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MPICH ON L4: PERFORMANCE
4.3 Benchmarking Results
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Figure 4.6: Various MPI send/recv operations pt. I

4.3.1.1 Point-to-point Operations

Figure 4.6 MPI_Send() performs a blocking send. Blocking means that a return from
this function guarantees that the application’s send bu�er is free for reuse. The MPI
standard does not guarantee that the message was already flushed from the system
bu�ers or received by the destination process. MPI_Recv() blocks until the message was
received and is present in the application bu�er. MPI_Ssend() blocks until the destina-
tion process has started to receive the message. MPI_Isend() performs a nonblocking
send. The application bu�er may not be altered until MPI_Wait() or MPI_Test() per-
formed on the request handle set by MPI_Isend() indicate that all data has been copied
from the application bu�er.

Figure 4.7 MPI_Sendrecv() does a send and a receive operation (MPI_Isend() and
MPI_Irecv()) operation concurrently and waits (progress engine similarly used by
MPI_Wait()) until both operations have finished. MPI_Irecv() begins a nonblocking
receive. The user must ensure that all data is present in the application’s receive bu�er
by calling wait or test operations on the request handle. MPI_Iprobe() returns true if a
message from a specific source/tag and group is available. MPI_Iprobe() is polled in a
tight loop by skampi. The point-to-point benchmarks were performed only between pro-
cesses of rank zero and one in the default communicator’s (MPI_COMM_WORLD) group. All
other started processes were idle. There seem to be only little performance di�erences
when running this benchmarks on both platforms.
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MPICH ON L4: PERFORMANCE4 Evaluation
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Figure 4.15: MPI_Get() with varying number of partners

Both RMA tests perform better on Linux. The o�set seems to be independent of
the message size for both platforms. The number of communicating partners has no
e�ect on the o�set for MPI_Get() but shows an increase for MPI_Put(). I have no good
explanation for this behaviour, but believe that placement is not its cause. Inspecting
the binaries exhibited no significant di�erences11 in the way the MPICH library and
mpptest were built. To me it appears, that the most probable source of this runtime
di�erences is code from other libraries. Both operations rely on memory allocation
taking place on the heap. It could be, that the malloc() implementation of uclibc (a
dlmalloc variant) performs inferior compared to malloc() of GNU libc (ptmalloc2,
based on dlmalloc with more fine-grained locking). When I was contemplating malloc()
as a source of runtime di�erences (the case w/o page faults), functions used by malloc()
also came to mind, especially locking functions of the pthread library.

On a last note, I want to discuss the question why a malloc() is invoked when
calling RMA functions at all. The Nemesis communication subsystem uses malloc()
to allocate and enqueue12 RMA requests. When MPI_Win_fence() is called to end the
communication epoch, all pending RMA operations are carried out.

first 32 bytes cause a write-miss (MOESI: Invalid -> Modified) and the second a write-hit (MOESI:
Modified -> Modified). See [AMD12].

11 Apart from function addresses and very few instructions (nop), the disassembled output appeared to
be identical.

12 Nemesis FIXME: RMA with short contiguous messages should bypass this queuing mechanism and
requests should be allocated from a per thread memory pool.
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MPICH ON L4

MPICH-L4| 0>--- p1MD version  "0815" ---
MPICH-L4| MPI_Wtime
MPICH-L4| MPI_Wtime
MPICH-L4| 0>    [compiled:  "2013-08-12" ]
MPICH-L4| 0>
MPICH-L4| 0><i> Simulation started :: 01.01.1970  00:00:03.993  (UTC  +0)
MPICH-L4| 0>
MPICH-L4| 0>
MPICH-L4| 0>Command: rom/p1md rom/md_10k_nochkpt.nml
MPICH-L4| 0>
MPICH-L4| 0>
MPICH-L4| 0><i>   4 processes

