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Training Deep Convolutional Neural Networks

§ Iterative computations until error rate 
becomes sufficiently small

§ Each iteration is a statically fixed DAG of 
matrix computations
— Convolutions
— Matrix multiplications
— Element-wise filtering
— Reductions

§ Training sweeps a large collection of 
labeled samples by picking up a subset 
of samples (“mini-batch”)

while unconverged

pick a mini-batch

traverse DAG from input to output

traverse DAG from output to input

adjusts network parameters

endwhile

Aphex34 [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)], from Wikimedia Commons
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§ https://github.com/LLNL/lbann
§ Deep Neural Network training / 

classification
— Optimized distributed memory algorithms

• Including spatially decomposed convolutions

— Optimized asynchronous communication 
library

— Compose parallelism at multiple levels
— Optimize for strong & weak scaling

§ Unique HPC resources at scale
— InfiniBand or Omnipath interconnect 
— Tightly-coupled GPU accelerators
— Node-local NVRAM
— High bandwidth Parallel File System
— State-of-the art distributed linear algebra 

library

LBANN: Livermore Big Artificial Neural Network Toolkit

Rank 0 - N0 Rank 1 - N1 Rank 2 - N2 Rank 3 - N3 Rank 1 - N5 Rank 2 - N6 Rank 3 - N7Rank 0 - N4

Peer-wise communication
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https://github.com/LLNL/lbann
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Parallel Training is Critical to Meet Growing Compute Demand

§ Training is an extremely compute-
intensive task

§ And growing exponentially
— Doubling every 3.5 months

§ Distributed training is essential and is 
proven to be successful

Source: OpenAI, https://blog.openai.com/ai-and-compute/

Table 1: Large-scale ResNet-50 training results.

Hardware Chips Batch Optimizer BN Accuracy Time

Goyal et al. [6] P100 256 8192 Momentum Local 76.3% 1 hour
Smith et al. [16] TPU v2 128 8192 ! 16384 Momentum Local 76.1% 30 mins.
Akiba et al. [2] P100 1024 32768 RMS + Mom. Local 74.9% 15 mins.
Jia et al. [10] P40 1024 65536 LARS Local 76.2% 8.7 mins.

Baseline TPU v2 4 1024 Momentum Local 76.3% 8.0 hours
Ours TPU v2 256 16384 Momentum Local 75.1% 10 mins.
Ours TPU v2 256 32768 LARS Local 76.3% 8.5 mins.
Ours TPU v3 512 32768 LARS Local 76.4% 3.3 mins.
Ours TPU v3 1024 32768 LARS Distributed 76.3% 2.2 mins.

trained on ImageNet. We intentionally train for 90 epochs to be comparable with past results, though
we expect that methods to reduce the epochs necessary will further improve results. Our top results
using TPU Pods is summarized in Table 1, compared to other state-of-the-art results at the time of
publication. The training time is measured by the time from end of the just-in-time compilation of
the TPU binary to the write time of the final checkpoint file.

In summary, the techniques we utilize are:

• Mixed-precision training using bfloat 16.

• Learning rate scaling, warmup, and decay schedule.

• LARS optimizer to scale to 32768 batch size.

• Distributed batch normalization to control batch normalization batch sizes.

• Input pipeline optimizations to sustain the model throughput.

• Gradient summation with 2-D algorithm using torus links.

• Trained on a 1024 chip TPU v3 Pod using TensorFlow.

The systems techniques, including scalable 2-D gradient summation and input pipeline optimization,
allowed us to train on 1024 TPU v3 chips in 2.2 minutes with over 1.05 million images/second

training throughput. Distributed batch normalization in conjunction with the LARS enables us to
achieve this speed while maintaining 76.3% accuracy i.e. no accuracy drop. While our techniques
are evaluated on TPUs, they are general and apply to other accelerators as well.

