
CARSTEN WEINHOLD, TU DRESDEN

TAILORING THE LINUX KERNEL AND MPI
TO A FAST AND NOISE-FREE MICROKERNEL

ADAM LACKORZYNSKI, JULIAN STECKLINA, MARKUS PARTHEYMÜLLER,  
JAN BIERBAUM, MICHAEL JAHN, HERMANN HÄRTIG, STAFF@ZIH, STAFF@JSC

Tailoring the Linux Kernel and MPI to a Fast and Noise-Free Microkernel 2

HPC OS ARCHITECTURE

LWK

AppApp App

Argo
Cray

CNK

Linux

AppApp App Linux (tweaked)
 ⊙ Low Noise
 ⊕ Compatibility
 ⊕ Features
 ⊖ Fast moving target

LWK

 ⊕ No Noise
 ⊖ Compatibility
 ⊖ Features

Tailoring the Linux Kernel and MPI to a Fast and Noise-Free Microkernel 3

HPC OS ARCHITECTURE

LWK

AppApp App

Argo
Cray

CNK

Linux

AppApp App

LWK

 ⊕ No Noise
 ⊖ Compatibility
 ⊖ Features

Linux

App App

LWK

LWK + Linux
 ⊕ No Noise
 ⊕ Compatibility
 ⊕ Features

mOS
McKernel

Hobbes/Kitten

Linux (tweaked)
 ⊙ Low Noise
 ⊕ Compatibility
 ⊕ Features
 ⊖ Fast moving target

Proxy

⊖ Effort

Tailoring the Linux Kernel and MPI to a Fast and Noise-Free Microkernel

VERSION 0
Pure L4

4

Tailoring the Linux Kernel and MPI to a Fast and Noise-Free Microkernel 5

MPICH ON L4

MPI Process
Manager

MPI Rank
(Compute Part)

MPI Library

MPI Rank
(Compute Part)

MPI Library

PMI

SHM Buffer (PMI)

SHM Buffer
(nemesis-shm)

L4 Microkernel / Hypervisor

Tailoring the Linux Kernel and MPI to a Fast and Noise-Free Microkernel 6

MPICH ON L4: PERFORMANCE
4.3 Benchmarking Results

 1

 10

 100

 1000

 8 32 128 512 2048 8192 32768 131072 524288

tim
e

 in
 µ

s

msg size in bytes

skampi - PingPong tests pt. I; 2 (of 10) procs

Fiasco.OC/L4re Pingpong Send/Recv
Linux Pingpong Send/Recv

Fiasco.OC/L4re PingPong SSend/Recv

Linux PingPong SSend/Recv
Fiasco.OC/L4re PingPong ISend/Recv

Linux PingPong ISend/Recv

Figure 4.6: Various MPI send/recv operations pt. I

4.3.1.1 Point-to-point Operations

Figure 4.6 MPI_Send() performs a blocking send. Blocking means that a return from
this function guarantees that the application’s send bu�er is free for reuse. The MPI
standard does not guarantee that the message was already flushed from the system
bu�ers or received by the destination process. MPI_Recv() blocks until the message was
received and is present in the application bu�er. MPI_Ssend() blocks until the destina-
tion process has started to receive the message. MPI_Isend() performs a nonblocking
send. The application bu�er may not be altered until MPI_Wait() or MPI_Test() per-
formed on the request handle set by MPI_Isend() indicate that all data has been copied
from the application bu�er.

Figure 4.7 MPI_Sendrecv() does a send and a receive operation (MPI_Isend() and
MPI_Irecv()) operation concurrently and waits (progress engine similarly used by
MPI_Wait()) until both operations have finished. MPI_Irecv() begins a nonblocking
receive. The user must ensure that all data is present in the application’s receive bu�er
by calling wait or test operations on the request handle. MPI_Iprobe() returns true if a
message from a specific source/tag and group is available. MPI_Iprobe() is polled in a
tight loop by skampi. The point-to-point benchmarks were performed only between pro-
cesses of rank zero and one in the default communicator’s (MPI_COMM_WORLD) group. All
other started processes were idle. There seem to be only little performance di�erences
when running this benchmarks on both platforms.

