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Outline

e \Why Execute Many Task Workloads?
o Importance of applications with “more than a single task” (workflows)
o Workflows aren’t what they used to be!

e Building Blocks approach to Workflow Middleware
o What is a Pilot System?
o Pilot Abstraction (P* Model)

e RADICAL-Pilot: A Pilot-System for HPC Workflows
o Programming and Execution Model
o Implementation on Cray systems
o Performance characterisation



Biomolecular (MD) Simulations: Context
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Larger biological systems

Requires weak scaling

Long time scale problem
Requires strong scaling
DE Shaw special purpose computer (Anton)

Gap between weak and strong scaling will grow
Scaling challenges > than either single-partition
strong and weak scaling.

Ensemble simulations

Ensemble-based Adaptive Algorithms:
Intermediate data used to determine next stages
Improved simulation efficiency (MSM: 10°3)
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Simulated time (ms)

One long trajectory or...
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brute force - long contiguous in time MD 1§ ps/day!
requires: special purpose / unique hardware pER ~23 5K atoms
i.e. D.E. Shaw's Anton machine ’

...ensembles of
independent
simulations?

fs ps ns
AMBER on K40 GPUs
~190 ns/day per GPU




Biomolecular Adaptive Algorithms
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Why a “Fresh Perspective” to Workflows?

e |Initially “Monolithic” Workflow systems with “end-to-end” capabilities
o Workflow systems were developed to support “big science” projects.
o Software infrastructure was “fragile”, unreliable, missing services

e Workflows aren’t what they used to be!
o More pervasive, sophisticated but no longer confined to “big science”
o Prevent vendor lock-in
o Extend traditional focus from end-users to workflow tool developers!

e Building Blocks (BB) permit workflow tools and applications can be built
o Diverse “design points”; unlikely “one size fits all”
o Last mile distinction — proliferation of workflow systems vs single system



Developing Workflow Tools Using Building Blocks
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RADICAL-Cybertools: Building Blocks for Workflows
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BB to support workflows, and the development of workflow tools
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RADICAL-Cybertools: Building Blocks for Workflows

A “laboratory” while supporting production grade

workflows and workflow tools.
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Consistent with HPC & scale

Integrate with existing tools:
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Swift, Fireworks, PanDA, Binding Affinity
Calculator (BAC)

Distinct points of integration, vertical
integration and horizontal extensibility
Need “faster” start, “scalable” (more tasks)
and “better” (resource utilization)

Novel tools and libraries:
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HTBAC: High-throughput Binding Affinity Calculator

e Python library for defining and executing
ensemble-based biosimulation protocols

o Protocols expressed and implemented
using HTBAC'’s API

o HTBAC utilizes RADICAL-Cybertools:
EnTK and RP

e Implemented ESMACS and TIES protocols
at scale

e Define additional adaptivity parameters that
are passed down to the underlying runtime
system.

API Protocol Simulation | I Analysis
| |
1] 1 1 1
Descriptor Resource Application
description description
2l o o2 1Tg
: 13 . | 8 "
Runner Middleware Execution Runtime Adaptive
nector Tol Manager (o1 Evaluator
T T
) l:] Component I:l ClI Description
Execution Layer I:] Sub-component |:|Application Description

TIES (alchemical protocol) employs enhanced sampling
at each lambda window to yield reproducible, accurate
and precise relative binding affinities.

ESMACS (endpoint protocol) is a computationally
cheaper, but less rigorous method, it is used to directly
compute the binding strength of a drug to the target
protein from MD simulations (as opposed to differences in
affinity).



RADICAL-EnTK: Building Blocks for Workflows

e Ensemble Toolkit (EnTK): Toolkit to manage
complexity of resource acquisition and task :
execution for ensemble based applications.

Resource et

Application Manager
e Design:

Ensemble Toolkit

o  Workflow management components .
. RADICAL Pilot Other RTS
(purple) to manage the execution order of

the individual tasks of the application ¢ 203 post oo to tne seae
o Workload management components (red) = "7 e
to manage resources and task execution oo
via a runtime system (green) )
e Integrated with other tools:
o HTBAC, Replica-Exchange, ...