6 Future Work

This paper explores scaling image classification using purely data parallelism. An alternative way to
scale up model training is to use a mix of data and model parallelism to shard the computation so that
we can utilize large clusters without using large global batch sizes. We would also like to explore
using distributed batch normalization to solve dense image segmentation problems where the global
batch size is fixed forcing the local batch size to be small per device. We would also like to extend
large scale techniques to other domains such as machine translation and generative models.
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Generalized Parallel Convolution in LBANN
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§ The DOE has large scientific 
data sets that are unlike any 
commercial data set
— May not be natural images
— Large samples
— May be generated by 

computational simulations

§ Even a mini-batch with just 
one sample may require 
more than O(10) GB of 
memory à Does not fit in a 
single GPU memory

Scaling up Deep Learning for Scientific Data

Mesh Tangling Detection Cosmological Analysis

O(1000)2 mesh O(100)3 volumetric data
[Mathuriya18]
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10x Better Prediction Accuracy with Large Samples

• Dataset: cosmoUniverse_2019_05_4pare
• https://portal.nersc.gov/project/m3363/cosmoUniverse_2019_05_4parE)

• CosmoFlow model [Mathuriya18] + batchnorm
• Prediction of Omega_m

Cosmological 
Simulation

512^3 training samples

128^3 split samples  

https://portal.nersc.gov/project/m3363/cosmoUniverse_2019_05_4parE/
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Scaling Performance beyond Data Parallel Training
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Strong Scaling Performance
Mini-batch size: 128; 128 GPUs to 2048 GPUs 

1024^2 training samples 

Lassen: Power 9 x 2 + Volta 100 x 4

>4x faster than the standard parallel method
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Parallel Training

§ Parallelism lies inside the training loop

§ Parallel convolution
— N: number of samples, C: number of 

channels, F: number of filters, H: height, W: 
width

— Input: images of NxCxHxW
— Filters: FxCxKxK
— Output: NxFxHxW
— Partitioning the samples is the most 

common approach

while unconverged

pick a mini-batch

traverse DAG from input to output

traverse DAG from output to input

adjusts network parameters

endwhile

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-POST-754754.
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Sample Parallelism

Spatial Parallelism

An example case with nested partitioning along sample and spatial domains

Not parallelizable with standard SGD

Parallelizable 
with some 
comm.
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Sample-Parallel Convolution

§ Split the samples of a mini-batch 
between processes (or GPUs)

§ Each process computes independently 
with reductions of gradients

§ Implemented in many of DL frameworks 
such as LBANN, TensorFlow, PyTorch, 
Chainer, etc.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-POST-754754.
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Scalability Limitations of Sample-Parallel Training

§ Limited memory capacity

— Neural networks are becoming deeper

— Sample size is becoming bigger when dealing 

with scientific data rather than cats and 

dogs (^._.^)

— Does not fit GPU memory

§ Limited parallelism

— The degree of parallelism depends on the 

number of samples in a mini-batch (i.e., N)

— Can’t make N arbitrary large as learning 

accuracy significantly drops

— Usually, N is O(100)-O(1000) 256 512 1k 2k 4k 8k 16k 32k 64k

mini-batch size
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Goyal et al., Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour, 2017.

3D cosmological simulation by Mathuriya et al. 
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Images
!×#×$×%

Filters
&×#×'×'

Feature maps
!×&×$×%

Rank 0 Rank 1

Partitioning a mini-batch 
(Sample Parallelism)

Partitioning each sample 
(Spatial Parallelism)

Parallelism is not Limited to the Sample Dimension 
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§ Convolution/pooling needs adjacent data for each point à Halo exchange

§ Halo size depends on filter size and number of channels

§ Also on stride and dilation
— Does not depend on grouped convolution

§ Pooling involves a “reverse halo exchange”
— Push/accumulate values to remote

Boundary Data Exchange

P0 P1

P2 P3

P0 P1

P2 P3

max max max

max

max

P0 P1

P2 P3
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§ Sample and spatial parallelisms are orthogonal and can be used simultaneously

§ Can use !" ∗ !$ GPUs

§ If N > #GPUs && sizeof(activations+weights) < GPU memory size
— Use sample parallel only