33

4.3 Benchmarking Results

 1

 10

 100

 1000

 8 32 128 512 2048 8192 32768 131072 524288

tim
e
 in

 µ
s

msg size in bytes

skampi - PingPong tests pt. I; 2 (of 10) procs

Fiasco.OC/L4re Pingpong Send/Recv
Linux Pingpong Send/Recv

Fiasco.OC/L4re PingPong SSend/Recv

Linux PingPong SSend/Recv
Fiasco.OC/L4re PingPong ISend/Recv

Linux PingPong ISend/Recv

Figure 4.6: Various MPI send/recv operations pt. I

4.3.1.1 Point-to-point Operations

Figure 4.6 MPI_Send() performs a blocking send. Blocking means that a return from
this function guarantees that the application’s send bu�er is free for reuse. The MPI
standard does not guarantee that the message was already flushed from the system
bu�ers or received by the destination process. MPI_Recv() blocks until the message was
received and is present in the application bu�er. MPI_Ssend() blocks until the destina-
tion process has started to receive the message. MPI_Isend() performs a nonblocking
send. The application bu�er may not be altered until MPI_Wait() or MPI_Test() per-
formed on the request handle set by MPI_Isend() indicate that all data has been copied
from the application bu�er.

Figure 4.7 MPI_Sendrecv() does a send and a receive operation (MPI_Isend() and
MPI_Irecv()) operation concurrently and waits (progress engine similarly used by
MPI_Wait()) until both operations have finished. MPI_Irecv() begins a nonblocking
receive. The user must ensure that all data is present in the application’s receive bu�er
by calling wait or test operations on the request handle. MPI_Iprobe() returns true if a
message from a specific source/tag and group is available. MPI_Iprobe() is polled in a
tight loop by skampi. The point-to-point benchmarks were performed only between pro-
cesses of rank zero and one in the default communicator’s (MPI_COMM_WORLD) group. All
other started processes were idle. There seem to be only little performance di�erences
when running this benchmarks on both platforms.

33

4.3 Benchmarking Results

 1

 10

 100

 1000

 8 32 128 512 2048 8192 32768 131072 524288

tim
e
 in

 µ
s

msg size in bytes

skampi - PingPong tests pt. I; 2 (of 10) procs

Fiasco.OC/L4re Pingpong Send/Recv
Linux Pingpong Send/Recv

Fiasco.OC/L4re PingPong SSend/Recv

Linux PingPong SSend/Recv
Fiasco.OC/L4re PingPong ISend/Recv

Linux PingPong ISend/Recv

Figure 4.6: Various MPI send/recv operations pt. I

4.3.1.1 Point-to-point Operations

Figure 4.6 MPI_Send() performs a blocking send. Blocking means that a return from
this function guarantees that the application’s send bu�er is free for reuse. The MPI
standard does not guarantee that the message was already flushed from the system
bu�ers or received by the destination process. MPI_Recv() blocks until the message was
received and is present in the application bu�er. MPI_Ssend() blocks until the destina-
tion process has started to receive the message. MPI_Isend() performs a nonblocking
send. The application bu�er may not be altered until MPI_Wait() or MPI_Test() per-
formed on the request handle set by MPI_Isend() indicate that all data has been copied
from the application bu�er.

Figure 4.7 MPI_Sendrecv() does a send and a receive operation (MPI_Isend() and
MPI_Irecv()) operation concurrently and waits (progress engine similarly used by
MPI_Wait()) until both operations have finished. MPI_Irecv() begins a nonblocking
receive. The user must ensure that all data is present in the application’s receive bu�er
by calling wait or test operations on the request handle. MPI_Iprobe() returns true if a
message from a specific source/tag and group is available. MPI_Iprobe() is polled in a
tight loop by skampi. The point-to-point benchmarks were performed only between pro-
cesses of rank zero and one in the default communicator’s (MPI_COMM_WORLD) group. All
other started processes were idle. There seem to be only little performance di�erences
when running this benchmarks on both platforms.