Listing 1: Example of the enhanced EnTK API with post-execution properties
to describe the adaptation to be performed after the execution of a Stage



Pilot Abstraction: Schematic

A system that generalizes a placeholder job to allow application-level control of

acquired resources via a scheduling overlay.
o Decouples workload from resource management
o Enables the fine-grained “slicing and dicing” of resources
o Build higher-level frameworks without explicit resource management.
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RADICAL-Pilot: Implementation of Pilot-Abstraction

e “.. a scheduling overlay which
generalizes the recurring concept of
utilizing a placeholder as a container for
compute tasks”

e Decouples workload from resource
management

e Enables the fine-grained spatio-temporal
control of resources

e Build higher-level frameworks without
explicit resource management

e Provides building block for late-binding
of workloads on HPC

Comprehensive Perspective on Pilot-Job Systems,
ACM Computing Surveys (2018)
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RADICAL-Pilot: Execution Model
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Pilot Jobs: Many Variations on a Theme
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e “P*: A Model of Pilot-Abstractions”, 8th IEEE
International Conference on e-Science (2012)
e A Comprehensive Perspective on Pilot-Jobs

http.//arxiv.org/abs/1508.04180 (ACM

Computing Surveys, 2018)




RADICAL-Pilot: Overall Architecture
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RADICAL-Pilot: State Model

Pilot User
e DONE Manager | Workstation
Queue Launcher
( PM_LAUNCH )
v
| SAGA API
A
RM Queue Pilot e
( P_ACTIVE )

e Pilot State Model:
4 states, over client & server
e Unit State Model
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Unit User
s PONE Manager Workstation
Queue Scheduler
( UM_SCHEDULING |
Queue Stager Stager
( UM_STAGING_IN ]| |[UM_STAGING_OUT |
y
A
| Queue | ’ Queue MongoDB
A
Stager Queue Stager Agent| Pilot| Resource
([ ASTAGING_IN ]| |[ A_STAGING_OUT |
Queue Scheduler Queue Executer
( A_SCHEDULING ]+ A_EXECUTING |




RADICAL-Pilot: Programming Model

# Declare a 64-core pilot that will
# be available for 10 minutes.
pdesc = rp.ComputePilotDescription ({

’resource’ : ncsa.bw,
’cores’ : 64,
’runtime’ : 10,
’queue’ : ’debug’,
'Projaet”’ ¢ *gkd’

i

# Submit the pilot for launching.
pilot = pmgr.submit_pilots(pdesc)

# Make the pilot resources available
# to a unit manager.
umgr .add_pilots (pilot)

# Number of units to run.
cuds = []
for i in range(0,42):
# create a new CU description,
# and fill it.
cud = rp.ComputeUnitDescription ()
cud.executable = ’/bin/date’
cuds .append (cud)

# Submit units.
umgr . submit_units (cuds)

# Wait for the completion of units.
umgr .wait_units ()

# Tear down pilots and managers.
session.close ()




Execution: (Why not) RADICAL-Pilot + APRUN

e RP Agent runs on MOM node
e Uses aprun to launch tasks onto the worker nodes
e Low throughput (ALPS not designed for short/small tasks)
e Limit on total concurrency (1000 aprun instances)
o Less than 1000 on other CRAYS

e Maximum of one task per node



Agent Performance: Full Node Tasks (3 x 64s)
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Agent Performance: Concurrent Units (3x)
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RADICAL-Pilot: Weak Scaling Performance (Titan)
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RADICAL-Pilot: Resource Utilization Performance (Titan)

Utilization
(% of total resources)
ot
<

| —

-

o
|

[0 RP Overhead B \Workload Execution

0 RP Idle

128 256 512 1024 2048 4096 16384 16384 16334
1056 2080 4128 8224 16416 32800 65568 131104 65568 32800 16416

Number of Tasks/Cores



RADICAL-Pilot: Price of Heterogeneity

—— RP Standard Scheduler
4001 RP Special Purpose Scheduler
2
D)
s
= 2007
O .

0 1000 2000 3000 4000
Number of Tasks



RCT BB: From Streaming to Seismic Data

e Design HPC stream processing systems ® Supporting Seismic Physics Workflows
o Resource contention limits scalability of o
reconstruction algorithms _ W ask 16 tasks
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Summary

e Importance and diversity of “workflows” set to increase
o Proliferation of middleware systems for “workflows” unsustainable

o Substitute discussions of software with abstractions & execution models

e Building blocks approach to workflows
o Focussed, principled design and development of middleware systems
o Each building block has well defined performance characterization

e RADICAL-Pilot: Implementation of Pilot abstraction
o Engineered to support heterogeneous workloads and resources
o Investigated implementation and performance on Cray (Titan and Blue Waters)

e Results:

o (i) ~O(10K) MPI simulations and tasks; (ii) Price for heterogeneity (generality); (iii)
Ready for scheduling optimization; (iv) O(100K): When we overcome the scheduling
challenges, message subsystem will hit!
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Thank You!



