Using Pilot Systems to Execute Many Task
Workloads on Supercomputers

Shantenu Jha
Brookhaven National Laboratory,

6th Annual MUG Meeting, Columbus, OH

Outline

e \Why Execute Many Task Workloads?
o Importance of applications with “more than a single task” (workflows)
o Workflows aren’t what they used to be!

e Building Blocks approach to Workflow Middleware
o What is a Pilot System?
o Pilot Abstraction (P* Model)

e RADICAL-Pilot: A Pilot-System for HPC Workflows
o Programming and Execution Model
o Implementation on Cray systems
o Performance characterisation

Biomolecular (MD) Simulations: Context

©)

©)

©)

©)

©)

©)

©)

Larger biological systems

Requires weak scaling

Long time scale problem
Requires strong scaling
DE Shaw special purpose computer (Anton)

Gap between weak and strong scaling will grow
Scaling challenges > than either single-partition
strong and weak scaling.

Ensemble simulations

Ensemble-based Adaptive Algorithms:
Intermediate data used to determine next stages
Improved simulation efficiency (MSM: 10°3)

>

Backbone RMSD from native (A)

Simulated time (ms)

One long trajectory or...

fs ps ns us ms s

brute force - long contiguous in time MD 1§ ps/day!
requires: special purpose / unique hardware pER ~23 5K atoms
i.e. D.E. Shaw's Anton machine ’

...ensembles of
independent
simulations?

fs ps ns
AMBER on K40 GPUs
~190 ns/day per GPU

Biomolecular Adaptive Algorithms

e i e
e Many biomolecular sampling algorithms o D= | — E
formulated as adaptive algorithms/methods: 2@ Dy | | MD_
= : L Lo :
o Replica-exchange ©.@ — = :
[E} . | ! | |
o Expanded Ensemble o | . o :
o 3+ MD Simulation | MD Simulation | -~ = MD Simulation |
] | ; | : | | : |
. . 8 Analysis Analysis 8 Analysis
e Types of Adaptivity: 5 R b g el e
Check Check Check pipelines
O TaSk para meter(S), Order’ . converl'gence Sanverges convefgence Comerged convell'gence
o Task count, iteration count,
. . Protocol TIES }‘/:N““ 7T* Ho10 [Protocol ESMACS |
e Adaptive logic separate from the MD code LD | @CED)
o Each task is an independent simulation [B nona ELI-0T)
o Task often interact (not a “bag-of-tasks”); = L) | @I
degrees and levels of coupling = b |EL)

Why a “Fresh Perspective” to Workflows?

e |Initially “Monolithic” Workflow systems with “end-to-end” capabilities
o Workflow systems were developed to support “big science” projects.
o Software infrastructure was “fragile”, unreliable, missing services

e Workflows aren’t what they used to be!
o More pervasive, sophisticated but no longer confined to “big science”
o Prevent vendor lock-in
o Extend traditional focus from end-users to workflow tool developers!

e Building Blocks (BB) permit workflow tools and applications can be built
o Diverse “design points”; unlikely “one size fits all”
o Last mile distinction — proliferation of workflow systems vs single system

Developing Workflow Tools Using Building Blocks

>

©

T

L4 Scientific Tools and o
Applications Workflows g

=

s

L3 Workload Management System E
7

i =

L2 Task Runtime System =
e »
-------------------- R esource ;L\ccess Layer -
o

[72]

L1 HPC Grids Clouds §
o

(7]

RADICAL-Cybertools: Building Blocks for Workflows

Scientific
Applications

Tools and
Workflows

Resource Access Layer

Grids

Clouds

uonesiddy

S90N0SaYy

: Tools and Scientific
Applications Workflows

-
»

(msQq) moipiiom

oy1oadg urewoq

L2 RADICAL-Pilot
L1 HPC ‘ Grids Clouds

BB to support workflows, and the development of workflow tools
A “laboratory” for testing ideas, support production science
Stand alone, as well as vertical integration and horizontal extensibility

syJomawielq
uoneolddy

S90N0SdY

RADICAL-Cybertools: Building Blocks for Workflows

A “laboratory” while supporting production grade

workflows and workflow tools.