33

Send/Recv L4
Send/Recv Linux
SSend/Recv L4
SSend/Recv Linux
ISend/Recv L4
ISend/Recv Linux

Tailoring the Linux Kernel and MPI to a Fast and Noise-Free Microkernel 7

MPICH ON L4: PERFORMANCE4 Evaluation

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 64 128 192 256 320 384 448 512 576 640 704 768 832 896 960 1024

tim
e
 in

 µ
s

msg size in bytes

mpptest (perftest) - onesided halo Get; each step 32 bytes; 2, 4 and 8 procs

Fiasco.OC/L4re Get; 2 procs
Linux Get; 2 procs

Fiasco.OC/L4re Get; 4 procs

Linux Get; 4 procs
Fiasco.OC/L4re Get; 8 procs

Linux Get; 8 procs

Figure 4.15: MPI_Get() with varying number of partners

Both RMA tests perform better on Linux. The o�set seems to be independent of
the message size for both platforms. The number of communicating partners has no
e�ect on the o�set for MPI_Get() but shows an increase for MPI_Put(). I have no good
explanation for this behaviour, but believe that placement is not its cause. Inspecting
the binaries exhibited no significant di�erences11 in the way the MPICH library and
mpptest were built. To me it appears, that the most probable source of this runtime
di�erences is code from other libraries. Both operations rely on memory allocation
taking place on the heap. It could be, that the malloc() implementation of uclibc (a
dlmalloc variant) performs inferior compared to malloc() of GNU libc (ptmalloc2,
based on dlmalloc with more fine-grained locking). When I was contemplating malloc()
as a source of runtime di�erences (the case w/o page faults), functions used by malloc()
also came to mind, especially locking functions of the pthread library.

On a last note, I want to discuss the question why a malloc() is invoked when
calling RMA functions at all. The Nemesis communication subsystem uses malloc()
to allocate and enqueue12 RMA requests. When MPI_Win_fence() is called to end the
communication epoch, all pending RMA operations are carried out.

first 32 bytes cause a write-miss (MOESI: Invalid -> Modified) and the second a write-hit (MOESI:
Modified -> Modified). See [AMD12].

11 Apart from function addresses and very few instructions (nop), the disassembled output appeared to
be identical.

12 Nemesis FIXME: RMA with short contiguous messages should bypass this queuing mechanism and
requests should be allocated from a per thread memory pool.

40

4.3 Benchmarking Results

 1

 10

 100

 1000

 8 32 128 512 2048 8192 32768 131072 524288

tim
e
 in

 µ
s

msg size in bytes

skampi - PingPong tests pt. I; 2 (of 10) procs

Fiasco.OC/L4re Pingpong Send/Recv
Linux Pingpong Send/Recv

Fiasco.OC/L4re PingPong SSend/Recv

Linux PingPong SSend/Recv
Fiasco.OC/L4re PingPong ISend/Recv

Linux PingPong ISend/Recv

Figure 4.6: Various MPI send/recv operations pt. I

4.3.1.1 Point-to-point Operations

Figure 4.6 MPI_Send() performs a blocking send. Blocking means that a return from
this function guarantees that the application’s send bu�er is free for reuse. The MPI
standard does not guarantee that the message was already flushed from the system
bu�ers or received by the destination process. MPI_Recv() blocks until the message was
received and is present in the application bu�er. MPI_Ssend() blocks until the destina-
tion process has started to receive the message. MPI_Isend() performs a nonblocking
send. The application bu�er may not be altered until MPI_Wait() or MPI_Test() per-
formed on the request handle set by MPI_Isend() indicate that all data has been copied
from the application bu�er.

Figure 4.7 MPI_Sendrecv() does a send and a receive operation (MPI_Isend() and
MPI_Irecv()) operation concurrently and waits (progress engine similarly used by
MPI_Wait()) until both operations have finished. MPI_Irecv() begins a nonblocking
receive. The user must ensure that all data is present in the application’s receive bu�er
by calling wait or test operations on the request handle. MPI_Iprobe() returns true if a
message from a specific source/tag and group is available. MPI_Iprobe() is polled in a
tight loop by skampi. The point-to-point benchmarks were performed only between pro-
cesses of rank zero and one in the default communicator’s (MPI_COMM_WORLD) group. All
other started processes were idle. There seem to be only little performance di�erences
when running this benchmarks on both platforms.

