
LLNL-PRES-787570
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-
AC52-07NA27344. Lawrence Livermore National Security, LLC

Scalable Distributed Training of Large Neural
Networks with LBANN
Naoya Maruyama
maruyama3@llnl.gov

7th Annual MVAPICH User Group Meeting
August 20, 2019

2
LLNL-PRES-787570

§ Nikoli Dryden (UIUC / LLNL)

§ Yosuke Oyama (Tokyo Tech / LLNL)

§ Brian Van Essen (LLNL)

§ Tom Benson (LLNL)

§ Tim Moon (LLNL)

§ LBANN Team

Acknowledgement

3
LLNL-PRES-787570

Training Deep Convolutional Neural Networks

§ Iterative computations until error rate
becomes sufficiently small

§ Each iteration is a statically fixed DAG of
matrix computations
— Convolutions
— Matrix multiplications
— Element-wise filtering
— Reductions

§ Training sweeps a large collection of
labeled samples by picking up a subset
of samples (“mini-batch”)

while unconverged

pick a mini-batch

traverse DAG from input to output

traverse DAG from output to input

adjusts network parameters

endwhile

Aphex34 [CC BY-SA 4.0 (https://creativecommons.org/licenses/by-sa/4.0)], from Wikimedia Commons

4
LLNL-PRES-787570

§ https://github.com/LLNL/lbann
§ Deep Neural Network training /

classification
— Optimized distributed memory algorithms

• Including spatially decomposed convolutions

— Optimized asynchronous communication
library

— Compose parallelism at multiple levels
— Optimize for strong & weak scaling

§ Unique HPC resources at scale
— InfiniBand or Omnipath interconnect
— Tightly-coupled GPU accelerators
— Node-local NVRAM
— High bandwidth Parallel File System
— State-of-the art distributed linear algebra

library

LBANN: Livermore Big Artificial Neural Network Toolkit

Rank 0 - N0 Rank 1 - N1 Rank 2 - N2 Rank 3 - N3 Rank 1 - N5 Rank 2 - N6 Rank 3 - N7Rank 0 - N4

Peer-wise communication

NVRAM NVRAMNVRAMNVRAM

DP0 MB0
Input Data Partition 0 from Lustre

DP0 MB1 DP0 MB2 DP0 MB3

NVRAM NVRAMNVRAMNVRAM

DP1 MB0
Input Data Partition 1 from Lustre

DP1 MB1 DP1 MB2 DP1 MB3

Model Replica 0 Model Replica 1

Model M0 - Layer H1

Model M0 - Layer H2

Model M0 - Input Layer

Model M1 - Layer H1

Model M1 - Layer H2

Model M1 - Input Layer

https://github.com/LLNL/lbann

5
LLNL-PRES-787570

Parallel Training is Critical to Meet Growing Compute Demand

§ Training is an extremely compute-
intensive task

§ And growing exponentially
— Doubling every 3.5 months

§ Distributed training is essential and is
proven to be successful

Source: OpenAI, https://blog.openai.com/ai-and-compute/

Table 1: Large-scale ResNet-50 training results.

Hardware Chips Batch Optimizer BN Accuracy Time

Goyal et al. [6] P100 256 8192 Momentum Local 76.3% 1 hour
Smith et al. [16] TPU v2 128 8192 ! 16384 Momentum Local 76.1% 30 mins.
Akiba et al. [2] P100 1024 32768 RMS + Mom. Local 74.9% 15 mins.
Jia et al. [10] P40 1024 65536 LARS Local 76.2% 8.7 mins.

Baseline TPU v2 4 1024 Momentum Local 76.3% 8.0 hours
Ours TPU v2 256 16384 Momentum Local 75.1% 10 mins.
Ours TPU v2 256 32768 LARS Local 76.3% 8.5 mins.
Ours TPU v3 512 32768 LARS Local 76.4% 3.3 mins.
Ours TPU v3 1024 32768 LARS Distributed 76.3% 2.2 mins.

trained on ImageNet. We intentionally train for 90 epochs to be comparable with past results, though
we expect that methods to reduce the epochs necessary will further improve results. Our top results
using TPU Pods is summarized in Table 1, compared to other state-of-the-art results at the time of
publication. The training time is measured by the time from end of the just-in-time compilation of
the TPU binary to the write time of the final checkpoint file.