@)

Consistent with HPC & scale

Integrate with existing tools:

O

Swift, Fireworks, PanDA, Binding Affinity
Calculator (BAC)

Distinct points of integration, vertical
integration and horizontal extensibility
Need “faster” start, “scalable” (more tasks)
and “better” (resource utilization)

Novel tools and libraries:

O

ExXTASY, RepEx, HTBAC, Seisflow,..

L4

L3

L1

Mini-Apps WMS DSW
Synapse FireWorks ExTASY RepEx
Skeleton Swift HTBAC | | Seisflow

EnTK ---
I
|
I
RADICAL-Pilot D

RADICAL-SAGA =TT

Clouds

SMO|JMIOM

Syse| SpPeoPUOM

sqor

HTBAC: High-throughput Binding Affinity Calculator

e Python library for defining and executing
ensemble-based biosimulation protocols

o Protocols expressed and implemented
using HTBAC'’s API

o HTBAC utilizes RADICAL-Cybertools:
EnTK and RP

e Implemented ESMACS and TIES protocols
at scale

e Define additional adaptivity parameters that
are passed down to the underlying runtime
system.

API Protocol Simulation | I Analysis
| |
1] 1 1 1
Descriptor Resource Application
description description
2l o o2 1Tg
: 13 . | 8 "
Runner Middleware Execution Runtime Adaptive
nector Tol Manager (o1 Evaluator
T T
) l:] Component I:l ClI Description
Execution Layer I:] Sub-component |:|Application Description

TIES (alchemical protocol) employs enhanced sampling
at each lambda window to yield reproducible, accurate
and precise relative binding affinities.

ESMACS (endpoint protocol) is a computationally
cheaper, but less rigorous method, it is used to directly
compute the binding strength of a drug to the target
protein from MD simulations (as opposed to differences in
affinity).

RADICAL-EnTK: Building Blocks for Workflows

e Ensemble Toolkit (EnTK): Toolkit to manage
complexity of resource acquisition and task :
execution for ensemble based applications.

Resource et

Application Manager
e Design:

Ensemble Toolkit

o Workflow management components .
. RADICAL Pilot Other RTS
(purple) to manage the execution order of

the individual tasks of the application ¢ 203 post oo to tne seae
o Workload management components (red) = "7 e
to manage resources and task execution oo
via a runtime system (green))
e Integrated with other tools:
o HTBAC, Replica-Exchange, ...

Listing 1: Example of the enhanced EnTK API with post-execution properties
to describe the adaptation to be performed after the execution of a Stage

Pilot Abstraction: Schematic

A system that generalizes a placeholder job to allow application-level control of

acquired resources via a scheduling overlay.
o Decouples workload from resource management
o Enables the fine-grained “slicing and dicing” of resources
o Build higher-level frameworks without explicit resource management.

User Application Pilot-Job System

Pilot-Job Pilot-Job Policies

User
Space

{ Resource M~aager |

OO

System
Space

OO OO

Resource A Resource B Resource C Resource D

RADICAL-Pilot: Implementation of Pilot-Abstraction

e “.. a scheduling overlay which
generalizes the recurring concept of
utilizing a placeholder as a container for
compute tasks”

e Decouples workload from resource
management

e Enables the fine-grained spatio-temporal
control of resources

e Build higher-level frameworks without
explicit resource management

e Provides building block for late-binding
of workloads on HPC

Comprehensive Perspective on Pilot-Job Systems,
ACM Computing Surveys (2018)

O0000O0 Application
OO0O0O00O0
OJOXOIOXOXO)
Pilot-API
User Workstation
Pilot Manager Unit Manager
Pilot Launcher Unit Scheduler
noowo |lodoooooo
SAGA MongoDB
Resource A Resource B
Pilot L 4 Pilot
Agent Agent

