

 Using Pilot Systems to Execute Many Task
Workloads on Supercomputers

Andre Merzky, Matteo Turilli, Mark Santcroos, Manuel Maldonado, Shantenu Jha

Brookhaven National Laboratory, Rutgers University

6th Annual MUG Meeting, Columbus, OH

● Why Execute Many Task Workloads?
○ Importance of applications with “more than a single task” (workflows)
○ Workflows aren’t what they used to be!

● Building Blocks approach to Workflow Middleware
○ What is a Pilot System?
○ Pilot Abstraction (P* Model)

● RADICAL-Pilot: A Pilot-System for HPC Workflows
○ Programming and Execution Model
○ Implementation on Cray systems
○ Performance characterisation

Outline

Biomolecular (MD) Simulations: Context

3

● Larger biological systems
○ Requires weak scaling

● Long time scale problem
○ Requires strong scaling
○ DE Shaw special purpose computer (Anton)

● Gap between weak and strong scaling will grow
○ Scaling challenges > than either single-partition

strong and weak scaling.
○ Ensemble simulations

● Ensemble-based Adaptive Algorithms:
○ Intermediate data used to determine next stages
○ Improved simulation efficiency (MSM: 103)

● Many biomolecular sampling algorithms
formulated as adaptive algorithms/methods:
○ Replica-exchange
○ Expanded Ensemble
○ …

● Types of Adaptivity:
○ Task parameter(s), order, …
○ Task count, iteration count, ….

● Adaptive logic separate from the MD code
○ Each task is an independent simulation
○ Task often interact (not a “bag-of-tasks”);

degrees and levels of coupling

Biomolecular Adaptive Algorithms

4

● Initially “Monolithic” Workflow systems with “end-to-end” capabilities
○ Workflow systems were developed to support “big science” projects.
○ Software infrastructure was “fragile”, unreliable, missing services

● Workflows aren’t what they used to be!
○ More pervasive, sophisticated but no longer confined to “big science”
○ Prevent vendor lock-in
○ Extend traditional focus from end-users to workflow tool developers!

● Building Blocks (BB) permit workflow tools and applications can be built
○ Diverse “design points”; unlikely “one size fits all”
○ Last mile distinction → proliferation of workflow systems vs single system

Why a “Fresh Perspective” to Workflows?

Developing Workflow Tools Using Building Blocks

● BB to support workflows, and the development of workflow tools
● A “laboratory” for testing ideas, support production science
● Stand alone, as well as vertical integration and horizontal extensibility

RADICAL-Cybertools: Building Blocks for Workflows

RADICAL-Cybertools: Building Blocks for Workflows

● A “laboratory” while supporting production grade
workflows and workflow tools.
○ Consistent with HPC & scale

● Integrate with existing tools:
○ Swift, Fireworks, PanDA, Binding Affinity

Calculator (BAC)
○ Distinct points of integration, vertical

integration and horizontal extensibility
○ Need “faster” start, “scalable” (more tasks)

and “better” (resource utilization)
● Novel tools and libraries:

○ ExTASY, RepEx, HTBAC, Seisflow,..

8

● Python library for defining and executing
ensemble-based biosimulation protocols

○ Protocols expressed and implemented
using HTBAC’s API

○ HTBAC utilizes RADICAL-Cybertools:
EnTK and RP

● Implemented ESMACS and TIES protocols
at scale

● Define additional adaptivity parameters that
are passed down to the underlying runtime
system.

HTBAC: High-throughput Binding Affinity Calculator

9

(1) TIES (alchemical protocol) employs enhanced sampling
at each lambda window to yield reproducible, accurate
and precise relative binding affinities.

(2) ESMACS (endpoint protocol) is a computationally
cheaper, but less rigorous method, it is used to directly
compute the binding strength of a drug to the target
protein from MD simulations (as opposed to differences in
affinity).

RADICAL-EnTK: Building Blocks for Workflows

● Ensemble Toolkit (EnTK): Toolkit to manage
complexity of resource acquisition and task
execution for ensemble based applications.

● Design:
○ User facing components (blue)
○ Workflow management components

(purple) to manage the execution order of
the individual tasks of the application

○ Workload management components (red)
to manage resources and task execution
via a runtime system (green)

● Integrated with other tools:
○ HTBAC, Replica-Exchange, ...

Pilot Abstraction: Schematic

A system that generalizes a placeholder job to allow application-level control of
acquired resources via a scheduling overlay.

○ Decouples workload from resource management
○ Enables the fine-grained “slicing and dicing” of resources
○ Build higher-level frameworks without explicit resource management.

Resource A Resource B Resource C Resource D

User Application

S
ys

te
m

S

pa
ce

U
se

r
S

pa
ce

Resource Manager

Pilot-Job System
PoliciesPilot-Job Pilot-Job

● “.. a scheduling overlay which
generalizes the recurring concept of
utilizing a placeholder as a container for
compute tasks”

● Decouples workload from resource
management

● Enables the fine-grained spatio-temporal
control of resources

● Build higher-level frameworks without
explicit resource management

● Provides building block for late-binding
of workloads on HPC

Comprehensive Perspective on Pilot-Job Systems,
ACM Computing Surveys (2018)

RADICAL-Pilot: Implementation of Pilot-Abstraction

RADICAL-Pilot: Execution Model

Pilot Jobs: Many Variations on a Theme

● “P*: A Model of Pilot-Abstractions”, 8th IEEE
International Conference on e-Science (2012)

● A Comprehensive Perspective on Pilot-Jobs
http://arxiv.org/abs/1508.04180 (ACM
Computing Surveys, 2018)

RADICAL-Pilot: Overall Architecture

RADICAL-Pilot: State Model

● Pilot State Model:
○ 4 states, over client & server

● Unit State Model
○ 9 states, spread over 3 components

RADICAL-Pilot: Programming Model

● RP Agent runs on MOM node

● Uses aprun to launch tasks onto the worker nodes

● Low throughput (ALPS not designed for short/small tasks)

● Limit on total concurrency (1000 aprun instances)

○ Less than 1000 on other CRAYS

● Maximum of one task per node

Execution: (Why not) RADICAL-Pilot + APRUN

Agent Performance: Full Node Tasks (3 x 64s)

Agent Performance: Concurrent Units (3x)

RADICAL-Pilot: Weak Scaling Performance (Titan)

RADICAL-Pilot: Resource Utilization Performance (Titan)

RADICAL-Pilot: Price of Heterogeneity

● Design HPC stream processing systems
○ Resource contention limits scalability of

reconstruction algorithms
○ Pilot-Streaming: Streaming Processing for HPC

https://arxiv.org/pdf/1801.08648.pdf

● Supporting Seismic Physics Workflows

● Task Parallel Analysis for Trajectory Data

RCT BB: From Streaming to Seismic Data

Summary

● Importance and diversity of “workflows” set to increase
○ Proliferation of middleware systems for “workflows” unsustainable
○ Substitute discussions of software with abstractions & execution models

● Building blocks approach to workflows
○ Focussed, principled design and development of middleware systems
○ Each building block has well defined performance characterization

● RADICAL-Pilot: Implementation of Pilot abstraction
○ Engineered to support heterogeneous workloads and resources
○ Investigated implementation and performance on Cray (Titan and Blue Waters)

● Results:
○ (i) ~O(10K) MPI simulations and tasks; (ii) Price for heterogeneity (generality); (iii)

Ready for scheduling optimization; (iv) O(100K): When we overcome the scheduling
challenges, message subsystem will hit! 26

Thank You!