In summary, the techniques we utilize are:

• Mixed-precision training using bfloat 16.

• Learning rate scaling, warmup, and decay schedule.

• LARS optimizer to scale to 32768 batch size.

• Distributed batch normalization to control batch normalization batch sizes.

• Input pipeline optimizations to sustain the model throughput.

• Gradient summation with 2-D algorithm using torus links.

• Trained on a 1024 chip TPU v3 Pod using TensorFlow.

The systems techniques, including scalable 2-D gradient summation and input pipeline optimization,
allowed us to train on 1024 TPU v3 chips in 2.2 minutes with over 1.05 million images/second

training throughput. Distributed batch normalization in conjunction with the LARS enables us to
achieve this speed while maintaining 76.3% accuracy i.e. no accuracy drop. While our techniques
are evaluated on TPUs, they are general and apply to other accelerators as well.

6 Future Work

This paper explores scaling image classification using purely data parallelism. An alternative way to
scale up model training is to use a mix of data and model parallelism to shard the computation so that
we can utilize large clusters without using large global batch sizes. We would also like to explore
using distributed batch normalization to solve dense image segmentation problems where the global
batch size is fixed forcing the local batch size to be small per device. We would also like to extend
large scale techniques to other domains such as machine translation and generative models.

Acknowledgements

We would like to acknowledge Bjarke Roune and Hyoukjoong Lee for their contributions to distributed
gradient summation. We would like to thank Blake Hechtman, David Majnemer, Brennan Saeta,
Sourabh Bajaj, Naveen Kumar, Jonathan Hseu and Frank Chen for technical support with compilers
and systems libraries, Geroge Dahl for his expertise on large batch training, Yang You for support
with the LARS optimizer and Pieter-Jan Kindermans for help with the ResNet-50 implementation.

6

Ying et al., “Image Classification at Supercomputer Scale,” Systems for ML
Workshop @ NIPS 2018

Generalized Parallel Convolution in LBANN

Sample (Data) Parallelism

Allreduce

Spatial
Parallelism

Channel/Filter
Parallelism

IPDPS’19

Halo exchange

O(10) GPUs

MPI/Custom

H

H

Input

H

H

C/4
W

C/2
W

Allgather

Allgather

F0 F1

F2 F3

F0 F1

F2 F3

Filters

H

H

Activations

H

H

C/2
W

C/4
W

Reduce-scatter

Reduce-scatter

Allreduce

O(100-1000) GPUs

NCCL/MPI

Allgather/ReduceScatter

O(10) GPUs

NCCL/MPI

SC’19

7
LLNL-PRES-787570

§ The DOE has large scientific
data sets that are unlike any
commercial data set
— May not be natural images
— Large samples
— May be generated by

computational simulations

§ Even a mini-batch with just
one sample may require
more than O(10) GB of
memory à Does not fit in a
single GPU memory

Scaling up Deep Learning for Scientific Data

Mesh Tangling Detection Cosmological Analysis

O(1000)2 mesh O(100)3 volumetric data
[Mathuriya18]

8
LLNL-PRES-787570

10x Better Prediction Accuracy with Large Samples

• Dataset: cosmoUniverse_2019_05_4pare
• https://portal.nersc.gov/project/m3363/cosmoUniverse_2019_05_4parE)