§ Otherwise:
— Spatial parallel to fit GPU memory

— Sample parallel up to N

§ Example
— Spatial parallel with intra-node 4 GPUs

of Sierra nodes

— Sample parallel with as many nodes as 

the mini-batch size

Hybrid Parallel Convolution

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-POST-754754.
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§ Extend the LBANN toolkit (https://github.com/LLNL/lbann)

— Annotate layers with parallel execution strategies

§ Distconv: Custom distributed tensor library for convolution
— Similar approach as stencil libraries

§ Aluminum for communication (https://github.com/LLNL/Aluminum)
— CUDA peer-to-peer intra-node
— Aluminum’s custom MPI+CUDA backend for inter-node
— Collective routines with MPI and NCCL

§ NVIDIA cuDNN for CNN GPU kernels

Implementation

https://github.com/LLNL/lbann
https://github.com/LLNL/Aluminum
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Optimizing Halo Exchange

§ Standard MPI + CUDA communication model is 

inefficient for CNNs

— GPU stream synchronization before MPI_Send is 

mandatory

— GPU stream synchronization can be very costly

— Can’t keep issuing asynchronous GPU tasks, causing 

GPU kernel launch overhead (~10 us) 

§ Not an issue when doing weak scaling

— Common in scientific computing

§ Only strong scaling is possible with CNNs

Sending data from GPU

do_something<<<,,,st>>>(…)

(cudaMemcpyDeviceToHost)

cudaStreamSynchronize(st)

MPI_Send()

do_something<<<,,,st>>>(…)
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Asynchronous Inter-Node Data Transfer

§ CUDA stream memory operations allow 
GPU data transfer without GPU 
synchronization

§ No GPU synchronization

§ Implemented in the Aluminum
communication library

do_something<<<,,,st>>>(…)

(cudaMemcpyDeviceToHost)

cudaEventRecord(ev, st)

cuStreamWaitValue32(st, …)

do_something<<<,,,st>>>(…)

Sendrecv with GPU buffers

while (cudaEventQuery(ev)) {}

MPI_Sendrecv()

(cudaMemcpyHostToDevice)

cuStreamWriteValue32(st,…)

Main thread

Comm thread
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§ Generic C++ interface to MPI, NCCL, custom algorithms
— Asynchrony via dedicated communication engine

§ Communication is “just another kernel” (GPU-centric, like NCCL)
— Runtime handles all details (like non-blocking MPI– “progress is magic”)

§ Associate a “stream of computation” with a communicator
— CUDA stream; implicit on CPU, but could be a (lightweight) thread, …
— Aluminum ensures communication does not begin until data on the stream is ready

§ Blocking operations (like MPI_Allreduce):
— Ensure no subsequent operations start until communication complete
— Block only the associated stream

§ Non-blocking operations (like MPI_Iallreduce):
— Block no stream
— Explicit completion operation (like MPI_Wait)

§ https://github.com/llnl/aluminum

Aluminum: GPU-Centric Communication Library
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Aluminum

// Synchronous MPI:
for (int step = 0; step < num_steps; ++step) {
load_mini_batch();
for (auto&& layer : layers) layer.forward();
for (auto&& layer : layers) {
layer.backprop_data();
if (layer.has_weights()) {
layer.backprop_filter();
cudaStreamSynchronize(stream);
MPI_Allreduce(MPI_IN_PLACE, layer.weights,
layer.size, MPI_FLOAT, MPI_SUM, comm);
layer.sgd_step();
}
}
}

// Aluminum:
for (int step = 0; step < num_steps; ++step) {
load_mini_batch();
for (auto&& layer : layers) layer.forward();
for (auto&& layer : layers) {
if (layer.has_weights()) {
layer.backprop_filter();
Al::NonblockingAllreduce<Al::MPICUDABackend>(
layer.weights, layer.size,
Al::ReductionOperator::sum, comm, layer.req);

}
layer.backprop_data();