33

4.3 Benchmarking Results

 1

 10

 100

 1000

 8 32 128 512 2048 8192 32768 131072 524288

tim
e

 in
 µ

s

msg size in bytes

skampi - PingPong tests pt. I; 2 (of 10) procs

Fiasco.OC/L4re Pingpong Send/Recv
Linux Pingpong Send/Recv

Fiasco.OC/L4re PingPong SSend/Recv

Linux PingPong SSend/Recv
Fiasco.OC/L4re PingPong ISend/Recv

Linux PingPong ISend/Recv

Figure 4.6: Various MPI send/recv operations pt. I

4.3.1.1 Point-to-point Operations

Figure 4.6 MPI_Send() performs a blocking send. Blocking means that a return from
this function guarantees that the application’s send bu�er is free for reuse. The MPI
standard does not guarantee that the message was already flushed from the system
bu�ers or received by the destination process. MPI_Recv() blocks until the message was
received and is present in the application bu�er. MPI_Ssend() blocks until the destina-
tion process has started to receive the message. MPI_Isend() performs a nonblocking
send. The application bu�er may not be altered until MPI_Wait() or MPI_Test() per-
formed on the request handle set by MPI_Isend() indicate that all data has been copied
from the application bu�er.

Figure 4.7 MPI_Sendrecv() does a send and a receive operation (MPI_Isend() and
MPI_Irecv()) operation concurrently and waits (progress engine similarly used by
MPI_Wait()) until both operations have finished. MPI_Irecv() begins a nonblocking
receive. The user must ensure that all data is present in the application’s receive bu�er
by calling wait or test operations on the request handle. MPI_Iprobe() returns true if a
message from a specific source/tag and group is available. MPI_Iprobe() is polled in a
tight loop by skampi. The point-to-point benchmarks were performed only between pro-
cesses of rank zero and one in the default communicator’s (MPI_COMM_WORLD) group. All
other started processes were idle. There seem to be only little performance di�erences
when running this benchmarks on both platforms.

33

2 partners L4
2 partners Linux
4 partners L4

4 partners Linux
8 partners L4
8 partners Linux

Tailoring the Linux Kernel and MPI to a Fast and Noise-Free Microkernel 8

MPICH ON L4

MPICH-L4| 0>--- p1MD version "0815" ---
MPICH-L4| MPI_Wtime
MPICH-L4| MPI_Wtime
MPICH-L4| 0> [compiled: "2013-08-12"]
MPICH-L4| 0>
MPICH-L4| 0><i> Simulation started :: 01.01.1970 00:00:03.993 (UTC +0)
MPICH-L4| 0>
MPICH-L4| 0>
MPICH-L4| 0>Command: rom/p1md rom/md_10k_nochkpt.nml
MPICH-L4| 0>
MPICH-L4| 0>
MPICH-L4| 0><i> 4 processes

 <more output here>

MPICH-L4| 0><cpu> wall-clock timer function: MPI_Wtime
MPICH-L4| 0> Work count sum: 184102828
MPICH-L4| 1>
MPICH-L4| 2>
MPICH-L4| 3><cpu> MD step performance: 2.936 steps/s
MPICH-L4| 0>
MPICH-L4| 1><cpu> MD step performance: 2.938 steps/s
MPICH-L4| 2><cpu> MD step performance: 2.939 steps/s
MPICH-L4| 3><cpu> MD interaction performance: 0.270 Mega interactions/s
MPICH-L4| 0><cpu> MD step performance: 2.945 steps/s
MPICH-L4| 1><cpu> MD interaction performance: 0.271 Mega interactions/s
MPICH-L4| 2><cpu> MD interaction performance: 0.271 Mega interactions/s
MPICH-L4| 0><cpu> MD interaction performance: 0.271 Mega interactions/s
MPICH-L4| 0>
MPICH-L4| 0>
MPICH-L4| 0><i> Simulation finished :: 01.01.1970 00:12:58.468 (UTC +0)
MPICH-L4| 0>

