY=1

• System Details

– Wilkes@Cambridge

– 128 Ivybridge nodes, each node is a dual 6-

cores socket with Mellanox FDR

HOOMD-blue: Impact of GPUDirect RDMA Based Tuning

0

1000

2000

3000

4 8 16 32

A
ve

ra
ge

 T
im

e
St

ep
s

p
er

 s
ec

o
n

d
 (T

P
S)

Number of Processes

256K Particles
MV2 MV2+GDR

0

1000

2000

3000

4000

4 8 16 32

A
ve

ra
ge

 T
im

e
 S

te
p

s
p

er
 s

e
co

n
d

 (T
P

S)

Number of Processes

64K Particles
Default Tuned

2X

2X

Data Submitted by Khaled Hamidouche @ OSU

MUG’20 71Network Based Computing Laboratory

Application Scalability on Skylake and KNL with Omni-Path

MiniFE (1300x1300x1300 ~ 910 GB)

Runtime parameters: MV2_SMPI_LENGTH_QUEUE=524288 PSM2_MQ_RNDV_SHM_THRESH=128K PSM2_MQ_RNDV_HFI_THRESH=128K

0

20

40

60

80

100

120

140

2048 4096 8192

Ex
ec

ut
io

n
Ti

m
e

(s
)

No. of Processes (KNL: 64ppn)

MVAPICH2

0

10

20

30

40

50

60

2048 4096 8192

Ex
ec

ut
io

n
Ti

m
e

(s
)

No. of Processes (Skylake: 48ppn)

MVAPICH2

0

200

400

600

800

1000

1200

48 96 192 384 768

No. of Processes (Skylake: 48ppn)

MVAPICH2

NEURON (YuEtAl2012)

Courtesy: Mahidhar Tatineni @SDSC, Dong Ju (DJ) Choi@SDSC, and Samuel Khuvis@OSC ---- Testbed: TACC Stampede2 using MVAPICH2-2.3b

0

500

1000

1500

2000

2500

3000

3500

64 128 256 512 1024 2048 4096

No. of Processes (KNL: 64ppn)

MVAPICH2

0

500

1000

1500

68 136 272 544 1088 2176 4352

No. of Processes (KNL: 68ppn)

MVAPICH2

0

500

1000

1500

2000

48 96 192 384 768 1536 3072

No. of Processes (Skylake: 48ppn)

MVAPICH2

Cloverleaf (bm64) MPI+OpenMP,
NUM_OMP_THREADS = 2

MUG’20 72Network Based Computing Laboratory

0

20

40

60

80

100

120

140

160

MILC Leslie3D POP2 LAMMPS WRF2 LU

Ex
e

cu
ti

o
n

 T
im

e
 in

 (
s)

Intel MPI 18.1.163

MVAPICH2-X-2.3rc1

31%

SPEC MPI 2007 Benchmarks: Broadwell + InfiniBand

MVAPICH2-X outperforms Intel MPI by up to 31%

Configuration: 448 processes on 16 Intel E5-2680v4 (Broadwell) nodes having 28 PPN and interconnected

with 100Gbps Mellanox MT4115 EDR ConnectX-4 HCA

29% 5%

-12%

1%

11%

MUG’20 73Network Based Computing Laboratory

MVAPICH2 – Plans for Exascale
• Performance and Memory scalability toward 1-10M cores

• Hybrid programming (MPI + OpenSHMEM, MPI + UPC, MPI + CAF …)
• MPI + Task*

• Enhanced Optimization for GPU Support and Accelerators

• Taking advantage of advanced features of Mellanox InfiniBand
• Tag Matching*

• Adapter Memory*

• Bluefield based offload*

• Enhanced communication schemes for upcoming architectures
• ROCm*

• Intel Optane*

• BlueField*

• CAPI*

• Extended topology-aware collectives

• Extended Energy-aware designs and Virtualization Support

• Extended Support for MPI Tools Interface (as in MPI 3.0)

• Extended FT support

• Support for * features will be available in future MVAPICH2 Releases

MUG’20 74Network Based Computing Laboratory

• MPI_T Support

– More details in the talk "Performance Engineering using MVAPICH and TAU" by Sameer

Shende (Paratools/UO) on Tuesday (08/25/2020) from 3:30 PM - 4:00 PM EDT

• MVAPICH2-Azure

– More details in the talk "MVAPICH2 on Microsoft Azure HPC" by Jithin Jose (Microsoft,

