

Performance of Applications on Nurion Utilizing MVAPICH2-X

Minsik Kim, Ph.D. Supercomputing Infrastructure Center, KISTI

8th Annual MVAPICH User Group Meeting (MUG'20)

Introduction to KISTI-5 Supercomputer, Nurion

KISTI Supercomputing Center

- The National Supercomputing Center in Korea
- Provide computational resources and its support to R&D communities in Korea
- Nurion (KISTI-5): CPU system, Neuron: GPU system

KISTI-5 Procurement & Deployment

'15.06 '15.07.07	0	Data Center Building constructed Approved from Preliminary feasibility study
'16.03 '16.10~12	o	RFI and BMT Code release 1 st Bidding
'17.02~05 '17.06~07 '17.08 '17.11	0 0 0	2 nd Bidding Cray Inc. won the bid and Tech/Price Negotiation Contract finalized (49M USD) Pilot system(16nodes) delivered
'17.12~'18.4 '18.05~09 '18.07~10 '18.10~11 '18.12~		Main system delivery and deployment BMT, Functional and Stability Test Early Access on Pilot system Main system Beta service Production

KISTI Facility PUE 1.35

Cray CS500 25.7PFlops

KISTI-5 Compute Nodes

The Largest KNL/OPA based commodity cluster System Rpeak 25.7PFlops, Rmax 13.9PFlops

Compute nodes

8,305 KNL Computing modules, 116 Racks, 25.3PF

- > 1x Xeon Phi KNL 7250, 68Cores 1.4GHz, AVX512
- 3TFlops Peak, ~0.2 Bytes/Flops,
- > 96GB (6x16GB) DDR4-2400 6 channel RAM,
- > 16GB HBM (460GB/s)
- > 1x 100Gbps OPA HFI, 1x On-board GigE Port

CPU-only nodes

132 Skylake Computing modules, 4 Racks, 0.4PF

- > 2x Xeon SKX 6148 CPUs, 2.4GHz, AVX512
- > 192GB (12x 16GB) DDR4-2666 RAM
- 1x Single-port 100Gbps OPA HFI card
- > 1x On-board GigE (RJ45) port

KISTI-5 Storage System

KISTI-5 OPA Interconnect

2:1 Blocking OPA Interconnect

Benchmark Performance Result

Category	Features	# of nodes	Score	World Ranking
HPL	Large-scale Dense Matrix Computation Used for Top500	8,174(KNL) + 122(SKX)	13.93PF	17 th (Jun 2020)
HPCG	Large-scale Sparse Matrix Computation Similar to normal user applications	8,250(KNL)	0.39PF	10 th (Jun 2020)
Graph500	Breadth-First Search, Single-Source Shortest Paths	1,024(KNL)	1,456GTEPS 337GTEPS	7 th (Jun 2020) 3 rd (Jun 2020)
IO500	Various IO Workloads	2,048(KNL)	282.45	6 th (Jun 2020)

Nurion Production Status

- CPU usage are getting higher since system production started
- 63.1% in 2019, 77.7% in 2020, 88.3% in June 2020
- Large jobs requires more waiting time
- Schedular policy changed in July 2020 for large scale jobs
- Time to prepare the next supercomputer KISTI-6
- VASP, GROMACS, and LAMMPS have been widely used in Nurion

Necessity of MPI Intra-Node Communication Optimization

- HPC Benchmarks
 - HPL and HPCG
 - OpenMP + MPI implementation
- HPC Applications
 - VASP, GROMACS, and LAMMPS
 - MPI only or OpenMP(2-3 threads)+MPI implementation
 - Nurion compute node: Manycore processor, Intel Xeon Phi KNL 7250 (68 cores)
 - MPI Intra-node communication should be optimized
- MVAPICH2-X with XPMEM on Nurion
 - Interconnect: Intel OPA
 - Intra-node Communication Optimization
 - XPMEM (Cross-Process Memory Mapping)
 - Linux kernel module
 - Enables a process to map the memory of another process into its virtual address space
 - Optimized Asynchronous Progress

Performance Test on Nurion Supercomputer

Performance of Applications on Nurion Supercomputer

- Performance improvements of the following configurations
 - MPI only implementation
 - OpenMP + MPI hybrid implementation in intra-node level
- Benchmarks
 - OSU Micro-Benchmarks (OMB)
 - NAS Parallel Benchmarks (NPB)
- Applications
 - Direct Numerical Simulation Turbulent Boundary Layer (DNS-TBL)
 - Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)
 - Vienna Ab initio Simulation Package (VASP)
- Experimental environment
 - Intel Fortran/C++ compiler 19.0.5
 - MVAPICH2 2.3.1
 - MVAPICH2-X 2.3rc3
 - MV2_IBA_EAGER_THRESHOLD=200000
 - MV2_OPTIMIZED_ASYNC_PROGRESS=0

OMB: Inter-node communication (PPN=1)

- Collective communications on 2 8192 nodes (Message size: 64 bytes)
- Better performance on <u>MPI_Allreduce</u> and <u>MPI_Alltoall</u> in large scale
- Similar performance on MPI_Bcast, MPI_Scatter, and MPI_Allgather