• CosmoFlow model [Mathuriya18] + batchnorm
• Prediction of Omega_m

Cosmological
Simulation

512^3 training samples

128^3 split samples

https://portal.nersc.gov/project/m3363/cosmoUniverse_2019_05_4parE/

9
LLNL-PRES-787570

Scaling Performance beyond Data Parallel Training

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

1 2 4 8 16

Tr
ai

n
in

g
T

im
e

 S
p

e
e

d
u

p

#GPUs per sample

Strong Scaling Performance
Mini-batch size: 128; 128 GPUs to 2048 GPUs

1024^2 training samples

Lassen: Power 9 x 2 + Volta 100 x 4

>4x faster than the standard parallel method

10
LLNL-PRES-787570

Parallel Training

§ Parallelism lies inside the training loop

§ Parallel convolution
— N: number of samples, C: number of

channels, F: number of filters, H: height, W:
width

— Input: images of NxCxHxW
— Filters: FxCxKxK
— Output: NxFxHxW
— Partitioning the samples is the most

common approach

while unconverged

pick a mini-batch

traverse DAG from input to output

traverse DAG from output to input

adjusts network parameters

endwhile

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-POST-754754.

Images
!×#×$×%

Filters
&×#×'×'

Feature maps
!×&×$×%

Sample Parallelism

Spatial Parallelism

An example case with nested partitioning along sample and spatial domains

Not parallelizable with standard SGD

Parallelizable
with some
comm.

11
LLNL-PRES-787570

Sample-Parallel Convolution

§ Split the samples of a mini-batch
between processes (or GPUs)

§ Each process computes independently
with reductions of gradients

§ Implemented in many of DL frameworks
such as LBANN, TensorFlow, PyTorch,
Chainer, etc.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-POST-754754.

Images
!×#×$×%

Filters
&×#×'×'

Feature maps
!×&×$×%

Sample Parallelism

Spatial Parallelism

An example case with nested partitioning along sample and spatial domains

12
LLNL-PRES-787570

Scalability Limitations of Sample-Parallel Training

§ Limited memory capacity

— Neural networks are becoming deeper

— Sample size is becoming bigger when dealing

with scientific data rather than cats and

dogs (^._.^)

— Does not fit GPU memory

§ Limited parallelism

— The degree of parallelism depends on the

number of samples in a mini-batch (i.e., N)

— Can’t make N arbitrary large as learning

accuracy significantly drops

— Usually, N is O(100)-O(1000) 256 512 1k 2k 4k 8k 16k 32k 64k

mini-batch size

20

25

30

35

40

Im
a

g
e

N
e

t
to

p
-1

 v
a

lid
a

tio
n

 e
rr

o
r

Goyal et al., Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour, 2017.

3D cosmological simulation by Mathuriya et al.

13
LLNL-PRES-787570

Images
!×#×$×%

Filters
&×#×'×'

Feature maps
!×&×$×%

Rank 0 Rank 1

Partitioning a mini-batch
(Sample Parallelism)

Partitioning each sample
(Spatial Parallelism)

Parallelism is not Limited to the Sample Dimension

14
LLNL-PRES-787570

§ Convolution/pooling needs adjacent data for each point à Halo exchange

§ Halo size depends on filter size and number of channels

§ Also on stride and dilation
— Does not depend on grouped convolution

§ Pooling involves a “reverse halo exchange”
— Push/accumulate values to remote

Boundary Data Exchange

P0 P1

P2 P3

P0 P1

P2 P3

max max max

max

max

P0 P1

P2 P3

18
LLNL-PRES-787570

§ Sample and spatial parallelisms are orthogonal and can be used simultaneously

§ Can use !" ∗ !$ GPUs

§ If N > #GPUs && sizeof(activations+weights) < GPU memory size
— Use sample parallel only

§ Otherwise:
— Spatial parallel to fit GPU memory

— Sample parallel up to N

§ Example
— Spatial parallel with intra-node 4 GPUs

of Sierra nodes

— Sample parallel with as many nodes as

the mini-batch size

Hybrid Parallel Convolution

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-POST-754754.