Tailoring the Linux Kernel and MPI to a Fast and Noise-Free Microkernel

It worked:
p1MD, MPICH test, perftest, …
HPL, CP2K, …

Performance comparable to Linux(*)
Major limitation: no network backend

9

VERSION 0: MPICH ON L4

Tailoring the Linux Kernel and MPI to a Fast and Noise-Free Microkernel

VERSION 1
Hybrid L4 + Linux

10

Tailoring the Linux Kernel and MPI to a Fast and Noise-Free Microkernel 11

HYBRID SYSTEM

Real-time

Security

Resilience

Uncritical
(Complex)

Critical
(Simple)

Tailoring the Linux Kernel and MPI to a Fast and Noise-Free Microkernel 12

HYBRID SYSTEM

Service OS
(Linux)

L4 Microkernel / Hypervisor

Uncritical
(Complex)

Critical
(Simple)

Tailoring the Linux Kernel and MPI to a Fast and Noise-Free Microkernel

MPI Proxy

Linux

13

HYBRID SYSTEM

MPI App

MPI Lib

Infiniband

L4 Microkernel / Hypervisor

Tailoring the Linux Kernel and MPI to a Fast and Noise-Free Microkernel

Linux Kernel

14

INFINIBAND DRIVER

Kernel Driver

Linux App

I/O
IB Core

/dev/ib0

libibverbs
User-space Driver

Fast path (direct access to MMIO regs)
• Send / recv
• RDMA read / write
• Event polling

Slow path (syscall required)
• Connection setup / teardown
• Buffer registration
• Event blocking

User Space

Kernel Space

I/O

Tailoring the Linux Kernel and MPI to a Fast and Noise-Free Microkernel 15

INFINIBAND DRIVER

L4 App

libibverbs
User-space Driver

Linux Kernel

Proxy App

L4 Microkernel / Hypervisor

Msg Buffer 1

Msg Buffer 2

Msg Buffer 1

Msg Buffer 2

I/O
IB Core

/dev/ib0

Kernel Driver

I/O

Tailoring the Linux Kernel and MPI to a Fast and Noise-Free Microkernel 16

VERSION 1: SPLIT MVAPICH2

Linux

L4
App

L4
App

L4
App

L4
App

Hard to maintain

L4 Microkernel / Hypervisor

Core Core Core Core Core

InfiniBand

BSD Sockets

Parallel File System

Tailoring the Linux Kernel and MPI to a Fast and Noise-Free Microkernel

VERSION 2
Decoupled Threads

17

Tailoring the Linux Kernel and MPI to a Fast and Noise-Free Microkernel

L4Linux

18

L4 + L4LINUX

L4 Microkernel / Hypervisor

Core Core Core Core Core

Linux
App

Unmodified Linux programs (MPI, …)
L4Linux on L4 microkernel
L4 microkernel controls the node
Light-weight and low-noise if needed
Linux process = L4 address space + thread
Linux syscalls / exceptions:  
generic forwarding to L4Linux kernel

Tailoring the Linux Kernel and MPI to a Fast and Noise-Free Microkernel

L4Linux

19

DECOUPLED EXECUTION

L4 Microkernel / Hypervisor

Core Core Core Core Core

Linux
App

Decoupling: move Linux thread to
new L4 thread on its own core
Linux syscall: Move back to Linux
L4 syscalls:

Scheduling
Threads
Memory

Direct I/O device access

Tailoring the Linux Kernel and MPI to a Fast and Noise-Free Microkernel

Ru
n

Ti
m

e
in

 S
ec

on
ds

18,00

18,05

18,10

18,15

18,20

18,25

18,30

18,35

18,40

Number of Cores
30 90 150 210 270 330 390 450 510 570 630 690 750

Standard Min Standard Max
Decoupled Min Decoupled Max

20

DECOUPLING: EP

Adam Lackorzynski, Carsten Weinhold, Hermann Härtig, "Decoupled: Low-Effort Noise-Free
Execution on Commodity Systems", ROSS 2016, June 2016, Kyoto, Japan