}
for (auto&& layer : layers) {
Al::Wait<Al::MPICUDABackend>(layer.req);
layer.sgd_step();

}
}

CPU

GPU

Launch
back-data

Launch
back-filter Synchronize Allreduce Launch

back-data

back-data back-filter back-data

CPU

GPU

Launch
back-filter

Launch
back-data

Launch
allreduce

Launch
back-data

back-filter back-data back-data

Allreduce
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Evaluation

§ Lassen - 700 nodes
— 2x POWER9 + 4X V100 + NVLink2 + 2x 

InfiniBand EDR
— Experiments use up to 2048 GPUs

§ cuDNN v7.5.1

§ MVAPICH2-GDR 2.3.2

§ Spectrum MPI/2019.01.30

§ Mesh tangling data:
— 1K: 1024 x 1024 x 18
— 2K: 2048 x 2048 x 18

§ Same spatial distribution for all layers

NVLink	2.0	-	50GB/s	(bidirec7onal)

Mellanox	EDR	

Infiniband	

Adapter

2x	12.5GB/s

X	Bus	(64GB/s)

150GB/s	 150GB/s	

150GB/s	

PCIe	Gen4.0	x8	/	

CAPI	2.0	(16GB/s)
PCIe	Gen4.0	x8	/	

CAPI	2.0	(16GB/s)

170GB/s
128GB	

DDR4	DRAM

170GB/s
128GB	

DDR4	DRAM

IBM	Power	9 IBM	Power	9

Nvidia	Volta	V100 Nvidia	Volta	V100

150GB/s	 150GB/s	

150GB/s	Nvidia	Volta	V100 Nvidia	Volta	V100
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Performance of Spatial-Parallel Convolution

Convolution of a single 1024^2 image with 16 channels and 16 filters of 3x3 kernels

1GPU: 0.533 ms
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End-to-End Hybrid Parallel Training of Mesh Model

§ 2048^2 mesh tangling model
— Needs 2 GPUs per sample at least

§ Weak scaling with sample parallelism
— Excellent scaling by overlapped gradient 

allreduces
— Small increase at 2048 GPUs due to 

decreased work to hide allreduces

§ Strong scaling with spatial parallelism
— Close to 4x with 16 GPUs
— Speedup is smaller at later layers due to 

decreasing spatial dimensions

Strong scaling with fixed minibatch

Decreasing work to 
hide allreduces
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§ Generalized parallel convolution
— Sample/spatial/channel/filter parallelism
— Address memory capacity constraint à Enables more accurate models
— Allow strong scaling à Faster training time

§ LBANN: Scalable deep learning software stack for large-scale science and engineering 
problems
— https://github.com/llnl/lbann
— Aluminum: GPU-centric communication library (https://github.com/llnl/aluminum)
— Implements the generalized parallel convolution algorithms

Conclusion
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§ Channel/filter parallelism
— Early results to appear at SC19

§ Performance modeling to identify optimal parallelization strategies

§ Optimizing performance of reading training samples

§ References
— N. Dryden, N. Maruyama, T. Moon, T. Benson, A. Yoo, M. Snir, and B Van Essen, "Aluminum: An 

Asynchronous, GPU-Aware Communication Library Optimized for Large-Scale Training of Deep Neural 
Networks on HPC Systems," Workshop on Machine Learning in HPC Environments (MLHPC'18), 2018.

— N. Dryden, N. Maruyama, T. Benson, T. Moon, M. Snir, and B Van Essen, "Improving Strong-Scaling of CNN 
Training by Exploiting Finer-Grained Parallelism," International Parallel and Distributed Processing 
Symposium (IPDPS'19), 2019

— N. Dryden, N. Maruyama, T. Moon, T. Benson,, M. Snir, and B Van Essen, ”Channel and Filter Parallelism 
for Large-Scale  CNN Training," International Conference for High Performance Computing, Networking, 
Storage, and Analysis (SC’19), 2019 (to appear)

Ongoing Work
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