MVAPICH2 on Thor: High Performance MPI Meets Mainstream Ethernet Controller

Hemal Shah, Moshe Voloshin, and Devesh Sharma

August 25, 2020

Agenda

- Thor Overview
- Thor RoCE Features
- Thor RoCE Firmware/Software Architecture
- MVAPICH2 on Thor
- MPI Test Results

Thor: High Performance Ethernet Controller

• Performance

- 200Gbps Throughput & 100Mpps
- E2E Latency (TX + RX) < 1 usec</p>

Host Interface

- PCle Gen4 x16
- Multi-Host up to 4 End Points
- 16 PFs and 1K VFs

Network Interface

- Octal 50Gbps PAM4 SERDES
- Quad Ports, High Availability

• RDMA

- RoCEv2
- Smart Congestion Control
- GPUdirect

Host Interfaces PCle Gen4 x16 Multi-Host 4x SR-IOV 1K VFs 16 PFs			
TruFlow™ Virtual Switch Offload Network Policy Offload	RDMA RoCE v1/v2 Smart Congestion Control		
Network Interfaces Up to 4 ports @ up to 200Gbp 8x 10G/25G/50G-PAM4 SERD			

BROADCOM[®]

Thor RoCE Hardware Features

Network Performance			
Interface Bandwidths	10/25/40/50/100/200 Gbps		
Throughput	200 Gbps		
Latency	< 1 usec (chip TX + RX)		

Network Aspects			
RoCE framing	Concurrent v1 and v2 support		
DCB	PFC, ETS		
Partitioning	Up to 16 PFs enabled with RoCE		
SR-IOV support	Up to 1K VFs enabled with RoCE		
QoS	Hierarchical TX scheduling		
Congestion Control	ECN/CNP (RoCEv2)		

Connection Types		
RC	Supported	
UD	Supported, including QP1	
XRC	Not supported	
Raw Eth QP	Supported (kernel bypass for L2 traffic)	
UC, RD	Not supported	

Ме	mory Manager	nent & Protection		
Regions & Windows	1 Million	1 Million		
Region/Window Size	1GB → 1TB			
MW Types	1, 2A, 2B			
Page Sizes	4KB, 8KB, 64KB, 256KB, 1MB, 2MB, 4MB, 1GB			
Doorbell Page Sizes	4KB, 8KB, 64KB, 256KB, 1MB, 4MB			
Protection Domains	1 Million			
Fast Memory Register	Supported			
	Sc	ale		
QPs for RC		1 Million (up to 32K WQEs per SQ/RQ)		
Doorbell Pages or DPIs		64K		
SRQs		64K		
CQs		1 Million		
Scatter Gather List per WQE		Up to 30 SGEs		
Miscellaneous				
CQ Resize		Supported		
PCIe Bandwidth		Gen4 x16		
Retransmission & Duplicate hand	ling	Supported		
SR-IOV & RoCE		Supported - Both PF/VF RDMA simultaneously		
Embedded RoCE processor		Manage RoCE resources/state/exceptions		
e term "Broadcom" refers to Broadcom Inc. and/or	ts subsidiaries.			

Thor – RoCE Advanced Features

Features	Notes
Deterministic Marking	ECN based marking
Probabilistic Marking	ECN based marking
Congestion Control	Scales with the number of competing flows
WQE CachingSQ, RQ, and RDMA Read WQEs	Improves latency and overall performance
Variable Size MTU	Flexibility
Number of DPIs	Higher App Scaling
Asymmetric PFC	PFC enhancement for switches
PFC Watchdog	Hardware support for PFC watchdog
Shared PD	New Feature for Application Scaling
Large Shared MR	New Feature for Application Scaling
CoS & RoCE counters	New Counters for monitoring RoCE traffic and CoSQs

Thor RoCE Software for Linux

MVAPICH2 over Thor

Initial MPI Testing on Thor

- Focus is on a set of HPC applications
- Not attempting to compare two MPI implementations
- Small scale testing this time due to cluster scale availability
- Plan to have detailed MPI performance results in the future

Verbs Level Performance - Baseline

System setup

- CPU:Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz
- Cores: 2 Sockets, 32 cores
- 2 hosts connected back to back
- MTU set to 4K and 1K (Latency only)

Line rate BW for large messages for 2+ QPs

Small Message (2B) ¹/₂ RT latency is agnostic of MTU

RDMA Operation	1K MTU (usec)	4K MTU (usec)
RDMA-Write	1.93	1.93
Send/Recv	2.12	2.12
RDMA-Read	4.42	4.42

OSU Microbenchmark Point to Point

System setup

- 2 nodes connected to switch and configured for PFC
- 1 Thor 2x100G adapter per host
- CPU:Intel(R) Xeon(R) Gold 5218 @ 2.30GHz
- Cores: 2 Socket, 32 cores
- Mvapich2-2.3.5-pre, Openmpi-4.0.3 with ucx-1.8.1
- Osu-Benchmarks-5.6.3

Tests

- Unidirectional bandwidth
- Latency and Message rate (1 pair)
- Bidirectional bandwidth

Small message latency with MVAPICH2 is slightly better than openmpi

Small Message (1B to 1KB) rate with MVAPICH2 is ~40% more than openmpi

MVAPICH2 and openmpi both achieve line rate with Thor for large message sizes

Thor performs equally well for both MVAPICH2 and openmpi

BROADCOM

OSU Microbenchmark pt2pt: Bi-directional

Large message Bandwidth is ~wire speed with both MPI implementations

OSU Microbenchmark Collectives

System setup:

- 8 nodes connected to switch and configured for PFC
- 1 Thor 2x100G adapter per host
- CPU:Intel(R) Xeon(R) Gold 5218 @ 2.30GHz
- Cores: 2 Socket, 32 cores
- Mvapich2-2.3.5-pre
- Osu-Benchmarks-5.6.3

Non-Reduce Operations (Scatter and Gather)

Reduce Operation (All_reduce)

2,4,8 nodes

• 128, 256, 512 total processes

MVAPICH2 optimizations used in testing

- MV2_CPU_BINDING_POLICY = hybrid
- MV2_HYBRID_BINDING_POLICY = linear

OSU Microbenchmark Collectives: Gather and Scatter

One to many communication with Thor (Scatter) scales well

• Scales really well for small message sizes

Many to one communications with Thor (Gather) equally scales well

OSU Microbenchmark Collectives: osu_allreduce

Thor performs well for Reduce operations

Reduce operation scales well for small messages

• latency slightly up for 8 nodes 4KB, 512 process

HPC Applications

System setup

- 8 nodes connected to switch and configured for PFC, 1 Thor 2x100G adaptor per host
- CPU:Intel(R) Xeon(R) Gold 5218 @ 2.30GHz
- Cores: 2 Socket, 32 cores
- MPI: Mvapich2-2.3.5-pre, Openmpi-4.0.3 with ucx-1.8.1
- NPB-3.3.1, miniGhost and CloverLeaf tip of github

NAS benchmarks

- ClassD, LU, BT, SP, CG
- 8-nodes: LU,BT,SP, 484 process, CG 512 process
- 4-nodes: LU,BT,SP,CG 256 process
- 2-nodes: LU, BT, SP 121 process, CG 128 process

miniGhost

• 8-nodes, 512 process, 4-nodes 256 process, 2 nodes 128 process

CloverLeaf

- 8-nodes, 512 process, 4-nodes 256 process, 2 nodes 128 process
- bm512_short

HPC Applications - Preliminary Results on Thor