Tailoring the Linux Kernel and MPI to a Fast and Noise-Free Microkernel 21

DECOUPLING: BSP
Ru

n
Ti

m
e

in
 S

ec
on

ds

18,10

18,20

18,30

18,40

18,50

18,60

18,70

Number of Cores
30 90 150 210 270 330 390 450 510 570 630 690 750

Standard Decoupled

Adam Lackorzynski, Carsten Weinhold, Hermann Härtig, "Decoupled: Low-Effort Noise-Free
Execution on Commodity Systems", ROSS 2016, June 2016, Kyoto, Japan

Tailoring the Linux Kernel and MPI to a Fast and Noise-Free Microkernel

VERSION 2.5
Decoupled Interrupts

22

WIP

Tailoring the Linux Kernel and MPI to a Fast and Noise-Free Microkernel 23

BUSY WAITING

Busy waiting =
Computation

Tailoring the Linux Kernel and MPI to a Fast and Noise-Free Microkernel 24

OVERSUBSCRIPTION

0 s

200 s

400 s

600 s

800 s

1000 s

4 / 4 8 / 4 16 / 4 32 / 4

Polling Blocking

Pollin
g (b

usy waitin
g)

of MPI Processes per Node # of Nodes

Application: COSMO-SPECS+FD4

Tailoring the Linux Kernel and MPI to a Fast and Noise-Free Microkernel 25

OVERSUBSCRIPTION

0 s

100 s

200 s

300 s

400 s

500 s

12 / 112 24 / 112 48 / 112

Unbalanced, no HT Balanced (baseline), no HT

of MPI Processes per Node # of Nodes

Application: COSMO-SPECS+FD4

Tailoring the Linux Kernel and MPI to a Fast and Noise-Free Microkernel 26

IRQ FASTPATH

IB App

Linux
Kernel

IRQ

IB App

IRQ

L4Linux
Kernel

Tailoring the Linux Kernel and MPI to a Fast and Noise-Free Microkernel 27

WAKE FROM IRQ: LINUX VS L4

0 100 200 300
Latency in µs

0

2000

4000

6000

8000

10000

Nu
m

be
r o

f o
cc

ur
re

nc
es Without Load

With Load

Fig. 3. Cyclictest results on bare-metal Linux with and without load generated
by hackbench. The worst-case latencies are 6µs without load and 304µs with
load.

latency and the y-axis indicates the number of occurrences of
each latency. Cyclictest latencies without background load are
shown in blue, those with hackbench running in parallel are red.
Hardly visible in the diagram due to intentionally wide scaling
of the x-axis, the maximum latency without background load is
just about 6µs, with most of the measurements clustered around
2µs. With hackbench in the background, the maximum latency
increases dramatically by more than two orders of magnitude
to 304µs. The majority of latency values is between 15µs and
22µs, which is about three times as high as on the unloaded
system.

D. x86 – L4Linux with Decoupling

When we run the benchmark on L4Linux, with the decoupling
mechanism we described in Section II-A, we achieve much
lower latencies and significantly less variance. Figure 4
visualizes the results when the decoupled thread is placed on
the dedicated core of the quad-core CPU. The measurements for
running the decoupled thread on the same core as L4Linux are
shown in Figure 5. In this case it is crucial that the decoupled
thread runs at a higher priority than L4Linux under L4Re’s
fixed-priority scheduler. We changed the scale of the x-axis to
just 3µs for better readability.

Fig. 4. Cyclictest results on x86 running L4Linux with and without load
generated by hackbench. The decoupled thread runs on a different core. The
worst-case latencies are 1.1µs without load and 2.4µs with load.

Fig. 5. Same setup as shown in Figure 4 however the decoupled thread runs
on the same core as L4Linux. The worst-case latencies are 1.2µs without load
and 2.5µs with load.

For both the dedicated-core and the shared-core config-
urations, we observe on an idle system a maximum timer
latency of slightly more than 1µs. The majority of observed
latencies cluster around 0.7µs, which is about a third of what
we measure with bare-metal Linux. When loading the system
with hackbench as described previously, the maximum timer
latency increases to approximately 2.4µs, irrespective of the
placement of the decoupled benchmark thread. The majority
of latencies are at around 1µs on the dedicated core, and
about 1.7µs when the L4Re-aware cyclictest replacement (see
Section III-B) shares a core with L4Linux.

