Performance of Applications on Comet Nodes Utilizing MVAPICH2-GDR, Singularity, and MVAPICH2-Virt

INDIANA UNIVERSITY

This work supported by the National Science Foundation, award ACI-1341698.

Comet: System Characteristics

- Total peak flops ~2.1 PF
- Dell primary integrator
 - Intel Haswell processors w/ AVX2
 - Mellanox FDR InfiniBand
- 1,944 standard compute nodes (46,656 cores)
 - Dual CPUs, each 12-core, 2.5 GHz
 - 128 GB DDR4 2133 MHz DRAM
 - 2*160GB GB SSDs (local disk)
- 72 GPU nodes
 - 36 nodes same as standard nodes plus Two NVIDIA K80 cards, each with dual Kepler3 GPUs
 - 36 nodes with 2 14-core Intel Broadwell CPUs plus 4 NVIDIA P100 GPUs
- 4 large-memory nodes
 - 1.5 TB DDR4 1866 MHz DRAM
 - Four Haswell processors/node
 - 64 cores/node

- Hybrid fat-tree topology
 - FDR (56 Gbps) InfiniBand
 - Rack-level (72 nodes, 1,728 cores) full bisection bandwidth
 - 4:1 oversubscription cross-rack
- Performance Storage (Aeon)
 - 7.6 PB, 200 GB/s; Lustre
 - Scratch & Persistent Storage segments
- Durable Storage (Aeon)
 - 6 PB, 100 GB/s; Lustre
 - Automatic backups of critical data
- Home directory storage
- Virtual Cluster Capability
- 100 Gbps external connectivity to Internet2 & ESNet

Comet K80 node architecture

	GPU0	GPU1	GPU2	GPU3	m1x4_0	CPU Affinity
GPU0	X	PIX	SOC	SOC	SOC	0-0, 2-2, 4-4, 6-6, 8-8, 10-10, 12-12, 14-14, 16-16, 18-18, 20-20, 22-22
GPU1	PIX	X	SOC	SOC	SOC	0-0,2-2,4-4,6-6,8-8,10-10,12-12,14-14,16-16,18-18,20-20,22-22
GPU2	SOC	SOC	X	PIX	PHB	1-1,3-3,5-5,7-7,9-9,11-11,13-13,15-15,17-17,19-19,21-21,23-23
GPU3	SOC	SOC	PIX	X	PHB	1-1,3-3,5-5,7-7,9-9,11-11,13-13,15-15,17-17,19-19,21-21,23-23
m1x4_0	SOC	SOC	PHB	PHB	X	

Legend:

```
X = Self
SOC = Connection traversing PCIe as well as the SMP link between CPU sockets(e.g. QPI)
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe switches (without traversing the PCIe Host Bridge)
PIX = Connection traversing a single PCIe switch
NV# = Connection traversing a bonded set of # NVLinks
```

- 4 GPUs per node
- GPUs (0,1) and (2,3) can do P2P communication
- Mellanox InfiniBand adapter associated with second socket (GPUs 2, 3)

OSU Latency (osu_latency) Benchmark Intra-node, K80 nodes

- Latency between GPU 2, GPU 3: 2.82 μs
- Latency between GPU 1, GPU 2: 3.18 μs

OSU Latency (osu_latency) Benchmark Inter-node, K80 nodes

- Latency between GPU 2, process bound to CPU 1 on both nodes: 2.27 μ s
- Latency between GPU 2, process bound to CPU 0 on both nodes: 2.47 μ s
- Latency between GPU 0 , process bound to CPU 0 on both nodes: 2.43 μ s

Comet P100 node architecture

	GPU0	GPU1	GPU2	GPU3	m1x4_0	CPU Affinity
GPU0	X	PIX	SOC	SOC	PHB	0-0,2-2,4-4,6-6,8-8,10-10,12-12,14-14,16-16,18-18,20-20,22-22,24-24,26-26
GPU1	PIX	X	SOC	SOC	PHB	0-0,2-2,4-4,6-6,8-8,10-10,12-12,14-14,16-16,18-18,20-20,22-22,24-24,26-26
GPU2	SOC	SOC	X	PIX	SOC	1-1,3-3,5-5,7-7,9-9,11-11,13-13,15-15,17-17,19-19,21-21,23-23,25-25,27-27
GPU3	SOC	SOC	PIX	X	SOC	1-1,3-3,5-5,7-7,9-9,11-11,13-13,15-15,17-17,19-19,21-21,23-23,25-25,27-27
mlx4 0	PHB	PHB	SOC	SOC	X	

Legend:

```
X = Self
SOC = Connection traversing PCIe as well as the SMP link between CPU sockets(e.g. QPI)
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe switches (without traversing the PCIe Host Bridge)
PIX = Connection traversing a single PCIe switch
NV# = Connection traversing a bonded set of # NVLinks
```

- 4 GPUs per node
- GPUs (0,1) and (2,3) can do P2P communication
- Mellanox InfiniBand adapter associated with first socket (GPUs 0, 1)

OSU Bandwidth (osu_bw) Benchmark Intra-node, P100 nodes

OSU Latency (osu_latency) Benchmark Inter-node, P100 nodes

- Latency between GPU 0, process bound to CPU 0 on both nodes: 2.17 μ s
- Latency between GPU 2, process bound to CPU 1 on both nodes: 2.35 μ s

