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● Why Execute Many Task Workloads? 
○ Importance of applications with “more than a single task” (workflows)
○ Workflows aren’t what they used to be!

● Building Blocks approach to Workflow Middleware
○ What is a Pilot System? 
○ Pilot Abstraction (P* Model)

● RADICAL-Pilot: A Pilot-System for HPC Workflows
○ Programming and Execution Model
○ Implementation on Cray systems
○ Performance characterisation 

Outline



Biomolecular (MD) Simulations: Context
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● Larger biological systems
○ Requires weak scaling

● Long time scale problem
○ Requires strong scaling 
○ DE Shaw special purpose computer (Anton)

● Gap between weak and strong scaling will grow
○ Scaling challenges > than either single-partition 

strong and weak scaling.
○ Ensemble simulations 

● Ensemble-based Adaptive Algorithms:
○ Intermediate data used to determine next stages
○ Improved simulation efficiency (MSM: 103)



● Many biomolecular sampling algorithms 
formulated as adaptive algorithms/methods:
○ Replica-exchange
○ Expanded Ensemble 
○ …

● Types of Adaptivity: 
○ Task parameter(s), order, … 
○ Task count, iteration count, ….

● Adaptive logic separate from the MD code
○ Each task is an independent simulation
○ Task often interact (not a “bag-of-tasks”); 

degrees and levels of coupling

Biomolecular Adaptive Algorithms
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● Initially “Monolithic” Workflow systems with “end-to-end” capabilities 
○ Workflow systems were developed to support “big science” projects.  
○ Software infrastructure was “fragile”, unreliable, missing services

● Workflows aren’t what they used to be!
○ More pervasive, sophisticated but no longer confined to “big science”
○ Prevent vendor lock-in
○ Extend traditional focus from end-users to workflow tool developers! 

● Building Blocks (BB)  permit workflow tools and applications can be built
○ Diverse “design points”; unlikely “one size fits all” 
○ Last mile distinction → proliferation of workflow systems vs single system

Why a “Fresh Perspective” to Workflows?



Developing Workflow Tools Using Building Blocks 



● BB to support workflows, and  the development of workflow tools
● A “laboratory” for testing ideas, support production science
● Stand alone, as well as vertical integration and horizontal extensibility

RADICAL-Cybertools: Building Blocks for Workflows



RADICAL-Cybertools: Building Blocks for Workflows

● A “laboratory” while supporting production grade 
workflows and workflow tools.
○ Consistent with HPC & scale

● Integrate with existing tools:
○ Swift, Fireworks, PanDA, Binding Affinity 

Calculator (BAC)
○ Distinct points of integration, vertical 

integration and horizontal extensibility
○ Need “faster” start, “scalable” (more tasks) 

and “better” (resource utilization)
● Novel tools and libraries:

○ ExTASY, RepEx, HTBAC, Seisflow,..
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● Python library for defining and executing 
ensemble-based biosimulation protocols 

○ Protocols expressed and implemented 
using HTBAC’s API

○ HTBAC utilizes RADICAL-Cybertools: 
EnTK and RP

● Implemented ESMACS and TIES protocols 
at scale

● Define additional adaptivity parameters that 
are passed down to the underlying runtime 
system. 

HTBAC: High-throughput Binding Affinity Calculator 
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(1) TIES (alchemical protocol) employs enhanced sampling 
at each lambda window to yield reproducible, accurate 
and precise relative binding affinities.

(2) ESMACS (endpoint protocol) is a computationally 
cheaper, but less rigorous method, it is used to directly 
compute the binding strength of a drug to the target 
protein from MD simulations (as opposed to differences in 
affinity). 



RADICAL-EnTK: Building Blocks for Workflows

● Ensemble Toolkit (EnTK): Toolkit to manage 
complexity of resource acquisition and task 
execution for ensemble based applications.

● Design: 
○ User facing components (blue) 
○ Workflow management components 

(purple) to manage the execution order of 
the individual tasks of the application 

○ Workload management components (red) 
to manage resources and task execution 
via a runtime system (green)

● Integrated with other tools: 
○ HTBAC, Replica-Exchange, ...



Pilot Abstraction: Schematic

A system that generalizes a placeholder job to allow application-level control of 
acquired resources via a scheduling overlay.

○ Decouples workload from resource management
○ Enables the fine-grained “slicing and dicing” of resources 
○ Build higher-level frameworks without explicit resource management.
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● “.. a scheduling overlay which 
generalizes the recurring concept of 
utilizing a placeholder as a container for 
compute tasks”

● Decouples workload from resource 
management 

● Enables the fine-grained spatio-temporal 
control of resources 

● Build higher-level frameworks without 
explicit resource management 

● Provides building block for late-binding 
of workloads on HPC

Comprehensive Perspective on Pilot-Job Systems, 
ACM Computing Surveys (2018)

RADICAL-Pilot: Implementation of Pilot-Abstraction



RADICAL-Pilot: Execution Model



Pilot Jobs: Many Variations on a Theme

● “P*: A Model of Pilot-Abstractions”, 8th IEEE 
International Conference on e-Science (2012)

● A Comprehensive Perspective on Pilot-Jobs 
http://arxiv.org/abs/1508.04180  (ACM 
Computing Surveys, 2018)



RADICAL-Pilot: Overall Architecture



RADICAL-Pilot: State Model 

● Pilot State Model:
○ 4 states, over client & server

● Unit State Model
○ 9 states, spread over 3 components



RADICAL-Pilot: Programming Model



● RP Agent runs on MOM node

● Uses aprun to launch tasks onto the worker nodes

● Low throughput (ALPS not designed for short/small tasks)

● Limit on total concurrency (1000 aprun instances)

○ Less than 1000 on other CRAYS

● Maximum of one task per node

Execution: (Why not) RADICAL-Pilot + APRUN



Agent Performance: Full Node Tasks (3 x 64s)



Agent Performance: Concurrent Units (3x)



RADICAL-Pilot: Weak Scaling Performance (Titan)



RADICAL-Pilot: Resource Utilization Performance (Titan)



RADICAL-Pilot: Price of Heterogeneity  



● Design HPC stream processing systems 
○ Resource contention limits scalability of 

reconstruction algorithms
○ Pilot-Streaming: Streaming Processing for HPC 

https://arxiv.org/pdf/1801.08648.pdf

● Supporting Seismic Physics Workflows 

● Task Parallel Analysis for Trajectory Data 

RCT BB: From Streaming to Seismic Data



Summary

● Importance and diversity of “workflows” set to increase
○ Proliferation of middleware systems for “workflows” unsustainable 
○ Substitute discussions of software with abstractions & execution models

● Building blocks approach to workflows
○ Focussed, principled design and development of middleware systems
○ Each building block has well defined performance characterization 

● RADICAL-Pilot: Implementation of Pilot abstraction
○ Engineered to support heterogeneous workloads and resources
○ Investigated implementation and performance on Cray (Titan and Blue Waters)

● Results: 
○ (i) ~O(10K) MPI simulations and tasks; (ii) Price for heterogeneity (generality); (iii) 

Ready for scheduling optimization; (iv) O(100K): When we overcome the scheduling 
challenges, message subsystem will hit! 26



Thank You!