The results demonstrate that our decoupling approach is
highly effective for reducing average and tail latencies. They
also indicate that the L4Re microkernel has a more efficient
interrupt-to-wakeup path than Linux. As for the increased
latencies under load, we suspect that they are the result of
cache and TLB misses. The difference is more pronounced in
the shared-core configuration. This could be attenuated in a
dual-socket system, where no caches are shared [1]. However,
this would also significantly increase the cost of the system.

E. ARM – Bare-Metal Linux
Since our decoupling mechanism also works for the ARM

port of L4Linux, we repeated the experiments on that platform.
We chose an NXP Layerscape 1021A-TWR system with a dual-
core ARM Cortex-A7 CPU and attempted to build a vanilla
Linux 4.10 kernel for it; Linux 4.10 is the version we used
on x86 and also the one on which the latest L4Linux with
decoupling support is based on. Unfortunately, we did not
succeed in finding a kernel configuration where the generic
ARM timer of the CPU could operate in high resolution
mode; instead it only supported a resolution of 10 ms, which
is prohibitively inaccurate for our experiments. We therefore
installed the vendor-supplied kernel, which did not have this
problem. This kernel from NXP is based on Linux version 4.1
and has the real-time patch-set applied applied to it (“Linux-
rt”); our ARM build of L4Linux is still based on Linux 4.10.
Using different kernel version is acceptable in our benchmark
setup, because threads decoupled from L4Linux run on the
L4Re microkernel, which is completely different anyway.

Linux L4

Adam Lackorzynski, Carsten Weinhold, Hermann Härtig, „Predictable Low-Latency Interrupt
Response with General-Purpose Systems“, OSPERT 2017, Duprovnik, Kroatia, June 2017

Wake from interrupt on L4/Nova: 900 cycles, 0.3 µs

(best case, on Intel Core i7-4770 CPU @ 3.40GHz)

Fig. 3. Cyclictest results on bare-metal Linux with and without load generated
by hackbench. The worst-case latencies are 6µs without load and 304µs with
load.

latency and the y-axis indicates the number of occurrences of
each latency. Cyclictest latencies without background load are
shown in blue, those with hackbench running in parallel are red.
Hardly visible in the diagram due to intentionally wide scaling
of the x-axis, the maximum latency without background load is
just about 6µs, with most of the measurements clustered around
2µs. With hackbench in the background, the maximum latency
increases dramatically by more than two orders of magnitude
to 304µs. The majority of latency values is between 15µs and
22µs, which is about three times as high as on the unloaded
system.

D. x86 – L4Linux with Decoupling

When we run the benchmark on L4Linux, with the decoupling
mechanism we described in Section II-A, we achieve much
lower latencies and significantly less variance. Figure 4
visualizes the results when the decoupled thread is placed on
the dedicated core of the quad-core CPU. The measurements for
running the decoupled thread on the same core as L4Linux are
shown in Figure 5. In this case it is crucial that the decoupled
thread runs at a higher priority than L4Linux under L4Re’s
fixed-priority scheduler. We changed the scale of the x-axis to
just 3µs for better readability.

0.00 0.50 1.00 1.50 2.00 2.50 3.00
Latency in µs

0

2000

4000

6000

8000

10000

Nu
m

be
r o

f o
cc

ur
re

nc
es Without Load

With Load

Fig. 4. Cyclictest results on x86 running L4Linux with and without load
generated by hackbench. The decoupled thread runs on a different core. The
worst-case latencies are 1.1µs without load and 2.4µs with load.

Fig. 5. Same setup as shown in Figure 4 however the decoupled thread runs
on the same core as L4Linux. The worst-case latencies are 1.2µs without load
and 2.5µs with load.

For both the dedicated-core and the shared-core config-
urations, we observe on an idle system a maximum timer
latency of slightly more than 1µs. The majority of observed
latencies cluster around 0.7µs, which is about a third of what
we measure with bare-metal Linux. When loading the system
with hackbench as described previously, the maximum timer
latency increases to approximately 2.4µs, irrespective of the
placement of the decoupled benchmark thread. The majority
of latencies are at around 1µs on the dedicated core, and
about 1.7µs when the L4Re-aware cyclictest replacement (see
Section III-B) shares a core with L4Linux.