                         <more output here>

MPICH-L4| 0><cpu> wall-clock timer function:  MPI_Wtime
MPICH-L4| 0>     Work count sum:     184102828
MPICH-L4| 1>
MPICH-L4| 2>
MPICH-L4| 3><cpu>        MD step performance:        2.936 steps/s
MPICH-L4| 0>
MPICH-L4| 1><cpu>        MD step performance:        2.938 steps/s
MPICH-L4| 2><cpu>        MD step performance:        2.939 steps/s
MPICH-L4| 3><cpu> MD interaction performance:        0.270 Mega interactions/s
MPICH-L4| 0><cpu>        MD step performance:        2.945 steps/s
MPICH-L4| 1><cpu> MD interaction performance:        0.271 Mega interactions/s
MPICH-L4| 2><cpu> MD interaction performance:        0.271 Mega interactions/s
MPICH-L4| 0><cpu> MD interaction performance:        0.271 Mega interactions/s
MPICH-L4| 0>
MPICH-L4| 0>
MPICH-L4| 0><i> Simulation finished :: 01.01.1970  00:12:58.468  (UTC  +0)
MPICH-L4| 0>
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It worked: 
p1MD, MPICH test, perftest, … 
HPL, CP2K, … 

Performance comparable to Linux(*) 
Major limitation: no network backend
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VERSION 0: MPICH ON L4
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VERSION 1 
Hybrid L4 + Linux

10



Tailoring the Linux Kernel and MPI to a Fast and Noise-Free Microkernel 11

HYBRID SYSTEM

Real-time 

Security 

Resilience

Uncritical 
(Complex)

Critical 
(Simple)



Tailoring the Linux Kernel and MPI to a Fast and Noise-Free Microkernel 12

HYBRID SYSTEM

Service OS 
(Linux)

L4 Microkernel / Hypervisor

Uncritical 
(Complex)

Critical 
(Simple)



Tailoring the Linux Kernel and MPI to a Fast and Noise-Free Microkernel

MPI Proxy

Linux

13

HYBRID SYSTEM

MPI App

MPI Lib

Infiniband

L4 Microkernel / Hypervisor



Tailoring the Linux Kernel and MPI to a Fast and Noise-Free Microkernel

Linux Kernel
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VERSION 1: SPLIT MVAPICH2
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VERSION 2 
Decoupled Threads
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L4Linux
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L4 + L4LINUX
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L4Linux on L4 microkernel 
L4 microkernel controls the node 
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Linux process = L4 address space + thread 
Linux syscalls / exceptions:  
generic forwarding to L4Linux kernel
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L4Linux
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DECOUPLED EXECUTION
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DECOUPLING: EP

Adam Lackorzynski, Carsten Weinhold, Hermann Härtig, "Decoupled: Low-Effort Noise-Free 
Execution on Commodity Systems", ROSS 2016, June 2016, Kyoto, Japan
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DECOUPLING: BSP
Ru

n 
Ti

m
e 

in
 S

ec
on

ds

18,10

18,20

18,30

18,40

18,50

18,60

18,70

Number of Cores
30 90 150 210 270 330 390 450 510 570 630 690 750

Standard Decoupled

Adam Lackorzynski, Carsten Weinhold, Hermann Härtig, "Decoupled: Low-Effort Noise-Free 
Execution on Commodity Systems", ROSS 2016, June 2016, Kyoto, Japan



Tailoring the Linux Kernel and MPI to a Fast and Noise-Free Microkernel

VERSION 2.5 
Decoupled Interrupts
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WIP
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BUSY WAITING

Busy waiting = 
Computation
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WAKE FROM IRQ: LINUX VS L4
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Fig. 3. Cyclictest results on bare-metal Linux with and without load generated
by hackbench. The worst-case latencies are 6µs without load and 304µs with
load.

latency and the y-axis indicates the number of occurrences of
each latency. Cyclictest latencies without background load are
shown in blue, those with hackbench running in parallel are red.
Hardly visible in the diagram due to intentionally wide scaling
of the x-axis, the maximum latency without background load is
just about 6µs, with most of the measurements clustered around
2µs. With hackbench in the background, the maximum latency
increases dramatically by more than two orders of magnitude
to 304µs. The majority of latency values is between 15µs and
22µs, which is about three times as high as on the unloaded
system.