Images
!×#×$×%

Filters
&×#×'×'

Feature maps
!×&×$×%

Sample Parallelism

Spatial Parallelism

An example case with nested partitioning along sample and spatial domains

20
LLNL-PRES-787570

§ Extend the LBANN toolkit (https://github.com/LLNL/lbann)

— Annotate layers with parallel execution strategies

§ Distconv: Custom distributed tensor library for convolution
— Similar approach as stencil libraries

§ Aluminum for communication (https://github.com/LLNL/Aluminum)
— CUDA peer-to-peer intra-node
— Aluminum’s custom MPI+CUDA backend for inter-node
— Collective routines with MPI and NCCL

§ NVIDIA cuDNN for CNN GPU kernels

Implementation

https://github.com/LLNL/lbann
https://github.com/LLNL/Aluminum

21
LLNL-PRES-787570

Optimizing Halo Exchange

§ Standard MPI + CUDA communication model is

inefficient for CNNs

— GPU stream synchronization before MPI_Send is

mandatory

— GPU stream synchronization can be very costly

— Can’t keep issuing asynchronous GPU tasks, causing

GPU kernel launch overhead (~10 us)

§ Not an issue when doing weak scaling

— Common in scientific computing

§ Only strong scaling is possible with CNNs

Sending data from GPU

do_something<<<,,,st>>>(…)

(cudaMemcpyDeviceToHost)

cudaStreamSynchronize(st)

MPI_Send()

do_something<<<,,,st>>>(…)

23
LLNL-PRES-787570

Asynchronous Inter-Node Data Transfer

§ CUDA stream memory operations allow
GPU data transfer without GPU
synchronization

§ No GPU synchronization

§ Implemented in the Aluminum
communication library

do_something<<<,,,st>>>(…)

(cudaMemcpyDeviceToHost)

cudaEventRecord(ev, st)

cuStreamWaitValue32(st, …)

do_something<<<,,,st>>>(…)

Sendrecv with GPU buffers

while (cudaEventQuery(ev)) {}

MPI_Sendrecv()

(cudaMemcpyHostToDevice)

cuStreamWriteValue32(st,…)

Main thread

Comm thread

24
LLNL-PRES-787570

§ Generic C++ interface to MPI, NCCL, custom algorithms
— Asynchrony via dedicated communication engine

§ Communication is “just another kernel” (GPU-centric, like NCCL)
— Runtime handles all details (like non-blocking MPI– “progress is magic”)

§ Associate a “stream of computation” with a communicator
— CUDA stream; implicit on CPU, but could be a (lightweight) thread, …
— Aluminum ensures communication does not begin until data on the stream is ready

§ Blocking operations (like MPI_Allreduce):
— Ensure no subsequent operations start until communication complete
— Block only the associated stream

§ Non-blocking operations (like MPI_Iallreduce):
— Block no stream
— Explicit completion operation (like MPI_Wait)

§ https://github.com/llnl/aluminum

Aluminum: GPU-Centric Communication Library

25
LLNL-PRES-787570

Aluminum

// Synchronous MPI:
for (int step = 0; step < num_steps; ++step) {
load_mini_batch();
for (auto&& layer : layers) layer.forward();
for (auto&& layer : layers) {
layer.backprop_data();
if (layer.has_weights()) {
layer.backprop_filter();
cudaStreamSynchronize(stream);
MPI_Allreduce(MPI_IN_PLACE, layer.weights,
layer.size, MPI_FLOAT, MPI_SUM, comm);
layer.sgd_step();
}
}
}

// Aluminum:
for (int step = 0; step < num_steps; ++step) {
load_mini_batch();
for (auto&& layer : layers) layer.forward();
for (auto&& layer : layers) {
if (layer.has_weights()) {
layer.backprop_filter();
Al::NonblockingAllreduce<Al::MPICUDABackend>(
layer.weights, layer.size,
Al::ReductionOperator::sum, comm, layer.req);

}
layer.backprop_data();

}
for (auto&& layer : layers) {
Al::Wait<Al::MPICUDABackend>(layer.req);
layer.sgd_step();