OMB: Intra-node communication (PPN=64)

- Collective communications on single node (Message size: 64 bytes- 1MB)
- MVAPICH2-X better performance on every benchmarks
- Huge performance gain on <u>MPI_Scatter</u> and <u>MPI_Allreduce</u> with large message size

NPB: NAS Parallel Benchmarks

- Benchmarks are derived from computational fluid dynamics applications
- Experimental environment
 - Evaluation on 256-1936 nodes on normal queue (cache mode)
 - Problem Class = F (Grid size: $2560 \times 2560 \times 2560$), strong scaling
 - 1 OpenMP thread, PPN = 64, 16384-123904 MPI processes
- Performance evaluation
 - MVAPICH 2-X faster than MVAPICH 2 on BT (Block Tri-diagonal solver)
 - MVAPICH 2-X faster than MVAPICH 2 on SP (Scalar Penta-diagonal solver)
 - Similar performance on LU (Lower-Upper Gauss-Seidel solver)
 - MVAPICH 2-X shows better performance on the <u>large number of nodes</u> (1936 nodes)

DNS-TBL

- Direct Numerical Simulation Turbulent Boundary Layer*
- Velocity solver and pressure solver (Application of turbulent flow)
- Solve the continuity and incompressible <u>Navier-Stokes equation</u>
 - Second-order finite difference scheme on the 7-point stencil
 - Discretized into hepta-diagonal matrix in 3D, and broke into 3 tridiagonal matrices
 - Transformed pressure Poisson's equation into a single tridiagonal matrix by 2D FFT
- Optimized code for Intel[®] Xeon Phi[™] Processor, Fortran, FFTW 3.3.7 library

cience and Technology Informat

* J-H. Kang and Hoon Ryu, Acceleration of Turbulent Flow Simulations with Intel Xeon Phi(TM) Manycore Processors (IEEE CLUSTER 2017)

DNS-TBL: Experiment Results

- Experimental environment
 - Evaluation on 64-256 nodes on normal queue (cache mode)
 - 8193 X 401 X 8193 grids, 800 Reynolds number, 10 time step, strong scaling
 - 8 OpenMP thread, PPN = 8, 512-2048 MPI processes
- Performance evaluation
 - MVAPICH2-X faster than MVAPICH2 on velocity and pressure solver
 - Similar performance results on update velocity and pressure and others
 - MVAPICH2-X shows better performance on the <u>large number of nodes</u> (256 nodes)

LAMMPS

- Large-scale Atomic/Molecular Massively Parallel Simulator*
- Molecular dynamics simulator
- Rhodo benchmark: Rhodopsin protein in solvated lipid bilayer
- Pair, Bond, K-space, Neighbor, Output, Modify, and others
- C, Fixed version of 31Mar2017
 - Initialize by the neighbored 3D halo instead of ring communication pattern
 - Designed algorithms to have no difference on result values

* S. J. Plimpton *et al.*, Particle-Mesh Ewald and rRESPA for Parallel Molecular Dynamics Simulations (SIAM Conference on Parallel Processing for Scientific Computing, 1997)

LAMMPS: Experimental Results

- Experimental environment
 - Evaluation on 2-64 nodes on normal queue (cache mode)
 - 10X10X10 with 32M atoms, strong scaling
 - 1 OpenMP thread, PPN = 64, 128-4096 MPI processes
- Performance evaluation
 - MVAPICH2-X slower than MVAPICH2
 - Performance degradation on K-space, Neighbor part, parameter tuning is required

VASP

- Vienna Ab initio Simulation Package*
- Molecular dynamics simulator
- Projector augmented-wave(PAW) PBE: Si 05Jan2001
- VASP 5.4.4 version
- Ortho(Matrix multiplication), eddav(Matrix diagonalization), zheevx(subspace diagonalization), dfftw, fftw/mpi, other
- NCORE variable: 4 64

* Guangyu Sun *et al.*, Performance of the Vienna ab initio simulation package (VASP) in chemical applications (Journal of Molecular Structure: THEOCHEM, Vol. 624, April 2003)

VASP: Experimental Results

- Experimental environment
 - Evaluation on 1-64 nodes on normal queue (cache mode), strong scaling
 - 1 OpenMP thread, PPN = 64, 64-4096 MPI processes
- Performance evaluation
 - MVAPICH2-X shows better performance compared to MVAPICH2
 - Optimal point: 32 KNL nodes with NCORE=64
 - The performance difference increases as the number of nodes increases

Conclusion & Future Plan

- Performance depends on the experimental configuration
 - Performance improvement on the most application
 - Performance improvement depending on the <u>communication pattern</u> for each application
- MVAPICH2-X parameter tuning for each application
 - LAMMPS, GROMACS, Graph500
- MVAPICH2-X on Mellanox Infiniband
 - Neuron (GPU system): Mellanox Infiniband
 - Core-direct based collective offload, SHARP-based collective offload
- MVAPICH2-GDR on Neuron