OSU Latency (osu_latency) Benchmark Intra-node, P100 nodes

- Latency between GPU 0,1; MPI tasks pinned to cores 0:2
- M M: CUDA Managed (or Unified) memory allowing a common memory allocation for GPU, CPU
- MVAPICH2 to perform communications directly from managed buffers

osu_alltoall Benchmark Intra-node, P100 nodes

- Alltoall with 4 tasks (cores 0:2:1:3), 4 GPUs
- CUDA Managed (or Unified) memory allowing a common memory allocation for GPU, CPU
- MVAPICH2 to perform communications directly from managed buffers

HOOMD-blue Benchmarks using MVAPICH2-GDR

- HOOMD-blue is a *general-purpose* particle simulation toolkit
- Results for Hexagon benchmark.

References:

- HOOMD-blue web page: http://glotzerlab.engin.umich.edu/hoomd-blue/
- HOOMD-blue Benchmarks page: http://glotzerlab.engin.umich.edu/hoomd-blue/benchmarks.html
- J. A. Anderson, C. D. Lorenz, and A. Travesset. General purpose molecular dynamics simulations fully implemented on graphics processing units *Journal of Computational Physics* 227(10): 5342-5359, May 2008. 10.1016/j.jcp.2008.01.047
- J. Glaser, T. D. Nguyen, J. A. Anderson, P. Liu, F. Spiga, J. A. Millan, D. C. Morse, S. C. Glotzer. Strong scaling of general-purpose molecular dynamics simulations on GPUs Computer Physics Communications 192: 97-107, July 2015. 10.1016/j.cpc.2015.02.028

HOOMD-Blue: Hexagon Benchmark Strong scaling on K80 nodes

OSU-Caffe, CIFAR10 Quick on K80 nodes MVAPICH2-GDR/2.2, CUDA/7.5

Virtualization on Comet

Containers using Singularity (http://singularity.lbl.gov)

- Migrate complex software stacks from their campus to Comet.
- Singularity runs in user space, and requires very little special support

 in fact it actually reduces it in some cases.
- Applications include: Tensorflow, Torch, Fenics, and custom user applications.
- Docker images can be imported into Singularity
- Currently used by ~20 research groups on Comet.

Comet Virtual Clusters

- KVM based full virtualization with SRIOV support.
- Full root access, PXE install, persistent disk images, near native InfiniBand
- Nucleus Rest API and Cloudmesh (Indiana University) management
- Backends to scheduled jobs consuming XSEDE allocations.

Comet VC Use Cases

CAIDA Hackathon

- Root access to nodes for custom OS and software stack.
- Full control of network stack inside virtual compute nodes by attendees and easy 'repair' by CAIDA admins
- Full isolation of virtual cluster from production resources and filesystems

Open Science Grid

- Simple install using existing management infrastructure (PXE, Foreman, Puppet)
- Multiple XSEDE allocations consuming SUs via OSG VC with no effort from allocated projects
- Largest OSG provider of resources (> 2x) for last LIGO run

Application example using Singularity and MVAPICH2

 Neuron YuEtAl2012 benchmark, compared the same build options using gnu+MVAPICH2 compilers via singularity.

Cores	Time (seconds)
192	373
384	188
768	107

MVAPICH2-Virt on Comet Virtual Cluster

Preliminary tests as the QEMU version is old.
 Upgrade upcoming that will enable latest Virt version.

```
[mahidhar@compute-0-2 osu-micro-benchmarks-4.4.1]$ mpirun_rsh -export-all -np 2
 compute-0-2 compute-0-2 MV2_VIRT_USE_IVSHMEM=1 ./mpi/pt2pt/osu_bw
Failed to find IVShmem device, will fallback to SR-IOV
Failed to find IVShmem device, will fallback to SR-IOV
# OSU MPI Bandwidth Test v4.4.1
# Size
            Bandwidth (MB/s)
                        7.07
                       14.66
                       29.33
                       58.20
16
                      116.68
32
                      228.76
64
                      458.74
128
                      902.30
256
                     1624.19
512
                     2839.06
1024
                     4041.73
2048
                     5621.80
4096
                     7257.50
8192
                     8540.89
16384
                     9339.66
32768
                    10566.51
65536
                    11864.57
```


PSDNS Benchmark on Virtual Cluster

 FFT based application; Communication intensive, mainly alltoally – bisection bandwidth limited.

Cores (Nodes)	Time per Step (s)
32(2)	101.51
64(4)	67.03
128(8)	33.99

Summary

- OSU benchmarks show expected results using MVAPICH2-GDR
- Comet offers several MVAPICH2 flavors MVAPICH2, MVAPICH2-GDR, MVAPICH2-Virt, MVAPICH2-X.
- Upcoming upgrades on Comet
 - OS will be upgraded to current CentOS 7 version
 - Will enable XPMEM support
 - GPU drivers will be upgraded to 396.26, will enable CUDA 9
 - Defaults for MVAPICH2 will be upgraded to latest release versions
- Thanks to the MVAPICH group for excellent support for the various MVAPICH installations on SDSC machines!

Thanks! Questions: Email mahidhar@sdsc.edu