}
}

CPU

GPU

Launch
back-data

Launch
back-filter Synchronize Allreduce Launch

back-data

back-data back-filter back-data

CPU

GPU

Launch
back-filter

Launch
back-data

Launch
allreduce

Launch
back-data

back-filter back-data back-data

Allreduce

26
LLNL-PRES-787570

Evaluation

§ Lassen - 700 nodes
— 2x POWER9 + 4X V100 + NVLink2 + 2x

InfiniBand EDR
— Experiments use up to 2048 GPUs

§ cuDNN v7.5.1

§ MVAPICH2-GDR 2.3.2

§ Spectrum MPI/2019.01.30

§ Mesh tangling data:
— 1K: 1024 x 1024 x 18
— 2K: 2048 x 2048 x 18

§ Same spatial distribution for all layers

NVLink	2.0	-	50GB/s	(bidirec7onal)

Mellanox	EDR	

Infiniband	

Adapter

2x	12.5GB/s

X	Bus	(64GB/s)

150GB/s	 150GB/s	

150GB/s	

PCIe	Gen4.0	x8	/	

CAPI	2.0	(16GB/s)
PCIe	Gen4.0	x8	/	

CAPI	2.0	(16GB/s)

170GB/s
128GB	

DDR4	DRAM

170GB/s
128GB	

DDR4	DRAM

IBM	Power	9 IBM	Power	9

Nvidia	Volta	V100 Nvidia	Volta	V100

150GB/s	 150GB/s	

150GB/s	Nvidia	Volta	V100 Nvidia	Volta	V100

27
LLNL-PRES-787570

Performance of Spatial-Parallel Convolution

Convolution of a single 1024^2 image with 16 channels and 16 filters of 3x3 kernels

1GPU: 0.533 ms

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

4 8 16 32

E
xe

cu
ti

o
n

 T
im

e
 (

m
s)

#GPUs

SMPI

MV2-GDR

Aluminum

MV2-GDR is faster
than Spectrum MPI

Aluminum is faster
than MV2-GDR

Up to 5x speedup

28
LLNL-PRES-787570

End-to-End Hybrid Parallel Training of Mesh Model

§ 2048^2 mesh tangling model
— Needs 2 GPUs per sample at least

§ Weak scaling with sample parallelism
— Excellent scaling by overlapped gradient

allreduces
— Small increase at 2048 GPUs due to

decreased work to hide allreduces

§ Strong scaling with spatial parallelism
— Close to 4x with 16 GPUs
— Speedup is smaller at later layers due to

decreasing spatial dimensions

Strong scaling with fixed minibatch

Decreasing work to
hide allreduces

29
LLNL-PRES-787570

§ Generalized parallel convolution
— Sample/spatial/channel/filter parallelism
— Address memory capacity constraint à Enables more accurate models
— Allow strong scaling à Faster training time

§ LBANN: Scalable deep learning software stack for large-scale science and engineering
problems
— https://github.com/llnl/lbann
— Aluminum: GPU-centric communication library (https://github.com/llnl/aluminum)
— Implements the generalized parallel convolution algorithms

Conclusion

30
LLNL-PRES-787570

§ Channel/filter parallelism
— Early results to appear at SC19

§ Performance modeling to identify optimal parallelization strategies

§ Optimizing performance of reading training samples

§ References
— N. Dryden, N. Maruyama, T. Moon, T. Benson, A. Yoo, M. Snir, and B Van Essen, "Aluminum: An

Asynchronous, GPU-Aware Communication Library Optimized for Large-Scale Training of Deep Neural
Networks on HPC Systems," Workshop on Machine Learning in HPC Environments (MLHPC'18), 2018.

— N. Dryden, N. Maruyama, T. Benson, T. Moon, M. Snir, and B Van Essen, "Improving Strong-Scaling of CNN
Training by Exploiting Finer-Grained Parallelism," International Parallel and Distributed Processing
Symposium (IPDPS'19), 2019

— N. Dryden, N. Maruyama, T. Moon, T. Benson,, M. Snir, and B Van Essen, ”Channel and Filter Parallelism
for Large-Scale CNN Training," International Conference for High Performance Computing, Networking,
Storage, and Analysis (SC’19), 2019 (to appear)

Ongoing Work

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither the United
States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States government or Lawrence Livermore National Security,
LLC. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government
or Lawrence Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