D. x86 – L4Linux with Decoupling

When we run the benchmark on L4Linux, with the decoupling
mechanism we described in Section II-A, we achieve much
lower latencies and significantly less variance. Figure 4
visualizes the results when the decoupled thread is placed on
the dedicated core of the quad-core CPU. The measurements for
running the decoupled thread on the same core as L4Linux are
shown in Figure 5. In this case it is crucial that the decoupled
thread runs at a higher priority than L4Linux under L4Re’s
fixed-priority scheduler. We changed the scale of the x-axis to
just 3µs for better readability.

Fig. 4. Cyclictest results on x86 running L4Linux with and without load
generated by hackbench. The decoupled thread runs on a different core. The
worst-case latencies are 1.1µs without load and 2.4µs with load.

Fig. 5. Same setup as shown in Figure 4 however the decoupled thread runs
on the same core as L4Linux. The worst-case latencies are 1.2µs without load
and 2.5µs with load.

For both the dedicated-core and the shared-core config-
urations, we observe on an idle system a maximum timer
latency of slightly more than 1µs. The majority of observed
latencies cluster around 0.7µs, which is about a third of what
we measure with bare-metal Linux. When loading the system
with hackbench as described previously, the maximum timer
latency increases to approximately 2.4µs, irrespective of the
placement of the decoupled benchmark thread. The majority
of latencies are at around 1µs on the dedicated core, and
about 1.7µs when the L4Re-aware cyclictest replacement (see
Section III-B) shares a core with L4Linux.

The results demonstrate that our decoupling approach is
highly effective for reducing average and tail latencies. They
also indicate that the L4Re microkernel has a more efficient
interrupt-to-wakeup path than Linux. As for the increased
latencies under load, we suspect that they are the result of
cache and TLB misses. The difference is more pronounced in
the shared-core configuration. This could be attenuated in a
dual-socket system, where no caches are shared [1]. However,
this would also significantly increase the cost of the system.

E. ARM – Bare-Metal Linux
Since our decoupling mechanism also works for the ARM

port of L4Linux, we repeated the experiments on that platform.
We chose an NXP Layerscape 1021A-TWR system with a dual-
core ARM Cortex-A7 CPU and attempted to build a vanilla
Linux 4.10 kernel for it; Linux 4.10 is the version we used
on x86 and also the one on which the latest L4Linux with
decoupling support is based on. Unfortunately, we did not
succeed in finding a kernel configuration where the generic
ARM timer of the CPU could operate in high resolution
mode; instead it only supported a resolution of 10 ms, which
is prohibitively inaccurate for our experiments. We therefore
installed the vendor-supplied kernel, which did not have this
problem. This kernel from NXP is based on Linux version 4.1
and has the real-time patch-set applied applied to it (“Linux-
rt”); our ARM build of L4Linux is still based on Linux 4.10.
Using different kernel version is acceptable in our benchmark
setup, because threads decoupled from L4Linux run on the
L4Re microkernel, which is completely different anyway.

Linux L4

Adam Lackorzynski, Carsten Weinhold, Hermann Härtig, „Predictable Low-Latency Interrupt 
Response with General-Purpose Systems“,  OSPERT 2017, Duprovnik, Kroatia, June 2017

Wake from interrupt on L4/Nova: 900 cycles, 0.3 µs 

(best case, on Intel Core i7-4770 CPU @ 3.40GHz)
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generated by hackbench. The decoupled thread runs on a different core. The
worst-case latencies are 1.1µs without load and 2.4µs with load.

Fig. 5. Same setup as shown in Figure 4 however the decoupled thread runs
on the same core as L4Linux. The worst-case latencies are 1.2µs without load
and 2.5µs with load.