Azure) on Tuesday (08/25/2020) from 1:30 PM - 2:00 PM EDT

• MVAPICH2-AWS

– More details in the talk "Scaling Message Passing on Amazon Web Services with Elastic

Fabric Adapter" by Raghunath Rajachandrasekar (AWS) on Tuesday (08/25/2020) from 1:00

PM - 1:30 PM EDT

• Support for SHARP

– More details in the talk "Impact of SHARP and Adaptive Routing on Applications on

Frontera" by John Cazes (TACC) on Wednesday (08/26/2020) from 12:00 PM - 12:30 PM EDT

For More Details on other MVAPICH2 Libraries/Features

MUG’20 75Network Based Computing Laboratory

Funding Acknowledgments

Funding Support by

Equipment Support by

MUG’20 76Network Based Computing Laboratory

Acknowledgments to all the Heroes (Past/Current Students and Staffs)
Current Students (Graduate)

– Q. Anthony (Ph.D.)

– M. Bayatpour (Ph.D.)

– C.-H. Chu (Ph.D.)

– A. Jain (Ph.D.)

– M. Kedia (M.S.)

Past Students

– A. Awan (Ph.D.)

– A. Augustine (M.S.)

– P. Balaji (Ph.D.)

– R. Biswas (M.S.)

– S. Bhagvat (M.S.)

– A. Bhat (M.S.)

– D. Buntinas (Ph.D.)

– L. Chai (Ph.D.)

– B. Chandrasekharan (M.S.)

– S. Chakraborthy (Ph.D.)

– N. Dandapanthula (M.S.)

– V. Dhanraj (M.S.)

– R. Rajachandrasekar (Ph.D.)

– D. Shankar (Ph.D.)

– G. Santhanaraman (Ph.D.)

– N. Sarkauskas (B.S.)

– A. Singh (Ph.D.)

– J. Sridhar (M.S.)

– S. Sur (Ph.D.)

– H. Subramoni (Ph.D.)

– K. Vaidyanathan (Ph.D.)

– A. Vishnu (Ph.D.)

– J. Wu (Ph.D.)

– W. Yu (Ph.D.)

– J. Zhang (Ph.D.)

Past Research Scientists

– K. Hamidouche

– S. Sur

– X. Lu

Past Post-Docs

– D. Banerjee

– X. Besseron

– H.-W. Jin

– T. Gangadharappa (M.S.)

– K. Gopalakrishnan (M.S.)

– J. Hashmi (Ph.D.)

– W. Huang (Ph.D.)

– W. Jiang (M.S.)

– J. Jose (Ph.D.)

– S. Kini (M.S.)

– M. Koop (Ph.D.)

– K. Kulkarni (M.S.)

– R. Kumar (M.S.)

– S. Krishnamoorthy (M.S.)

– K. Kandalla (Ph.D.)

– M. Li (Ph.D.)

– P. Lai (M.S.)

– J. Liu (Ph.D.)

– M. Luo (Ph.D.)

– A. Mamidala (Ph.D.)

– G. Marsh (M.S.)

– V. Meshram (M.S.)

– A. Moody (M.S.)

– S. Naravula (Ph.D.)

– R. Noronha (Ph.D.)

– X. Ouyang (Ph.D.)

– S. Pai (M.S.)

– S. Potluri (Ph.D.)

– K. Raj (M.S.)

– K. S. Khorassani (Ph.D.)

– P. Kousha (Ph.D.)

– N. S. Kumar (M.S.)

– B. Ramesh (Ph.D.)

– K. K. Suresh (Ph.D.)

– J. Lin

– M. Luo

– E. Mancini

Past Programmers

– D. Bureddy

– J. Perkins

Current Research Specialist

– J. Smith

– S. Marcarelli

– A. Ruhela

– J. Vienne

Current Post-docs

– M. S. Ghazimeersaeed

– K. Manian

Past Research Specialist

– M. Arnold

Current Research Scientists

– A. Shafi

– H. Subramoni

– N. Sarkauskas (Ph.D.)

– S. Srivastava (M.S.)

– S. Xu (Ph.D.)

– Q. Zhou (Ph.D.)

– H. Wang

Current Senior Research Associate

– J. Hashmi

Current Software Engineer

– A. Reifsteck

MUG’20 77Network Based Computing Laboratory

Thank You!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

panda@cse.ohio-state.edu

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

Follow us on Twitter: @mvapich

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/

The High-Performance Big Data Project
http://hibd.cse.ohio-state.edu/

http://nowlab.cse.ohio-state.edu/
mailto:panda@cse.ohio-state.edu
http://mvapich.cse.ohio-state.edu/