Unit Execution

\d

Unit Execution

RADICAL-Pilot: Execution Model

L] OO0 OO0 Application
1, 1, 111 Pilot API
Pilot Pilot vV v Unit Unit |Workstation/
Manager | Launcher T CT) Scheduler | Manager| Resource
2. 2/ | \ SAGA AP
NongoDB . 46 4<'5 2 *\\\ Workstation/
; ,] < Resource
¥ 7 7 A
Resource | Pilot Aggnt Execut r l ‘ Executor Aggnt Pilot | Resource
& 50 5 5 =

Pilot Jobs: Many Variations on a Theme

DIANE
2001

WISDOM
2004

Coaster System
2009

RADICAL Pilot
2013

Nimrod/G
2000

Glideln
2002

ToPoS
2009

2011

1995

ApplLes

1996

MyCluster

2007

GWPilot
2012

Application
(workfiow, BoT, ...)

Pilot System

Workload/Task

DCR (cluster, laaS, workstation)

Interface (GUI, CLI, API)

Pilot
Manager

Workload
Manager

b

Pilot Provisioning

Container (Job, VM)

Pllot

Task Execution
d

Task
Manager

(Multi-level scheduling)

Task Dispatching

BOINC DIRAC GlideinWMS Co-Pilot
2002 2003 2006 2011
1 | | l 1
Resource Grid LHC MPI Workfl. Sys.
Placeholders Integration Adoption Capabilities HPC/Cloud

Resource
(core, memary)

(Multi-level scheduling,
Early/Late binding)

e “P*: A Model of Pilot-Abstractions”, 8th IEEE
International Conference on e-Science (2012)
e A Comprehensive Perspective on Pilot-Jobs

http.//arxiv.org/abs/1508.04180 (ACM

Computing Surveys, 2018)

RADICAL-Pilot: Overall Architecture

Queue Launcher Pilot Manager Workstation/
Resource
Queue | Scheduler Unit Manager
Queue Stager Stager
cusse | Mongoos] Worcon
Stager | | Queue Stager | Asgent Rl Resource
Queue Scheduler | | Queue Executer

RADICAL-Pilot: State Model

Pilot User
e DONE Manager | Workstation
Queue Launcher
(PM_LAUNCH)
v
| SAGA API
A
RM Queue Pilot e
(P_ACTIVE)

e Pilot State Model:
4 states, over client & server
e Unit State Model

©)

©)

9 states, spread over 3 components

Unit User
s PONE Manager Workstation
Queue Scheduler
(UM_SCHEDULING |
Queue Stager Stager
(UM_STAGING_IN]| |[UM_STAGING_OUT |
y
A
| Queue | ’ Queue MongoDB
A
Stager Queue Stager Agent| Pilot| Resource
([ASTAGING_IN]| |[A_STAGING_OUT |
Queue Scheduler Queue Executer
(A_SCHEDULING]+ A_EXECUTING |

RADICAL-Pilot: Programming Model

Declare a 64-core pilot that will
be available for 10 minutes.
pdesc = rp.ComputePilotDescription ({

’resource’ : ncsa.bw,
’cores’ : 64,
’runtime’ : 10,
’queue’ : ’debug’,
'Projaet”’ ¢ *gkd’

i

Submit the pilot for launching.
pilot = pmgr.submit_pilots(pdesc)

Make the pilot resources available
to a unit manager.
umgr .add_pilots (pilot)

Number of units to run.
cuds = []
for i in range(0,42):
create a new CU description,
and fill it.
cud = rp.ComputeUnitDescription ()
cud.executable = ’/bin/date’
cuds .append (cud)

Submit units.
umgr . submit_units (cuds)

Wait for the completion of units.
umgr .wait_units ()

Tear down pilots and managers.
session.close ()

Execution: (Why not) RADICAL-Pilot + APRUN

e RP Agent runs on MOM node
e Uses aprun to launch tasks onto the worker nodes
e Low throughput (ALPS not designed for short/small tasks)
e Limit on total concurrency (1000 aprun instances)
o Less than 1000 on other CRAYS

e Maximum of one task per node

Agent Performance: Full Node Tasks (3 x 64s)