For both the dedicated-core and the shared-core config-
urations, we observe on an idle system a maximum timer
latency of slightly more than 1µs. The majority of observed
latencies cluster around 0.7µs, which is about a third of what
we measure with bare-metal Linux. When loading the system
with hackbench as described previously, the maximum timer
latency increases to approximately 2.4µs, irrespective of the
placement of the decoupled benchmark thread. The majority
of latencies are at around 1µs on the dedicated core, and
about 1.7µs when the L4Re-aware cyclictest replacement (see
Section III-B) shares a core with L4Linux.

The results demonstrate that our decoupling approach is
highly effective for reducing average and tail latencies. They
also indicate that the L4Re microkernel has a more efficient
interrupt-to-wakeup path than Linux. As for the increased
latencies under load, we suspect that they are the result of
cache and TLB misses. The difference is more pronounced in
the shared-core configuration. This could be attenuated in a
dual-socket system, where no caches are shared [1]. However,
this would also significantly increase the cost of the system.

E. ARM – Bare-Metal Linux
Since our decoupling mechanism also works for the ARM

port of L4Linux, we repeated the experiments on that platform.
We chose an NXP Layerscape 1021A-TWR system with a dual-
core ARM Cortex-A7 CPU and attempted to build a vanilla
Linux 4.10 kernel for it; Linux 4.10 is the version we used
on x86 and also the one on which the latest L4Linux with
decoupling support is based on. Unfortunately, we did not
succeed in finding a kernel configuration where the generic
ARM timer of the CPU could operate in high resolution
mode; instead it only supported a resolution of 10 ms, which
is prohibitively inaccurate for our experiments. We therefore
installed the vendor-supplied kernel, which did not have this
problem. This kernel from NXP is based on Linux version 4.1
and has the real-time patch-set applied applied to it (“Linux-
rt”); our ARM build of L4Linux is still based on Linux 4.10.
Using different kernel version is acceptable in our benchmark
setup, because threads decoupled from L4Linux run on the
L4Re microkernel, which is completely different anyway.



Tailoring the Linux Kernel and MPI to a Fast and Noise-Free Microkernel

L4 Microkernel + L4Linux + Decoupling 
Binary compatible + sysfs interface 
No modification to MVAPICH2 
Lessons learned: 

Maximize reuse + minimize critical path 
Methodology: Start from Linux, not from L4
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SPPEXA – Findings & Goals

   Massive parallelism (on- and cross-chip) 
requires fundamentally new concepts

   Not “racks without brains”, but software is 
the key to this paradigm shift

   Fundamental research (   DFG), in contrast to 
other (more application-oriented) initiatives 
(   German Federal Ministry of E & R)

   Establish collaborative, interdisciplinary 
co-design of HPC applications and HPC 
methods

   Focus on six research directions:
 Computational algorithms
 Application software
 Programming
 System software
 Data management and exploration
 Software tools

SPPEXA – Implementation

  Two three-year funding 
phases

  Overall budget of 
3,7 M E per year

  Funded via DFG’s 
strategy fund

  Interdisciplinary consortia 
of 3–5 groups

  Consortia address at least two 
of SPPExa’s six research directions

  Two-stage application process with 
(1) sketches and (2) full proposals

  Global strategic coordination, following 
the established procedures of Collaborative 
Research Centres (SFB)

  Close collaboration with respective inter-
national programmes intended

w w w . s p p e x a . d e

SPPEXA – Chronology

   2006: discussion in the German Research 
Foundation (DFG) on the necessity of a 
funding initiative for HPC software

   2010: initiative out of German HPC commu-
nity, referring to increasing activities on HPC 
software elsewhere (USA: NSF, DOE; Japan; 
China; G8)

   2010: discussion with DFG’s Executive 
Committee, suggestion of a fl exible, 
strategically initiated SPP

   2011: submission of the proposal, inter-
national reviewing, and formal acceptance

   2012: Review of project sketches and full
proposals

SPPEXA – Current Status

   68 sketches handed in, overall volume 
of 19 M E per year applied for

   80 different universities, institutes and 
companies represented by 240 national 
and 15 international PIs

  24 sketches invited for full proposals 
  13 full proposals accepted for funding
   Launch of programme and projects in 

January 2013

German Priority Programme 1648
“Software for Exascale Computing”
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