The results demonstrate that our decoupling approach is
highly effective for reducing average and tail latencies. They
also indicate that the L4Re microkernel has a more efficient
interrupt-to-wakeup path than Linux. As for the increased
latencies under load, we suspect that they are the result of
cache and TLB misses. The difference is more pronounced in
the shared-core configuration. This could be attenuated in a
dual-socket system, where no caches are shared [1]. However,
this would also significantly increase the cost of the system.

E. ARM – Bare-Metal Linux
Since our decoupling mechanism also works for the ARM

port of L4Linux, we repeated the experiments on that platform.
We chose an NXP Layerscape 1021A-TWR system with a dual-
core ARM Cortex-A7 CPU and attempted to build a vanilla
Linux 4.10 kernel for it; Linux 4.10 is the version we used
on x86 and also the one on which the latest L4Linux with
decoupling support is based on. Unfortunately, we did not
succeed in finding a kernel configuration where the generic
ARM timer of the CPU could operate in high resolution
mode; instead it only supported a resolution of 10 ms, which
is prohibitively inaccurate for our experiments. We therefore
installed the vendor-supplied kernel, which did not have this
problem. This kernel from NXP is based on Linux version 4.1
and has the real-time patch-set applied applied to it (“Linux-
rt”); our ARM build of L4Linux is still based on Linux 4.10.
Using different kernel version is acceptable in our benchmark
setup, because threads decoupled from L4Linux run on the
L4Re microkernel, which is completely different anyway.

Tailoring the Linux Kernel and MPI to a Fast and Noise-Free Microkernel

L4 Microkernel + L4Linux + Decoupling
Binary compatible + sysfs interface
No modification to MVAPICH2
Lessons learned:

Maximize reuse + minimize critical path
Methodology: Start from Linux, not from L4

28

SUMMARY

Project: https://ffmk.tudos.orgSource: https://l4re.org

SPPEXA – Findings & Goals

 Massive parallelism (on- and cross-chip)
requires fundamentally new concepts

 Not “racks without brains”, but software is
the key to this paradigm shift

 Fundamental research (DFG), in contrast to
other (more application-oriented) initiatives
(German Federal Ministry of E & R)

 Establish collaborative, interdisciplinary
co-design of HPC applications and HPC
methods

 Focus on six research directions:
 Computational algorithms
 Application software
 Programming
 System software
 Data management and exploration
 Software tools

SPPEXA – Implementation

 Two three-year funding
phases

 Overall budget of
3,7 M E per year

 Funded via DFG’s
strategy fund

 Interdisciplinary consortia
of 3–5 groups

 Consortia address at least two
of SPPExa’s six research directions

 Two-stage application process with
(1) sketches and (2) full proposals

 Global strategic coordination, following
the established procedures of Collaborative
Research Centres (SFB)

 Close collaboration with respective inter-
national programmes intended

w w w . s p p e x a . d e

SPPEXA – Chronology

 2006: discussion in the German Research
Foundation (DFG) on the necessity of a
funding initiative for HPC software

 2010: initiative out of German HPC commu-
nity, referring to increasing activities on HPC
software elsewhere (USA: NSF, DOE; Japan;
China; G8)

 2010: discussion with DFG’s Executive
Committee, suggestion of a fl exible,
strategically initiated SPP

 2011: submission of the proposal, inter-
national reviewing, and formal acceptance

 2012: Review of project sketches and full
proposals

SPPEXA – Current Status

 68 sketches handed in, overall volume
of 19 M E per year applied for

 80 different universities, institutes and
companies represented by 240 national
and 15 international PIs

 24 sketches invited for full proposals
 13 full proposals accepted for funding
 Launch of programme and projects in

January 2013

German Priority Programme 1648
“Software for Exascale Computing”

Bo
ris

 L
eh

ne
r f

ür
 H

LR
S

Image: Heiner Igel

Image: Wolfgang E. Nagel