235 | | | |

CCM
230 | ORTE CLI
225 H ORTE LIB -

ALPS /
220 H — Optimal =

215 1 —

210

205

200

Time to Completion (s)

195 hr

190

Agent Performance: Concurrent Units (3x)

18000 I : : .
— 2048

16000

14000

12000

10000

8000

6000

Concurrent Units

4000

2000 —
P
0 R | | |

RADICAL-Pilot: Weak Scaling Performance (Titan)

—— DB Bridge Pulls —— Scheduler Queues CU —— Executor Starts —— Executable Starts —— Executable Stops —— CU Spawn Returns
512/16384 Task/Core 1024/32768 Task/Core 2048/65536 Task/Core 4096/131072 Task/Core
1000) B % :) 1500 1 .) B
=
o 0004
ﬁ
)
0 200 100 0 500 1000 0 1000 2000 0 2000 1000
Task 1D

RADICAL-Pilot: Resource Utilization Performance (Titan)

Utilization
(% of total resources)
ot
<

| —

-

o
|

[0 RP Overhead B \Workload Execution

0 RP Idle

128 256 512 1024 2048 4096 16384 16384 16334
1056 2080 4128 8224 16416 32800 65568 131104 65568 32800 16416

Number of Tasks/Cores

RADICAL-Pilot: Price of Heterogeneity

—— RP Standard Scheduler
4001 RP Special Purpose Scheduler
2
D)
s
= 2007
O .

0 1000 2000 3000 4000
Number of Tasks

RCT BB: From Streaming to Seismic Data

e Design HPC stream processing systems ® Supporting Seismic Physics Workflows
o Resource contention limits scalability of o
reconstruction algorithms _ W ask 16 tasks
. .) . . 'é 4000 I 2 tasks [32 tasks o
o Pilot-Streaming: Streaming Processing for HPC B itaks £ Failod tasks(right) |2
https.//arxiv.org/pdf/1801.08648.pdf ?OUU B tasks
= 26
£ 2000
Latency Requirements :g; 93
<1 ms 10 ms 100ms 1s 1 min. 1 hour 1day f-:j 1000
e] Cotowes | Femoerocow] i Lo
| n-situ [Loose Coupling | | same Runtimetdob 2°/384 2'/768 21536 2%/3072 2Y/6144 29/12288
‘ Streaming ‘ # concurrent tasks/# nodes
‘ Batch | Runtimes . .
e Task Parallel Analysis for Trajectory Data
Small Size Trajectories Medium Size Trajectories Large Size Trajectories
1 Broker(s) 2 Broker(s) 4 Broker(s) 10000 =
“ 1000 ;
200+ = § 100 %
2 g 10 g
5 £ ook ‘
100+ M &> © 10000 N
8 E 1000 2
1 2 4 8 161 2 4 8 16 1 2 4 8 16 10 o
Number Processing Nodes &

16/1 64/2 256/8 16/1 64/2 256/8 16/1 64/2 256/8
Number of Cores/Nodes
s MPl4py W Spark s Dask I RADICAL-Pilot

Application —KMeans - Light (GridR ec) — Light (ML—E M)

Number of failed tasks

Summary

e Importance and diversity of “workflows” set to increase
o Proliferation of middleware systems for “workflows” unsustainable

o Substitute discussions of software with abstractions & execution models

e Building blocks approach to workflows
o Focussed, principled design and development of middleware systems
o Each building block has well defined performance characterization

e RADICAL-Pilot: Implementation of Pilot abstraction
o Engineered to support heterogeneous workloads and resources
o Investigated implementation and performance on Cray (Titan and Blue Waters)

e Results:

o (i) ~O(10K) MPI simulations and tasks; (ii) Price for heterogeneity (generality); (iii)
Ready for scheduling optimization; (iv) O(100K): When we overcome the scheduling
challenges, message subsystem will hit!

26

Thank You!

